
 
AFRL-RY-WP-TR-2011-1029 

 
 

 
 
EXTREME SCALE COMPUTING STUDIES 
 
Mark A. Richards and Daniel P. Campbell 
 
Georgia Institute of Technology 
 
 
 
 
 
 
 
DECEMBER 2010 
Final Report 
 
  

 
Approved for public release; distribution unlimited. 

 
See additional restrictions described on inside pages  

 
 

STINFO COPY 
 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
SENSORS DIRECTORATE 

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320 
AIR FORCE MATERIEL COMMAND 

UNITED STATES AIR FORCE 



 
NOTICE AND SIGNATURE PAGE 

 
 
 
Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U.S. Government. 
The fact that the Government formulated or supplied the drawings, specifications, or other data 
does not license the holder or any other person or corporation; or convey any rights or permission to 
manufacture, use, or sell any patented invention that may relate to them.  
 
This report was cleared for public release by the Defense Advanced Research Projects Agency’s 
Public Release Center and is available to the general public, including foreign nationals. Copies 
may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil). 
 
AFRL-RY-WP-TR-2011-1029 HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
 
 
 
 
 
*//Signature//      //Signature// 
KERRY HILL, Program Manager   BRADLEY J. PAUL, Chief 
Advanced Sensor Components Branch  Advanced Sensor Components Branch 
Aerospace Components & Subsystems Division Aerospace Components & Subsystems Division  
 
 
 
 
//Signature//  
JEFF HUGHES, Chief 
Aerospace Components & Subsystems Division 
Sensors Directorate 
 
 
 
 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 
 
*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it 
does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (DD-MM-YY) 2.  REPORT TYPE 3.  DATES COVERED (From - To) 
December 2010 Final   18 May 2007 – 31 December 2010 

4.  TITLE AND SUBTITLE 
EXTREME SCALE COMPUTING STUDIES 

5a.  CONTRACT NUMBER 
FA8650-07-C-7724 

5b.  GRANT NUMBER 
5c.  PROGRAM ELEMENT NUMBER 

62303E 
6.  AUTHOR(S) 

Mark A. Richards and Daniel P. Campbell 
5d.  PROJECT NUMBER 

ARPS 
5e.  TASK NUMBER 

ND 
5f.  WORK UNIT NUMBER 

  ARPSNDBJ 
7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.  PERFORMING ORGANIZATION 

Georgia Institute of Technology 
A Unit of the University System of Georgia 
Georgia Tech Research Institute 
Atlanta, GA 30332 

     REPORT NUMBER 
210667V 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.  SPONSORING/MONITORING 
       AGENCY ACRONYM(S) 

Air Force Research Laboratory  
Sensors Directorate 
Wright-Patterson Air Force Base, OH 45433-7320  
Air Force Materiel Command 
United States Air Force 

Defense Advanced Research Projects Agency/ 
   Information Processing Techniques Office 
   (DARPA/IPTO) 
3701 N. Fairfax Drive 
Arlington, VA 22203-1714 

AFRL/RYDI 
11. SPONSORING/MONITORING 
      AGENCY REPORT NUMBER(S) 
AFRL-RY-WP-TR-2011-1029 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited. 

13.  SUPPLEMENTARY NOTES 
DISTAR case 17642; Clearance Date: 18 July 2011. This report contains color. 

14.  ABSTRACT 
Four studies were conducted to determine the technical developments needed for a 1,000× increase in computational 
capability by 2015:1. The Exascale Computing Study, addressing hardware and system architecture issues; 2. The 
Exascale Computing Software Study, addressing software technologies to effectively utilize extreme levels of 
concurrency; 3. The Exascale Computing Resiliency Study, addressing practical fault management in extreme scale 
systems; and 4. The Embedded Extreme-scale System Study, addressing elements of extreme scale applications and 
benchmarks, low-power algorithms, design simulation methods, programmability metrics, and enabling tools for 
graphics processing unit use. The studies identified critical technology challenges in power and energy; concurrency; 
resiliency; and memory and storage. Investments were recommended in locality and parallelism expression and 
optimization; power management; self-awareness techniques; execution models; extreme scale benchmarks, 
programmability metrics, low power algorithms, and libraries for graphics processing units. 

15.  SUBJECT TERMS   

exascale, extreme scale, high performance computing, graphics processing unit, GPU, VSIPL, locality, parallelism, 
parallel computing, benchmarking, benchmarks, concurrency, self-aware computing, resiliency, checkpointing, Moore's 
Law, programmability, execution model 

16.  SECURITY CLASSIFICATION OF: 17. LIMITATION  
OF ABSTRACT: 

SAR 

18.  NUMBER 
OF PAGES 

   590 

19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a.  REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

         Kerry Hill 
19b.  TELEPHONE NUMBER (Include Area Code) 

N/A 
 Standard Form 298 (Rev. 8-98)         

Prescribed by ANSI Std. Z39-18 

 



 
TABLE OF CONTENTS 

 
Section  Page 

 

ii 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

List of Tables ..............................................................................................................................................iii 
Preface ......................................................................................................................................................... iv 

Acknowledgements ................................................................................................................................ vii 
1. Summary ........................................................................................................................................... 1 

1.1 Goals of the Project .................................................................................................................... 1 

1.2 Project Approach ....................................................................................................................... 1 
1.3 Principal Results and Conclusions .......................................................................................... 1 
1.4 Major Recommendations .......................................................................................................... 2 

2. Introduction ...................................................................................................................................... 5 

2.1 Goal of the Project ...................................................................................................................... 5 

2.2 Extreme Scale Computing Systems ......................................................................................... 5 
2.3 DARPA’s Extreme Scale Computing Studies ........................................................................ 5 
2.4 Embedded Extreme Scale Study .............................................................................................. 6 
2.5 Organization of This Report ..................................................................................................... 6 

3. Methods and Procedures ...................................................................................................................... 7 

3.1 Group Studies ............................................................................................................................. 7 

3.2 Embedded Extreme Scale Studies ........................................................................................... 9 

4. Results and Discussion .................................................................................................................. 11 

4.1 Group Studies ........................................................................................................................... 11 

4.2 Embedded Extreme Scale Study ............................................................................................ 13 

4.2.1 Design Environments for Terascale Embedded Computing ................................... 13 

4.2.2 Extreme Scale Embedded Computing Applications................................................. 14 

4.2.3 Low Power Computational Algorithms ..................................................................... 14 

4.2.4 High Performance Libraries for Advanced Graphics Processing Units ................ 15 

4.2.5 Metrics for Extreme Scale Systems .............................................................................. 15 

4.3 Discussion ................................................................................................................................. 16 

5. Conclusions and Recommendations ........................................................................................... 18 

5.1 Group Studies ........................................................................................................................... 18 

5.2 Embedded Extreme Scale Study ............................................................................................ 19 

6. References ........................................................................................................................................ 21 

List of Acronyms ...................................................................................................................................... 22 

Appendix A: Exascale Computing Study Report ................................................................................ 23 

Appendix B: Exascale Computing Software Study Report .............................................................. 321 

Appendix C: Exascale Computing Resiliency Study Report ........................................................... 481 

Appendix D: Embedded Extreme Scale systems Study Report ...................................................... 511 
 



 
 

LIST OF TABLES 
 
 

Table  Page 
 

iii 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

Table 1 Research Recommendations for Addressing the Major Extreme Scale Technology 
Challenges 3 

Table 2 Exascale Computing Study Core Committee 7 
Table 3 Exascale Computing Software Study Core Committee 8 
Table 4 Exascale Computing Resiliency Study Core Committee 8 
Table 5 Research Recommendations for Addressing the Major Extreme Scale Technology 

Challenges 18 
 



 

iv 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

PREFACE 

This document is the draft Final Technical Report for Georgia Institute of Technology (Georgia 
Tech, GT) Project 210667V, “Exascale Computing Study” (ECS). The ECS was sponsored by the 
U.S. Defense Advanced Research Projects Agency (DARPA), contracting through the U.S. Air 
Force Research laboratory (AFRL), and was conducted over the period May 2007 through 
December 2010. 

The ECS was comprised of four major sub-studies: 
♦ The original Exascale Computing Study, sometimes called the “hardware study” [1]; 
♦ The Exascale Computing Software Study (ECSS) [2] ; 
♦ The Exascale Computing Resiliency Study (ECRS); and 
♦ The Embedded Extreme Scale (EES) systems study [3]. 

The results and recommendations of these studies, particularly the first three, significantly 
influenced the focus and structure of the subsequent Ubiquitous High Performance Computing 
(UHPC) program initiated by DARPA in 2010 [4]. 

Each of these studies has been previously documented by technical reports delivered under this 
project. The purpose of this report is to summarize the results and recommendations of the 
project, and thus of these four studies, as a whole. This report also gathers those four reports 
into a single document for the convenience of the extreme scale high performance computing 
community. They appear in their entirety as appendices A through D of this report. 

Following are lists of contributors to each of the four ECS study reports, with their affiliations. 
Georgia Tech (GT) is grateful to these individuals and their institutions for their contributions to 
the exascale computing studies. 

 
Exascale Computing Study Report Contributors: 

Keren Bergman 
Columbia University 

Shekhar Borkar 
Intel 

Dan Campbell 
Georgia Tech Research Institute 

William Carlson 
Institute for Defense Analyses 

William Dally 
Stanford University 

Monty Denneau 
IBM T. J. Watson Research Laboratories 

Paul Franzon 
North Carolina State University 

William Harrod 
DARPA 

Kerry Hill 
Air Force Research Laboratory 

Jon Hiller 
Science & Technology Associates 

Sherman Karp 
Consultant 

Stephen Keckler 
University of Texas 

Dean Klein Micron Technology Peter Kogge 
University of Notre Dame 

(continued next page) 



 

v 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

PREFACE (continued) 

 
Exascale Computing Study Report Contributors (concluded): 

Robert Lucas 
University of Southern California 

Information Sciences Institute 

Mark Richards 
Georgia Institute of Technology 

Al Scarpelli 
Air Force Research Laboratory 

Steven Scott 
Cray 

Allan Snavely 
University of California San Diego 

Thomas Sterling 
Louisiana State University 

R. Stanley Williams 
Hewlett-Packard Laboratories 

Katherine Yelick 
University of California Berkeley 

 

 
Exascale Computing Software Study Report Contributors: 

Saman Amarasinghe 
Massachusetts Institute of Technology 

Dan Campbell 
Georgia Tech Research Institute 

William Carlson 
Institute for Defense Analyses 

Andrew Chien 
Intel 

William Dally 
Stanford University 

Elmootazbellah Elnozahy 
IBM 

Mary Hall 
University of Utah 

Robert Harrison 
Oak Ridge National Laboratory 

William Harrod 
DARPA 

Kerry Hill 
Air Force Research Laboratory 

Jon Hiller 
Science & Technology Associates 

Sherman Karp 
Consultant 

Charles Koelbel 
Rice University 

David Koester 
MITRE 

Peter Kogge 
University of Notre Dame 

John Levesque 
Oak Ridge National Laboratory 

Daniel Reed 
Microsoft 

Vivek Sarkar 
Rice University 

Robert Schreiber 
Hewlett Packard Laboratories 

Mark Richards 
Georgia Institute of Technology 

Al Scarpelli 
Air Force Research Laboratory 

John Shalf 
Lawrence Berkeley National Laboratory 

Allan Snavely 
University of California San Diego 

Thomas Sterling 
Louisiana State University 

 
  



 

vi 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

PREFACE (concluded) 
 
Exascale Computing Resiliency Study Report Contributors: 

Ricardo Bianchini, 
Rutgers University 

Tarek El-Ghazawi, 
George Washington University, 

Elmootazbellah Elnozahy, 
IBM 

Armando Fox, 
University of California, Berkeley 

Forest Godfrey, 
Cray 

William Harrod, 
DARPA 

Adolfy Hoisie, 
Los Alamos National Laboratory 

Kathryn McKinley, 
University of Texas 

Rami Melhem, 
University of Pittsburgh 

James Plank, 
University of Tennessee 

Partha Ranganathan, 
Hewlett Packard Laboratories 

Josh Simons, 
Sun Microsystems 

 

 
Embedded Extreme Scale Systems Study Report Contributors: 

Daniel P. Campbell 
Georgia Tech Research Institute 

Thomas Conte 
Georgia Institute of Technology 

Jason Poovey 
Georgia Institute of Technology 

Mark A. Richards 
Georgia Institute of Technology 

Timothy Scott 
Georgia Institute of Technology 

 



 

vii 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

ACKNOWLEDGEMENTS 

This project was sponsored by the Information Processing Technology Office (IPTO) of the US 
Defense Advanced Research Projects Agency (DARPA) and was conducted under the 
administration of the U.S. Air Force Research Laboratory under contract FA8650-07-C-7724. The 
authors would like to thank Dr. William Harrod of DARPA/IPTO, the Exascale Computing 
Study program manager, and Ms. Kerry Hill and Mr. Al Scarpelli of AFRL for their support of 
this effort. Special thanks are due to Mr. Jon Hiller of Science and Technology Associates and to 
Dr. Sherman Karp for their guidance and support of the various studies conducted under this 
project. 

Numerous members of the high performance computing community contributed to the 
constituent studies that comprise this project. Those that were core members of the study 
groups and who directly aided in authoring the reports were named in the Preface of this 
document. Thanks are also due, however, to numerous additional persons who participated in 
individual meetings as invited guest subject matter experts. While too many to enumerate here, 
these persons are identified in the appendices of the Exascale Computing Study report 
(Appendix A of this report) and the Exascale Computing Software Study report (Appendix B). 

 



 

1 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

1. SUMMARY 

 

1.1 Goals of the Project 

The primary goal of this project was to determine the technical developments needed to enable 
a 1,000× increase in the computational capabilities of high performance computing (HPC) 
systems by the 2015 time frame at scales ranging from chassis-level embedded systems to data 
center systems. Such systems are called extreme scale computing systems. To the extent current 
technology trends were deemed incapable of supporting such increases, the project was 
charged with identifying the major obstacles and targeted research investments to overcome 
them. A second goal of the project was to develop design, analysis, and implementation 
techniques applicable to embedded extreme scale (EES) computing systems. 

1.2 Project Approach 

To address these goals, Georgia Tech (GT) organized and conducted an Exascale Computing 
Study (ECS) and an Exascale Computing Software Study (ECSS) on behalf of DARPA. The ECS 
addressed hardware and system architecture issues in the development of exascale computing 
systems. The ECSS addressed software technologies, approaches, and methodologies that must 
be in place to effectively utilize the extreme levels of concurrency expected in exascale 
computing technology. A third Exascale Computing Resiliency Study (ECRS), conducted by 
DARPA but facilitated by this project, identified the key technologies, approaches, and 
methodologies that must be in place to provide practical fault management in exascale systems. 
Brief summaries of the methods, results, and recommendations of each of these three studies 
are given in sections 3 through 5 of this report. Full details of each are in their respective final 
reports, which are included in their entirety as Appendices A, B, and C of this report. 

The research on EES systems was conducted entirely by GT. This portion of the project was 
divided into five sub-tasks, each conducting initial work on an area of interest to the 
development of extreme scale systems: an internal mini-study of design environment 
requirements for terascale embedded computing; characterization of embedded computing 
applications projected to require terascale computing capability in the 2015 time frame; 
investigation of new concepts for inherently low-power computational algorithms; continued 
development of high performance computational libraries for advanced graphics processing 
units (GPUs); and initial consideration of programmability metrics for extreme scale systems. 
Some of these areas are also applicable to all size classes of extreme scale systems. 

1.3 Principal Results and Conclusions 

Taken as a whole, the ECS, ECSS, and ECRS resulted in a clear identification of the technology 
challenges in achieving extreme scale computing capability by the 2015 time frame that would 
not be met by current commercial technology development trends. At the highest level, these 
are the power and energy challenge; the concurrency challenge; the resiliency challenge; and the 
memory and storage challenge. Because these studies were not chartered to focus on device 
technology, they concentrated on the first three challenges. Both the original ECS and the ECSS 



 

2 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

showed that the concurrency challenge could be usefully separated into considerations of 
massive parallelism, referring to the sheer number of threads required to achieve extreme scale 
performance, and locality, referring to the dominant effect of data access and movement on 
power consumption. The resiliency study made it clear that the conventional practice of 
checkpoint and restart is a non-starter in extreme scale systems, especially at the data center 
scale. Thus, entirely new techniques are needed for fault management. 

The studies also made clear that the challenges are not orthogonal. For instance, the 
energy/power challenge must be addressed at multiple levels, from device technology through 
architecture, systems software, and application software. Management of locality in the latter 
two directly impacts power and energy consumption. As another example, circuit techniques 
likely to be used for power reduction will also likely increase the frequency of device errors, so 
corresponding attention to reliable circuit design will be needed to compensate. 

The EES study task initiated research on several fronts related to practical extreme scale system 
development, especially at the smaller embedded scale. The design environment mini-study 
suggested renewed emphasis on hierarchical, statistical simulation as a pragmatic design 
methodology for predictable systems. The applications analysis task provided the initial 
development of streaming sensor challenge problems (SSCPs) that establish the computational 
requirements of near-future streaming sensor applications for the Department of Defense. With 
further development, the SSCP will also provide an abstracted, publicly releasable sample 
application that will aid in EES system design and development. Continued development of the 
GPU Vector, Signal, Image Processing Library (GPU VSIPL) enhances one valuable tool for 
productive high performance software development for EES systems. The algorithm memory 
use analysis laid the groundwork for additional research in designing algorithms for minimum 
power while maintaining high performance. Finally, the early small-scale programmability 
metric proposal and experiments provided a basis for more extensive research into practical 
metrics for extreme scale programmability metrics. 

1.4 Major Recommendations 

The ECS, ECSS, and ECRS studies identified several key challenges that must be addressed if 
extreme scale systems are to be achieved by the 2015 time frame. Table 1, adapted from Dally 
[5], compactly encapsulates the most important of the general areas of research recommended 
by the extreme scale studies for addressing some of the major challenge areas. For each 
challenge area, research opportunities are separated into those primarily associated with the 
system hardware, computer architecture, programming and software, and applications. This 
table outlines a comprehensive program of research investment, ranging from the circuit level 
to the end-user application and algorithm design. While some of these areas may be more 
critical than others, it is expected that progress will be required in all of them before viable 
extreme scale systems can be achieved. More detailed recommendations are given in each of the 
group study reports in Appendices A through C. 

A particular finding of the studies taken as a whole was the need for a new execution model for 
extreme scale systems. An execution model is paradigm for organizing and carrying out 
computation across all levels of the computer system from programming models and 
languages, through compilers and runtime systems, to operating systems, to system and 



 

3 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

microarchitectures. As such, it provides the conceptual scaffolding for codesign of each of these 
system elements. 

 

Table 1. Research Recommendations for Addressing the 
Major Extreme Scale Technology Challenges 

System Level Power Efficiency  Massive 
Parallelism  Locality  Resiliency  

Applications Locality-optimized 
applications  

Combined strong, 
weak, and “new-
era” weak scaling 

Locality-
optimized 

applications  

Application-
level checking  

Programming 
Systems  

Locality expression 
and optimization  

Parallelism 
expression and 

extraction  

Locality 
expression 

and 
optimization  

Redundancy 
generation, 

ALC support  

Architecture  
Low-overhead 

processors, power 
adaptive  

Efficient 
communication & 
synchronization 

mechanisms  

Agile 
memory 
systems  

Checkpoint 
restart, ECC, 
self-checking  

Hardware 

Optimized threshold 
and supply voltages, 

energy-efficient comm. 
circuits 

  
Reliable 
circuits 

Source: Adapted from [5]. 

No further work is planned at this time on design methodology for EES systems, but it is 
recommended that the other four elements of the EES study be continued. The SSCP is currently 
planned to be refined and expanded under the UHPC program to include multiple disparate 
sensors and a sensor fusion stage. In addition, it will be “productized” to a user-ready artifact, 
with a formal specification, reference serial code, input data or generators, benchmarking rules, 
and so forth. The proposed programmability metric requires significant research to determine if 
it can serve as a practical basis for a programmability metric for large scale UHPC and EES 
systems. Additional work is needed in the concept development; programming problems; and 
scoring methodology. This work will also continue as part of the UHPC program. 

It is recommended that the work on algorithmic data motion analysis be continued under 
UHPC also. Much work remains to build from the initial demonstrations to a practically useful 
methodology. The correlation between data motion and actual energy costs must be established, 
as must the applicability of the proposed methods to large scale problems. Also, the analysis of 
locality and data motion, and the prediction of algorithm energy efficiency based on these 
analyses, is not an end in itself, but the basis for developing design techniques that lead to high 
performance numerical algorithms with inherently low data motion and energy costs. 



 

4 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

Finally, it is recommended that GT continue development of the GPU VSIPL library as a useful 
productivity tool for EES systems, and possibly larger extreme scale systems as well. Immediate 
needs are concentrated on debugging and validation of various linear system solvers, and on 
updating of the VSIPL Test Suite. 

 



 

5 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

2. INTRODUCTION 

 

2.1 Goal of the Project 

The primary goal of this project, conducted from mid-2007 to late 2010, was to determine the 
technical developments required to enable a 1,000× increase in the computational capabilities of 
HPC systems by the 2015 time frame, relative to current high performance computer systems. 
To the extent current technology trends were deemed incapable of supporting such increases, 
then the project was also charged with identifying the major obstacles, and targeted research 
investments needed to overcome them. A secondary goal of the project was to develop design, 
analysis, and implementation techniques specifically applicable to advanced embedded HPC 
systems. 

2.2 Extreme Scale Computing Systems 

Initially, the goal was described as exascale computing in recognition of the fact that the first 
computer to achieve a speed exceeding one petaflops/s (Pflops), as rated by the “Top 500” list, 
was achieved in June 2008 [7]. The use of the word “exascale” (instead of exaflops) reflected a 
deliberate focus on looking beyond just floating point operations to a broader set of 
performance metrics that include integer, network, and memory system performance. The 
change from exascale to “extreme scale” reflected the project’s focus on not just high-end data 
center scale supercomputers, but more broadly the ability to perform computations of both 
traditional and emerging significance to the Department of Defense (DoD) at multiple system 
scales. 

Although most of the studies conducted under this project focused on the high-end, true 
exascale systems to identify technology barriers, it is expected that the technology needed to 
enable these true exascale systems would also enable a 1000× increase, relative to current 
capability, for smaller-scale computers. Specifically, it is assumed that “departmental” systems 
could be constructed that operate at petascale levels in a form factor of one or two standard 
cabinets, and that “embedded” systems could be constructed that operate at terascale levels in a 
VME chassis physical scale. The moniker extreme scale systems was adopted to refer collectively 
to this full range of computing capabilities and physical sizes. 

2.3 DARPA’s Extreme Scale Computing Studies 

In 2007-2008, Georgia Tech (GT) organized and conducted under this project an Exascale 
Computing Study on behalf of DARPA. The ECS addressed hardware and system architecture 
issues in the development of exascale computing systems, focusing particularly on power and 
energy, parallelism, and concurrency. The final report of the ECS has previously been publicly 
released [1], and is included as Appendix A of this report. 

Among other issues (to be discussed in Section 4), the ECS identified the development of 
effective parallel programming methodologies for systems having extreme degrees of 
concurrency, and exascale system resiliency as critical issues. Consequently, in 2008-2009 GT 



 

6 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

organized and conducted a supplemental Exascale Computing Software Study to identify the 
key software technologies, approaches, and methodologies that must be in place to effectively 
utilize the extreme levels of concurrency expected in exascale computing technology. The final 
report of the ECSS has previously been publicly released [2], and is included in its entirety as 
Appendix B of this report. 

In 2008-2009, DARPA also conducted an Exascale Computing Resiliency Study, facilitated by 
this project. The goal of the ECRS was to identify the key technologies, approaches, and 
methodologies that must be in place to ensure scalability of mean time to failure (MTTF) in 
exascale systems. The “white paper” summarizing the ECRS study is included in its entirety as 
Appendix C of this report. 

2.4 Embedded Extreme Scale Study 

In 2008, GT undertook a study several of key issues in realizing embedded extreme scale 
computing systems. The EES study comprised five principal sub-tasks. The first focused on 
identifying embedded computing applications projected to require terascale computing 
capability in the 2015 time frame. GT analyzed the computational, communication, memory, 
and other requirements of the selected applications. Key functional kernels and application 
benchmarks representative of the selected applications were identified. The second sub-task 
focused on a design environment for terascale embedded computing. GT assessed current 
performance modeling and prediction methods applicable to embedded computing systems. 

The third sub-task considered new concepts for inherently low-power computational 
algorithms. Under this part of the effort, GT investigated techniques for developing new 
algorithms and improvements to existing algorithms that jointly optimize the energy and 
runtime required for computation of selected functional kernels. Under the fourth sub-task, GT 
conducted related work in the development of high performance computational libraries for 
advanced graphics processing units (GPUs). Finally, the fifth sub-task addressed the problem of 
designing effective programmability metrics for extreme-scale systems. 

The results of this task were documented in a technical report that is included in its entirety as 
Appendix D of this report. 

2.5 Organization of This Report 

The bulk of the work conducted under this project is described in complete detail in the four 
previous reports includes as Appendices A – D of this report. These reports describe the 
participants, procedures, results, and recommendations for their respective areas of focus. 
Consequently, the body of this report is limited to a high-level description of the common 
aspects of the studies and the most important overall conclusions of the project as a whole. 

Section 3 of this report describes the common methods and procedures used across the studies. 
Section 4 summarizes the most important conclusions of each, and the conclusions of the project 
as a whole. Similarly, Section 5 summarizes the most important recommendations of each 
study, and of the project as a whole. Appendices A, B, C, and D are respectively the final 
products of the ECS, ECSS, ECRS, and EES studies. 



 

7 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

3. METHODS AND PROCEDURES 

 

3.1 Group Studies 

The ECS, ECSS, and ECRS were all similar in their organization and conduct. For the ECS and 
ECSS, DARPA and GT began by identifying a community leader to serve as the technical chair 
of the study. These were Prof. Peter Kogge of Notre Dame for the ECS, and Prof. Vivek Sarkar 
of Rice University for the ECSS. GT, DARPA, and the chair then invited a number of 
appropriate subject matter experts (SMEs) from the HPC community to serve as the core 
committee for each study. Tables 2 and 3 detail the core committee members, including 
government participants, for the ECS and ECSS. The ECRS committee was organized directly 
by DARPA with Dr. Elmootazbellah Elnozahy of IBM as its chair, and study committee 
members selected by DARPA and Dr. Elnozahy. Table 4 lists the core committee members for 
the ECRS. 

 

Table 2. Exascale Computing Study Core Committee 

Keren Bergman, 
Columbia University 

Shekhar Borkar, 
Intel 

Dan Campbell, 
Georgia Tech Research Institute 

William Carlson, 
Institute for Defense Analyses 

William Dally, 
Stanford University 

Monty Denneau, 
IBM T. J. Watson Research Laboratories 

Paul Franzon, 
North Carolina State University 

William Harrod, 
DARPA 

Kerry Hill, 
Air Force Research Laboratory 

Jon Hiller, 
Science & Technology Associates 

Sherman Karp 
Consultant 

Stephen Keckler, 
University of Texas 

Dean Klein, Micron Technology Peter Kogge (technical chair), 
University of Notre Dame 

Robert Lucas, 
University of Southern California 

Information Sciences Institute 

Mark Richards, 
Georgia Institute of Technology 

Al Scarpelli, 
Air Force Research Laboratory 

Steven Scott, 
Cray 

Allan Snavely, 
University of California, San Diego 

Thomas Sterling, 
Louisiana State University 

R. Stanley Williams, 
Hewlett-Packard Laboratories 

Katherine Yelick, 
University of California, Berkeley 

 



 

8 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

Table 3. Exascale Computing Software Study Core Committee 

Saman Amarasinghe, 
Massachusetts Institute of Technology 

Dan Campbell, 
Georgia Tech Research Institute 

William Carlson, 
Institute for Defense Analyses 

Andrew Chien, 
Intel 

William Dally, 
Stanford University 

Elmootazbellah Elnozahy, 
IBM 

Mary Hall, 
University of Utah 

Robert Harrison, 
Oak Ridge National Laboratory 

William Harrod, 
DARPA 

Kerry Hill, 
Air Force Research Laboratory 

Jon Hiller, 
Science & Technology Associates 

Sherman Karp 
Consultant 

Charles Koelbel, 
Rice University 

David Koester, 
MITRE 

Peter Kogge, 
University of Notre Dame 

John Levesque, 
Oak Ridge National Laboratory 

Daniel Reed, 
Microsoft 

Vivek Sarkar (technical chair), 
Rice University 

Robert Schreiber, 
Hewlett Packard Laboratories 

Mark Richards, 
Georgia Institute of Technology 

Al Scarpelli, 
Air Force Research Laboratory 

John Shalf, 
Lawrence Berkeley National Laboratory 

Allan Snavely, 
University of California, San Diego 

Thomas Sterling, 
Louisiana State University 

 
 

Table 4. Exascale Computing Resiliency Study Core Committee 

Ricardo Bianchini, 
Rutgers University 

Tarek El-Ghazawi, 
George Washington University, 

Elmootazbellah Elnozahy (technical chair), 
IBM 

Armando Fox, 
University of California, Berkeley 

Forest Godfrey, 
Cray 

William Harrod, 
DARPA 

Adolfy Hoisie, 
Los Alamos National Laboratory 

Kathryn McKinley, 
University of Texas 

Rami Melhem, 
University of Pittsburgh 

James Plank, 
University of Tennessee 

Partha Ranganathan, 
Hewlett-Packard Laboratories 

Josh Simons, 
Sun Microsystems 



 

9 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

 

Each group conducted a series of working meetings attended by all available members of the 
core study committee. The technical focus of the meetings was determined by the technical 
chair in consultation with DARPA and GT. Details of the meetings held are included in the 
individual study technical reports in the appendices to this report. For most meetings, a number 
of additional SMEs, appropriate to the subject of that meeting, were invited to attend and 
participate. Some meetings, typically the first and last, were limited in whole or part to core 
members to focus on study planning or development of the final report. 

In addition to participating technically, GT served as organizer and facilitator of the ECS and 
ECSS study meetings. GT assisted in site selection, including hosting some meetings at GT’s 
facilities. GT also arranged for local meeting support as required, including local travel 
information, audio/visual equipment as required, internet access for participants, and 
refreshments. In addition, GT provided travel funding and honoraria where required to enable 
participation by SMEs. The technical chairs and certain other participants were supported 
under subcontract from GT. 

3.2 Embedded Extreme Scale Study 

Unlike those described in the preceding section, the Embedded Extreme Scale (EES) study task 
was conducted entirely by GT and did not involve community-wide group meetings. As 
actually implemented, the EES study included five tasks: 

1. Analysis of design environment requirements for terascale embedded computing. 

2. Analysis of embedded computing applications projected to require terascale computing 
capability in the 2015 time frame. 

3. Investigating new concepts for inherently low-power computational algorithms. 

4. Continued development of high performance computational libraries for advanced 
graphics processing units (GPUs). 

5. Initial consideration of selected metrics for extreme scale systems. 

For the first task, GT conducted an internal mini-study group in the summer of 2009 to address 
issues in embedded terascale system design. A series of biweekly meetings and discussions 
involving a group of about one half-dozen GT faculty were held. The discussions addressed 
both hardware and software issues in designing systems of this class, ultimately focusing on the 
problem of “predictable design”. 

The second task was addressed through the identification and computational analysis of three 
major embedded real-time applications: ground moving target indication (GMTI) by radar; 
persistent wide area surveillance (WAS) by radar; and autonomous ground vehicles. For each of 
these applications, GT analyzed the computational, communication, memory, and other 
requirements of the selected applications, considering several variations requiring different 
levels of computing capability, from present-day technology through future extreme scale 
technology. In the case of the streaming imaging sensor, a “streaming sensor challenge 



 

10 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

problem” benchmark was defined to provide an unrestricted, abstracted, and scalable 
representation of this class of computing problem. 

The third task, concepts for low-power numerical algorithms, was limited to preliminary 
analysis of metrics for data motion and the development of an initial MATLAB-based 
infrastructure for measuring data motion in simple, canonical algorithms such as the fast 
Fourier transform (FFT), finite impulse response (FIR) digital filters, and matrix multiplication. 
This approach was based on the assumption, consistent with the ECS study, that data motion 
through the memory hierarchy is one of the major energy consumers in extreme scale 
computing, and thus one of the major obstacles to successful implementation of such machines. 

The fourth task continued development of an implementation of the Vector, Signal, Image 
Processing Library (VSIPL) [8] application programming interface (API) for GPUs. The resulting 
library is known as GPU VSIPL [9]. This effort addressed extension of the library to include 
important matrix decompositions and linear equation solvers from the VSIPL “Core profile”, 
and update of the VSIPL Test Suite. 

The fifth task considered metrics for extreme scale systems. While traditional metrics such as 
energy efficiency, performance in operations per second on appropriate workloads, and 
scalability remain important, the extreme concurrency required to utilize extreme scale 
architectures is expected to greatly increase programming difficulties for end users. 
Consequently, metrics for such characteristics as programmability and productivity that are 
applicable to these systems are needed. It is expected that new metrics for resiliency and 
dependability and security will also be required. Under this project, a limited initial study of 
programmability metrics issues was initiated. After an initial literature review, GT proposed a 
programmability metric methodology and tested it on a very small scale as a means of 
identifying issues and refining the proposed metric. 

 



 

11 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

4. RESULTS AND DISCUSSION 

 

The complete results of each of the major studies under this project (ECS, ECSS, ECRS, and EES 
study) are contained in their respective reports in Appendices A through D. In this section, a 
very brief summary of the major results is given. 

4.1 Group Studies 

The original exascale computing study concluded that there are four major challenges to 
achieving exascale systems where current technology trends are simply insufficient, and 
significant new research is needed: 

♦ The Energy and Power Challenge is the most pervasive of the four. The ECS study group 
was unable to project any combination of currently mature technologies that will 
deliver systems with sufficient performance in any size class at the desired power 
levels. A key observation of the study was that it may be easier to solve the power 
problem associated with base computation than it will be to solve the problem of 
transporting data from one site to another, whether on the same chip, between closely 
coupled chips in a common package, between different racks on opposite sides of a 
large machine room, or in storing data in the aggregate memory hierarchy. 

♦ The Memory and Storage Challenge recognizes the lack of currently available technology 
to retain data at high enough capacities, and access it at high enough rates, to support 
the desired application suites at the desired computational rate, and still fit within an 
acceptable power envelope. This challenge applies to local memory and storage (multi-
level caches), main memory (dynamic random access memory [DRAM] today) and 
secondary storage (rotating disks today). 

♦ The Concurrency and Locality Challenge arises from the flattening of silicon clock rates and 
the end of increasing single thread performance, leaving explicit, largely programmer-
visible parallelism as the only mechanism in silicon to increase overall system 
performance. While this affects all three classes of systems (data center, departmental, 
and embedded), projections for the data center class systems in particular indicate that 
applications may have to support upwards of a billion separate threads to efficiently 
use the hardware. 

♦ A Resiliency Challenge that deals with the ability of a system to continue operation in the 
presence of either faults or performance fluctuations. This concern grew out of not only 
the explosive growth in component count for the larger classes of systems, but also out 
of the need to use advanced technology, at lower voltage levels, where individual 
devices and circuits become increasingly sensitive to local operating environments, and 
new classes of aging effects become significant. 

While the latter three challenges grew out of consideration of the high end systems, they are 
certainly not limited to that class. The explosive growth of highly multi-core microprocessors 
and their voracious appetite for more random access memory (RAM) creates smaller-scale 
versions of these same challenges for the smaller extreme scale systems. 



 

12 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

Thus, the ECS study established the assumption that all three classes of extreme scale systems 
will be built using massive multi-core processors with hundreds of cores per chip; that their 
performance will be driven by parallelism and constrained by energy; and that they will be 
subject to frequent faults and failures. Beginning from the ECS results, the exascale computing 
software study focused on the implications of the concurrency and energy challenges for system 
and application software, tools, and APIs. Also included was identification of opportunities for 
software-hardware co-design, as well interfaces between applications and system software and 
between system software and hardware. Extreme scale algorithms and application software 
were not included in the ECSS scope. 

The concurrency challenge will require extreme scale software to expose at least 1000× more 
concurrency in applications for extreme scale systems, relative to current systems. It is further 
exacerbated by the projected memory-computation imbalances in extreme scale systems, with 
bytes/ops ratios that may drop to values as low as 10−2, where “bytes” and “ops” represent the 
main memory and computation throughput capacities of the system, respectively. These ratios 
will result in 100× reductions in memory per core relative to petascale systems, with 
accompanying reductions in memory bandwidth per core. Thus, a significant fraction of 
software concurrency in extreme scale systems must come from exploiting more parallelism 
within the computation performed on a single datum, i.e., from strong scaling or from the 
“new-era” weak scaling discussed in Chapter 4 of the ECSS report (Appendix B). Strong scaling 
often involves more frequent communication and synchronization than weak scaling, which in 
turn contributes to the energy efficiency challenge since data movement and synchronization 
are major contributors to energy costs. Another major obstacle to achieving a large degree of 
concurrency arises from the serialization bottlenecks in current system software approaches to 
communication and synchronization. 

All three classes of Extreme Scale systems will be expected to deliver their 1000× improvements 
in computation capability while essentially remaining within the power budgets of current 
systems. An aggressive hardware design for data center-sized systems will need at least 60MW 
of power to achieve an exa-op level of performance, under highly idealized zero-overhead 
assumptions for software. This energy challenge affects system software design because when 
current software overheads are taken into account, it is clear that extreme scale capability 
cannot be achieved without a significant redesign of the system software stack. 

The ECSS found that a 1000× increase in computation capability for each class of extreme scale 
system will only be achievable through radical re-design of the underlying execution model and 
system software and hardware. Current execution models and system designs will not work at 
extreme scale because of their sequential foundations and inherent energy inefficiencies. In 
addition, use of current execution models at extreme scale will result in prohibitively large costs 
in programmability. While the High Productivity Computing Systems (HPCS) [6] program and 
other recent efforts have demonstrated reductions in the human effort required to develop high-
productivity software for current petascale systems, they do not address the energy-constrained 
many-core parallelism and heterogeneous processors expected in extreme scale architectures. 
Also, while there is some overlap between system software requirements for extreme scale and 
those for large scale commercial data centers, there are also significant differences. Commercial 
system software for cloud computing is primarily focused on optimizing throughput capacity of 



 

13 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

independent jobs, whereas system software for extreme scale computing must be capable of 
delivering a 1000× increase in parallelism to a single job. 

Also building on the challenges identified by the original ECS, the extreme scale resiliency 
study considered the resiliency challenge. It found that today, 20% or more of the computing 
capacity in a large high-performance computing system is wasted due to failures and 
recoveries. Typical mean time between failures (MTBF) is from 8 hours to 15 days. As systems 
increase in size to field petascale computing capability and beyond, the MTBF will go lower and 
more capacity will be lost. Indeed, it is not difficult to project exascale systems that will use 
100% of their time in checkpointing and recovery using current protocols, thus performing no 
useful work at all at immense costs in dollars and energy. 

The ECRS showed that the programming model based on flat message passing using the 
message passing interface (MPI) is central to the current problem in providing reliability. This 
model does not offer any failure containment, and thus a failure in one node in the system 
triggers a whole-system failure. As systems continue to increase in size, this approach is not 
tenable. The study also analyzed current trends in technology and showed that power 
management, the recent trend toward heterogeneous computing, and the expected increase in 
system size all will interact negatively with resilience at the system level. To counter these 
trends, the ECRS considered an extensive palette of resilience techniques at all levels of the 
system. At the hardware level, stable semiconductor memory devices and monitoring of 
hardware threads can be applied. At the system runtime level, power management methods can 
be combined with efficient state capture/recovery and virtualization. Particularly novel is the 
suggestion to combine resilience-oriented compiler and programming methods with statistical 
machine learning methods for fault detection, isolation, and recovery to create a form of “self-
aware” system. 

4.2 Embedded Extreme Scale Study 

4.2.1 Design Environments for Terascale Embedded Computing 

The internal study group considering design environments for terascale embedded computing 
began with a brief review of common embedded computing system design approaches such as 
incremental design, analytical approximation, and simulation-based design. The study 
concentrated on hierarchical simulation-based design as the most practical for extreme scale 
systems, and in turn on the particular issue of predictable design, that is, the property wherein a 
system’s performance is predictable to within some certain acceptable error margin, before the 
construction of the system. This property is not a given due to the multitude of complex 
mechanisms employed to accelerate computer architecture performance, such as the use of 
caches and branch prediction, as well as uncertainties in the simulations themselves. 
Furthermore, the greater the desired performance from a given architecture, the more 
techniques that must be deployed to achieve that performance, and the greater the uncertainty 
and the variability in the predicted performance. Another source of difficulty is simulation 
loads. Attempts to improve simulation accuracy generally involve more complete and detailed 
simulations, rapidly reducing the amount of system time that can be simulated effectively. The 
study then considered the use of statistical sampling methods in simulation to improve the 
tradeoff between accuracy and simulation load. 



 

14 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

4.2.2 Extreme Scale Embedded Computing Applications 

The analysis of extreme scale embedded computing applications considered two technologies 
associated with wide area surveillance using radar systems form airborne platforms. The first 
was an advanced “knowledge-based” form of space-time adaptive processing (STAP) using 
primarily linear filters and linear algebraic computations. The computational requirements of 
this system were considered for five different use scenarios, resulting in computational loads of 
167 gigaflops/s (Gflops) to 572 Pflops (0.572 exaflops/s [Eflops]). In today’s technology, the 
low-end system could be implemented on a single GPU, but the high end exceeds the capacity 
of the current fastest supercomputer in the world (at this writing, the Chinese Tianhe-1A 
computer, at 2.57 Pflops [10]) by two orders of magnitude. The other WAS technology was a 
“video synthetic aperture radar” (SAR) capability capable of generating SAR images of an area 
at 1-second update rates using primarily FFTs and backprojection calculations. Again, multiple 
scenarios were considered, ranging from images on the order of 1 megapixel in size, to images 
over 4,000 megapixels in size. The resulting computational loads ranged from 43.8 Gflops to 
12.1 Pflops. 

The video SAR system was then used as the basis for defining a “streaming sensor challenge 
problem” (SSCP) which married the image formation with an image analysis stage that applied 
coherent change detection and constant-false alarm rate processing to extract targets from the 
SAR video stream. This algorithm, which combined FFTs and backprojection with matrix 
multiplies and correlations, was analyzed for four different use scenarios, resulting in estimated 
loading from 440 Gflops to 185 Pflops. The SSCP became the basis for the first version of the 
UHPC streaming sensor challenge problem [4]. 

GT also analyzed the computational requirements of the software suite used in GT’s “Sting” 
autonomous vehicle, which participated in the 2007 DARPA “Urban Challenge” event. 
Essentially a computer vision and robotics problem, this application represents a very different 
computational architecture. As implemented, the computational load for the Sting software was 
estimated to be very moderate, on the order of 550 Mflops, too low to be of interest for extreme 
scale systems. GT then postulated an “extreme scale autonomous vehicle” that substituted more 
advanced and complex algorithms for key operations. Estimates of computational loads were as 
high as 16.2 Pflops, depending on system parameters. 

4.2.3 Low-Power Computational Algorithms 

Understanding how an application accesses its data from memory is important in 
understanding its performance, as accessing successively higher levels of a memory hierarchy 
comes at an exponentially increasing cost of energy and time. Often, memory accesses of known 
algorithms occur in a pattern that can be predicted and modeled. By studying these patterns, 
insight can be gained into how to best minimize energy costs in applications using these 
algorithms. 

For this task, GT began a study of the data movement and memory access properties of key 
numerical algorithms on modern architectures, with the eventual goal of developing methods 
to design and optimize algorithms to significantly reduce their energy cost at little to no 
performance cost, compared to current best-practice algorithms for the same functions. The 



 

15 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

algorithms considered were two variations each of finite impulse response (FIR) filters, fast 
Fourier transforms, and matrix multiplication. GT developed a simple method for semi-
automatically generating a trace of the data memory access patterns of these algorithms using 
MATLAB tools, and analyzing that data to obtain information about the application’s spatial 
and temporal locality and “data motion”. The locality metrics are measures of the efficiency (or 
lack thereof) of an algorithm in minimizing the number of memory accesses required, while the 
data motion metric is a combination of spatial and temporal locality that also takes into account 
variations in access energy at different levels of a typical memory hierarchy. These tools were 
used to calculate quantitative metrics that can be used for making comparison of these different 
applications. Preliminary experiments confirmed that different algorithms for computing the 
same function can differ significantly in measures of locality and data motion. 

4.2.4 High Performance Libraries for Advanced Graphics Processing Units 

During the course of this project, the use of graphics processing units (GPUs) for “general 
purpose” scientific computing, including signal processing, has continued to grow rapidly in 
interest and acceptance in the HPC community across all scales, from embedded to data center.  
GPUs achieve high computational throughput by many of the same means projected by the ECS 
study for future large scale systems, and thus present a useful proxy for extreme scale systems. 
VSIPL is a portable API for implementing high-performance signal processing applications 
while retaining platform independence. It supports memory abstractions for utilizing 
coprocessors with disjoint memory spaces. Intermediate results are not transferred between 
system and GPU memory, avoiding unnecessary latencies and communications overhead and 
distinguishing VSIPL from other signal processing libraries that permit random access to data. 

GT’s GPU VSIPL library includes most of the VSIPL “Core profile” functionality, with the 
exception of some of the linear equation solvers and random number functions, but with the 
addition of a large number of matrix arithmetic operations not included in the VSIPL Core 
profile. Under the EES study portion of this project, GT continued enhancing GPU VSIPL to 
include important matrix decompositions and linear equation solvers from the Core profile. GT 
also updated the VSIPL Test Suite [8]. Details are given in Appendix D. 

4.2.5 Metrics for Extreme Scale Systems 

UHPC systems, which include EES systems at the embedded scale, will be characterized and 
evaluated by a number of metrics. The UHPC program is considering the development of 
metrics to characterize the following aspects of UHPC systems: 

♦ Performance ♦ Scalability 
♦ Energy efficiency ♦ Dependability  
♦ Resiliency ♦ Security 
♦ Self-awareness  ♦ Productivity 

Metrics for some of these aspects, such as performance or scalability (weak and strong), are well 
known. Other aspects are harder to characterize. There are no agreed-upon metrics for 
resiliency or self-awareness, for instance. While the HPCS program addressed productivity, it 



 

16 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

has not to date resulted in widely-accepted productivity metrics. In the UHPC program, it is 
expected that in the near term, the emphasis will be on programmability rather than a broader 
definition of productivity. 

A system is considered highly programmable if it does not require application programmers to 
explicitly manage system complexity in order to achieve their performance and time to solution 
goals. As part of the EES study task on this project, GT investigated techniques for assessing the 
programmability of high performance parallel systems. Based on this investigation, an initial 
proposal for a methodology to evaluate programmability was developed based on the concepts 
of “parallel patterns” and “cognitive dimensions” from the software and human-computer 
interface communities. In developing the proposed programmability metric, GT conducted two 
small experiments to help define and demonstrate this initial methodology on the Quicksort 
and MapReduce algorithms, comparing Pthreads and OpenMP implementations on a small 
(laptop) machine. Details of the proposed metric and the experimental results are given in the 
EES study report in Appendix D. 

4.3 Discussion 

Taken as a whole, the three group studies conducted under or facilitated by this project resulted 
in a clear identification of the technology challenges in achieving extreme scale computing 
capability by the 2015 time frame that would not be met by current commercial technology 
development trends. At the highest level, these are the power and energy challenge; the 
concurrency challenge; the resiliency challenge; and the memory and storage challenge. Because 
these studies were not chartered to focus on device technology, they focused on the first three 
challenges. Both the original ECS and the ECSS showed that the concurrency challenge could be 
usefully separated into considerations of massive parallelism, referring to the sheet number of 
threads required to achieve extreme scale performance, and locality, referring to the dominant 
effect of data access and movement on power consumption. The resiliency study made it clear 
that the conventional practice of checkpoint and restart is a non-starter in extreme scale systems, 
especially at the data center scale. Thus, entirely new techniques are needed for fault 
management. 

The studies also made clear that the challenges are not orthogonal. For instance, the 
energy/power challenge must be addressed at multiple levels, from device technology through 
architecture, systems software, and application software. Management of locality in the latter 
two directly impacts power and energy consumption. As another example, circuit techniques 
likely to be used for power reduction will also likely increase the frequency of device errors, so 
corresponding attention to reliable circuit design will be needed to compensate. 

The EES study task, as a whole, initiated research on several fronts related to practical extreme 
scale system development, especially at the smaller embedded scale. The design environment 
mini-study suggested renewed emphasis on hierarchical, statistical simulation as a pragmatic 
design methodology for predictable systems. The applications analysis task provided the initial 
development of streaming sensor challenge problems that establish the computational 
requirements of near-future streaming sensor applications for the DoD. With further 
development, the SSCP will also provide a publicly releasable sample application that will aid 
in EES system design and development. Continued development of GPU VSIPL enhances one 



 

17 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

valuable tool for productive high performance software development for EES systems. The 
research in algorithm memory use analysis laid the groundwork for additional research in 
designing algorithms for minimum power while maintaining high performance. Finally, the 
early small-scale programmability metric proposal and experiments provides a basis for more 
extensive research into practical metrics for extreme scale programmability metrics. 



 

18 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

5. CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Group Studies 

The ECS, ECSS, and ECRS studies were chartered to determine whether a 1000× increase in 
HPC capability, at physical scales from chassis-level embedded systems to data centers, could 
be achieved by the 2015 time frame and, if not, what obstacles existed and how those obstacles 
might be addressed. The studies clearly demonstrated that existing technology trends would 
not achieve the desired capability, and identified several key challenges that must be addressed 
to remedy this situation. 

Table 1, repeated here as Table 5 for convenience, compactly encapsulates the most important of 
the general areas of research recommended by the extreme scale studies for addressing some of 
the major challenge areas. For each challenge area, research opportunities are separated into 
those primarily associated with the system hardware, computer architecture, programming and 
software, and applications. This table outlines a comprehensive program of research 
investment, ranging from the circuit level to the end-user application and algorithm design. 
While some of these areas may be more critical than others, it is expected that progress will be 
required in all of them before viable extreme scale systems can be achieved. 

 

Table 5. Research Recommendations for Addressing the 
Major Extreme Scale Technology Challenges 

System Level Power Efficiency  Massive 
Parallelism  Locality  Resiliency  

Applications Locality-optimized 
applications  

Combined strong, 
weak, and “new-
era” weak scaling 

Locality-
optimized 

applications  

Application-
level checking  

Programming 
Systems  

Locality expression 
and optimization  

Parallelism 
expression and 

extraction  

Locality 
expression 

and 
optimization  

Redundancy 
generation, 

ALC support  

Architecture  
Low-overhead 

processors, power 
adaptive  

Efficient 
communication & 
synchronization 

mechanisms  

Agile 
memory 
systems  

Checkpoint 
restart, ECC, 
self-checking  

Hardware 

Optimized threshold 
and supply voltages, 

energy-efficient comm. 
circuits 

  
Reliable 
circuits 

Source: Adapted from [5]. 



 

19 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

A particular finding of the studies taken as a whole was the need for a new execution model for 
extreme scale systems. An execution model is paradigm for organizing and carrying out 
computation across all levels of the computer system stack from programming models and 
languages through compilers and runtime systems to operating systems and system and micro 
architectures. It provides the conceptual scaffolding for deriving each of these system elements 
in the context of and consistent with all of the others. Some examples of previous execution 
models are the classic Von Neumann serial model, vector parallelism, and communicating 
shared processes. 

More extensive recommendations are given in each of the group study reports in Appendices A 
through C. 

5.2 Embedded Extreme Scale Study 

The EES study performed initial work on several areas of continued interest to the development 
of extreme scale systems, some primarily applicable to embedded class machines, others 
applicable to all size classes. 

The streaming sensor challenge problem is of significant potential utility in the embedded HPC 
community and also in the UHPC program. As noted, it has already provided the starting point 
for development of the UHCP SSCP. It is expected that the SSCP will be refined and expanded 
in its functional scope under the UHPC program to include multiple disparate sensors and thus 
also a sensor fusion stage. In addition, it will be “productized” to a user-ready artifact, with a 
formal specification, reference serial code, any necessary input data or generators, 
benchmarking rules, and so forth. 

Much work remains to build from the initial algorithmic data motion analysis demonstrations 
conducted under this project to a practically useful methodology. It is critical to establish and 
validate the relationship between locality and data motion scores and actual energy costs of an 
algorithm on a modern architecture. For example, how does increasing the temporal locality by 
20% affect the energy efficiency of a particular application? Another area of exploration is the 
effect of multithreading and the use multiple cores on a given algorithm’s locality, and whether 
specific architectures can be mapped to the calculations to result in more accurate and less 
generic scores. Yet another is scale. The examples given in Appendix D are very small “toy” 
problems used to establish basic concepts and definitions. Do the proposed methods and 
metrics scale to large programs? Finally, the analysis of locality and data motion, and the 
prediction of algorithm energy efficiency based on these analyses, is not an end in itself. Rather, 
the intent is to provide the basis for developing design techniques that lead to high performance 
numerical algorithms with inherently low data motion costs. Another avenue of research is in 
ways to design such algorithms. One possibility would be to develop methods for analysis of 
mathematical expressions, perhaps in a factored matrix form, of different algorithms for the 
same function. Another would be to apply the technology of autotuning, used primarily for 
improving algorithm speed so far, to the minimization of data motion or energy subject to a 
minimum performance constraint. 

Similarly, the initial experimentation with a proposed programmability metric under this 
project just scratches the surface. The proposed methodology requires significant additional 



 

20 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

research to determine if it can serve as a practical basis for a programmability metric for high 
performance, large scale UHPC and EES systems. Additional work is needed in the concept 
development; selection and definition of programming problems; scoring methodology; and 
application to large-scale applications and machines. For instance, what is the degree of 
correlation between programmability and cognitive dimensions, since the existence of such a 
correlation is the fundamental assumption of the proposed methodology? Care must be taken to 
ensure that the basis set of canonical parallel patterns selected adequately represents the range 
of applications of interest to the UHPC program. Additional work is also needed on automating 
scoring of the cognitive dimensions from the parallel codes. Furthermore, means to specify and 
score the codes are needed that will ensure that performance and programmability are targeted 
jointly. Finally, while GT believes that the concepts proposed appear applicable to large-scale 
machines, there are undoubtedly a number of issues that will arise as problem and machine 
sizes are scaled up. It is expected that portions of this research will continue under the UHPC 
program. 

It is also recommended that GT continue development of the GPU VSIPL library as a useful 
productivity tool for EES systems, and possibly larger extreme scale systems as well. Immediate 
needs are further debugging and validation of the singular value decomposition functions; 
completion and validation of the real and complex QRD decomposition and Toeplitz solver 
functions; and addition to the library of other solvers from the VSIPL Core profile. The VSIPL 
Test Suite should be updated as required to provide coverage of all new functionality. In 
addition, the effort begun under this project to extend the test suite coverage to include all of 
the element-wise functions present in the VSIPL Core profile should be completed. 

 



 

21 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

 
6. REFERENCES 

 

[1]  “ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems”, P. 
Kogge, editor, September 28, 2008. Available at 
users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/ECS_reports.htm. 

[2] “ExaScale Computing Software Study: Software Challenges in Extreme Scale Systems”, 
V. Sarkar, editor, September 14, 2009. Available at 
users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/ECS_reports.htm. 

[3]  “Embedded Terascale System Analysis and Design Environment Report”, M. A. 
Richards, et al, Georgia Tech technical report, project 210667V, May 2011. 

[4] Ubiquitous High Performance Computing (UHPC) Program solicitation web site, 
www.darpa.mil/Our_Work/I2O/Programs/Ubiquitous_High_Performance_Computing
_(UHPC).aspx. 

[5] W. Dally, personal communication. 

[6] DARPA High Productivity Computing Systems web site, 
www.darpa.mil/Our_Work/I2O/Programs/High_Productivity_Computing_Systems_(
HPCS . ).aspx

[7] Top 500 list for June 2008. www.top500.org/lists/2008/06. 

[8] Vector, Signal, Image Processing Library (VSIPL) web site. www.vsipl.org. 

[9] GPU VSIPL web site. gpu-vsipl.gtri.gatech.edu/. 

[10] Top 500 list for November 2010. www.top500.org/lists/2010/011. 

 

http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/ECS_reports.htm�
http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/ECS_reports.htm�
http://www.darpa.mil/Our_Work/I2O/Programs/Ubiquitous_High_Performance_Computing_(UHPC).aspx�
http://www.darpa.mil/Our_Work/I2O/Programs/Ubiquitous_High_Performance_Computing_(UHPC).aspx�
http://www.darpa.mil/Our_Work/I2O/Programs/High_Productivity_Computing_Systems_(HPCS).aspx�
http://www.darpa.mil/Our_Work/I2O/Programs/High_Productivity_Computing_Systems_(HPCS).aspx�
http://www.top500.org/lists/2008/06�
http://www.vsipl.org/�
http://gpu-vsipl.gtri.gatech.edu/�
http://www.top500.org/lists/2010/011�


 
LIST OF ACRONYMS 

 
 

 Acronym Definition 
 

22 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

AFRL Air Force Research Laboratory 
API Application Programming Interface 
DARPA Defense Advanced Research Projects Agency 
DRAM Dynamic Random Access Memory 
DoD Department of Defense (U.S.) 
ECS Exascale Computing Study 
ECRS Exascale Computing Resiliency Study 
ECSS Exascale Computing Software Study 
Eflops Exa floating point operations per second (1018 flops) 
FIR Finite Impulse Response 
FFT Fast Fourier Transform 
Gflops Giga floating point operations per second (109 flops) 
GMTI Ground Moving Target Indication 
GPU Graphics Processing Unit 
GT Georgia Tech 
GTRI Georgia Tech Research Institute 
HPC High Performance Computing 
HPCS High Productivity Computing Systems 
Mflops Mega floating point operations per second (106 flops) 
MPI Message Passing Interface 
MTBF Mean Time Between Failures 
MTTF Mean Time To Failure 
Pflops Peta floating point operations per second (1015 flops) 
RAM Random Access Memory 
SME Subject Matter Expert 
SSCP Streaming Sensor Challenge Problem 
STAP Space-Time Adaptive Processing 
SAR Synthetic Aperture Radar 
Tflops Tera floating point operations per second (1012 flops) 
VSIPL Vector, Signal, Image Processing Library 
UHPC Ubiquitous High Performance Computing 
WAS Wide Area Surveillance 



 

23 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

APPENDIX A 

FINAL REPORT OF EXASCALE COMPUTING STUDY 

 



ExaScale Computing Study: 
Technology Challenges in  
Achieving Exascale Systems 

Peter Kogge, Editor & Study Lead  
Keren Bergman 
Shekhar Borkar 
Dan Campbell 
William Carlson 
William Dally 
Monty Denneau 
Paul Franzon 
William Harrod 
Kerry Hill 
Jon Hiller 
Sherman Karp 
Stephen Keckler 
Dean Klein 
Robert Lucas 
Mark Richards 
Al Scarpelli 
Steven Scott 
Allan Snavely 
Thomas Sterling 
R. Stanley Williams 
Katherine Yelick 

September 28, 2008 

This work was sponsored by DARPA IPTO in the ExaScale Computing Study with Dr. William Harrod 
as Program Manager; AFRL contract number FA8650-07-C-7724.  This report is published in the 
interest of scientific and technical information exchange and its publication does not constitute the 
Government’s approval or disapproval of its ideas or findings 

NOTICE 

Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U.S. Government. 
The fact that the Government formulated or supplied the drawings, specifications, or other data 
does not license the holder or any other person or corporation; or convey any rights or permission to 
manufacture, use, or sell any patented invention that may relate to them. 

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED. 

ECS Report

24
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

mr22
Rectangle

mr22
Rectangle

mr22
Text Box
The views expressed are those of the authors and do not reflect theofficial policy or position of the Department of Defense or the U.S. Government.APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



This page intentionally left blank.

ECS Report

25
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



DISCLAIMER

The following disclaimer was signed by all members of the Exascale Study Group (listed below):

I agree that the material in this document reflects the collective views, ideas, opinions
and findings of the study participants only, and not those of any of the universities,
corporations, or other institutions with which they are affiliated. Furthermore, the
material in this document does not reflect the official views, ideas, opinions and/or
findings of DARPA, the Department of Defense, or of the United States government.

Keren Bergman
Shekhar Borkar
Dan Campbell
William Carlson
William Dally
Monty Denneau
Paul Franzon
William Harrod
Kerry Hill
Jon Hiller
Sherman Karp
Stephen Keckler
Dean Klein
Peter Kogge
Robert Lucas
Mark Richards
Al Scarpelli
Steven Scott
Allan Snavely
Thomas Sterling
R. Stanley Williams
Katherine Yelick

i
ECS Report

26
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



This page intentionally left blank.

ii
ECS Report

27
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



FOREWORD

This document reflects the thoughts of a group of highly talented individuals from universities,
industry, and research labs on what might be the challenges in advancing computing by a thousand-
fold by 2015. The work was sponsored by DARPA IPTO with Dr. William Harrod as Program
Manager, under AFRL contract #FA8650-07-C-7724. The report itself was drawn from the results
of a series of meetings over the second half of 2007, and as such reflects a snapshot in time.

The goal of the study was to assay the state of the art, and not to either propose a potential
system or prepare and propose a detailed roadmap for its development. Further, the report itself
was assembled in just a few months at the beginning of 2008 from input by the participants. As
such, all inconsistencies reflect either areas where there really are significant open research questions,
or misunderstandings by the editor. There was, however, virtually complete agreement about the
key challenges that surfaced from the study, and the potential value that solving them may have
towards advancing the field of high performance computing.

I am honored to have been part of this study, and wish to thank the study members for their
passion for the subject, and for contributing far more of their precious time than they expected.

Peter M. Kogge, Editor and Study Lead
University of Notre Dame
May 1, 2008.

iii
ECS Report

28
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



This page intentionally left blank.

iv
ECS Report

29
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Contents

1 Executive Overview 1

2 Defining an Exascale System 5
2.1 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Functional Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Physical Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Balanced Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 Application Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Classes of Exascale Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Data Center System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Exascale and HPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Departmental Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.5 Cross-class Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Systems Classes and Matching Attributes . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Capacity Data Center-sized Exa Systems . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Capability Data Center-sized Exa Systems . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Departmental Peta Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Embedded Tera Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Prioritizing the Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Background 17
3.1 Prehistory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Overall Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 This Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Target Timeframes and Tipping Points . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Companion Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Prior Relevant Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7.1 1999 PITAC Report to the President . . . . . . . . . . . . . . . . . . . . . . . 21
3.7.2 2000 DSB Report on DoD Supercomputing Needs . . . . . . . . . . . . . . . 21
3.7.3 2001 Survey of National Security HPC Architectural Requirements . . . . . . 21
3.7.4 2001 DoD R&D Agenda For High Productivity Computing Systems . . . . . 22
3.7.5 2002 HPC for the National Security Community . . . . . . . . . . . . . . . . 22
3.7.6 2003 Jason Study on Requirements for ASCI . . . . . . . . . . . . . . . . . . 23
3.7.7 2003 Roadmap for the Revitalization of High-End Computing . . . . . . . . . 23
3.7.8 2004 Getting Up to Speed: The Future of Supercomputing . . . . . . . . . . 24

v
ECS Report

30
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



3.7.9 2005 Revitalizing Computer Architecture Research . . . . . . . . . . . . . . . 24
3.7.10 2006 DSB Task Force on Defense Critical Technologies . . . . . . . . . . . . . 25
3.7.11 2006 The Landscape of Parallel Computing Research . . . . . . . . . . . . . . 25

4 Computing as We Know It 27
4.1 Today’s Architectures and Execution Models . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Today’s Microarchitectural Trends . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.1.1 Conventional Microprocessors . . . . . . . . . . . . . . . . . . . . . 28
4.1.1.2 Graphics Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.1.3 Multi-core Microprocessors . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.2 Today’s Memory Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.3 Unconventional Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.4 Data Center/Supercomputing Systems . . . . . . . . . . . . . . . . . . . . . . 31

4.1.4.1 Data Center Architectures . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.4.2 Data Center Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.4.2.1 Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.4.3 Other Data Center Challenges . . . . . . . . . . . . . . . . . . . . . 33

4.1.5 Departmental Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.6 Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.7 Summary of the State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Today’s Operating Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Unix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Windows NT Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.3 Microkernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.4 Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.5 Summary of the State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Today’s Programming Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.1 Automatic Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 Data Parallel Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.3 Shared Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.3.1 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3.2 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.4 Message Passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.5 PGAS Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.6 The HPCS Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Today’s Microprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.1 Basic Technology Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.2 Overall Chip Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.3 Summary of the State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Today’s Top 500 Supercomputers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.1 Aggregate Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.3 Performance Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.3.1 Processor Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.3.2 Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.3.3 Thread Level Concurrency . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.3.4 Total Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.4 Main Memory Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
vi

ECS Report

31
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



5 Exascale Application Characteristics 61
5.1 Kiviat Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Balance and the von Neumann Bottleneck . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 A Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Exascale Application Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Memory Intensive Applications of Today . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5.1 Latency-Sensitive Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5.2 Locality Sensitive Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.3 Communication Costs - Bisection Bandwidth . . . . . . . . . . . . . . . . . . 69

5.6 Exascale Applications Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.6.1 Application Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.6.2 Memory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6.3 Increasing Non-Main Memory Storage Capacity . . . . . . . . . . . . . . . . . 73

5.6.3.1 Scratch Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6.3.2 File Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6.3.3 Archival Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6.4 Increasing Memory Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.6.5 Increasing Bisection Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.6.6 Increasing Processor Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7 Application Concurrency Growth and Scalability . . . . . . . . . . . . . . . . . . . . 75
5.7.1 Projections Based on Current Implementations . . . . . . . . . . . . . . . . . 75
5.7.2 Projections Based on Theoretical Algorithm Analysis . . . . . . . . . . . . . 78
5.7.3 Scaling to Departmental or Embedded Systems . . . . . . . . . . . . . . . . . 80

5.8 Applications Assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.8.1 Summary Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.8.2 Implications for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Technology Roadmaps 85
6.1 Technological Maturity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Logic Today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.1 ITRS Logic Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.1.1 Power and Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.1.2 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.1.3 High Performance Devices . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.1.4 Low Operating Voltage Devices . . . . . . . . . . . . . . . . . . . . 89
6.2.1.5 Limitations of Power Density and Its Effect on Operating Frequency 90

6.2.2 Silicon Logic Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.2.1 Technology Scaling Challenges . . . . . . . . . . . . . . . . . . . . . 92
6.2.2.2 Silicon on Insulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.2.3 Supply Voltage Scaling . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.2.4 Interaction with Key Circuits . . . . . . . . . . . . . . . . . . . . . . 96

6.2.3 Hybrid Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.4 Superconducting Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.4.1 Logic Power and Density Comparison . . . . . . . . . . . . . . . . . 101
6.2.4.1.1 Cooling Costs . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.4.2 The Memory Challenge . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.4.3 The Latency Challenge . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.4.4 The Cross-Cryo Bandwidth Challenge . . . . . . . . . . . . . . . . . 102

vii
ECS Report

32
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



6.3 Main Memory Today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.1 The Memory/Storage Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.2 Memory Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.2.1 SRAM Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.2.2 DRAM Attributes and Operation . . . . . . . . . . . . . . . . . . . 106
6.3.2.3 NAND Attributes and Operation . . . . . . . . . . . . . . . . . . . . 107
6.3.2.4 Alternative Memory Types . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.2.4.1 Phase Change Memory . . . . . . . . . . . . . . . . . . . . 108
6.3.2.4.2 SONOS Memory . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.2.4.3 MRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.3 Main Memory Reliability - Good News . . . . . . . . . . . . . . . . . . . . . . 109
6.3.3.1 Trends in FIT Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.3.2 Immunity to SER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.3.3 Possible Issue: Variable Retention Time . . . . . . . . . . . . . . . . 111

6.3.3.3.1 Causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.3.3.2 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.3.3.3 Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.4 The Main Memory Scaling Challenges . . . . . . . . . . . . . . . . . . . . . . 113
6.3.4.1 The Performance Challenge . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.4.1.1 Bandwidth and Latency . . . . . . . . . . . . . . . . . . . . 113
6.3.4.1.2 Tradeoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.4.1.3 Per-pin Limitations . . . . . . . . . . . . . . . . . . . . . . 114

6.3.4.2 The Packaging Challenge . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.4.3 The Power Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.4.3.1 Module Power Efficiency . . . . . . . . . . . . . . . . . . . 115
6.3.4.3.2 Cell Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.4.4 Major Elements of DRAM Power Consumption . . . . . . . . . . . 116
6.3.4.4.1 DRAM Operating Modes . . . . . . . . . . . . . . . . . . . 117
6.3.4.4.2 DRAM Architecture . . . . . . . . . . . . . . . . . . . . . . 118
6.3.4.4.3 Power Consumption Calculations . . . . . . . . . . . . . . 119

6.3.5 Emerging Memory Technology . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.4 Storage Memory Today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4.1 Disk Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.4.1.1 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4.1.2 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4.1.3 Transfer Rate and Seek Time . . . . . . . . . . . . . . . . . . . . . . 125
6.4.1.4 Time to Move a Petabyte . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4.1.5 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4.2 Holographic Memory Technology . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.4.3 Archival Storage Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.5 Interconnect Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.5.1 Strawman Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5.1.1 Local Core-level On-chip Interconnect . . . . . . . . . . . . . . . . . 128
6.5.1.2 Switched Long-range On-chip Interconnect . . . . . . . . . . . . . . 128
6.5.1.3 Supporting DRAM and CPU Bandwidth . . . . . . . . . . . . . . . 129
6.5.1.4 Intramodule Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.5.1.5 Intermodule Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.5.1.6 Rack to Rack Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 129

viii
ECS Report

33
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



6.5.2 Signaling on Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.5.2.1 Point-to-Point Links . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5.2.1.1 On-Chip Wired Interconnect . . . . . . . . . . . . . . . . . 130
6.5.2.1.2 Off-chip Wired Interconnect . . . . . . . . . . . . . . . . . 130
6.5.2.1.3 Direct Chip-Chip Interconnect . . . . . . . . . . . . . . . . 131

6.5.2.2 Switches and Routers . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.5.3 Optical Interconnects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5.3.1 Optical Point to Point Communications . . . . . . . . . . . . . . . . 134
6.5.3.2 Optical Routed Communications . . . . . . . . . . . . . . . . . . . . 136

6.5.4 Other Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.5.5 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.6 Packaging and Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.6.1 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.6.1.1 Level 1 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.6.1.2 Level 2 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6.2 Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.6.2.1 Module Level Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.6.2.2 Cooling at Higher Levels . . . . . . . . . . . . . . . . . . . . . . . . 144

6.7 System Resiliency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.7.1 Resiliency in Large Scale Systems . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.7.2 Device Resiliency Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.7.3 Resiliency Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.7.4 Checkpoint/Rollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.8 Evolution of Operating Environments . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.9 Programming Models and Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.9.1 The Evolution of Languages and Models . . . . . . . . . . . . . . . . . . . . . 151
6.9.2 Road map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7 Strawmen: Where Evolution Is and Is Not Enough 153
7.1 Subsystem Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.1.1 Measurement Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.1.2 FPU Power Alone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.1.3 Core Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.1.4 Main Memory from DRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.1.4.1 Number of Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.1.4.2 Off-chip Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.1.4.3 On-chip Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.1.5 Packaging and Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.1.6 Non-Main Memory Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.1.7 Summary Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2 Evolutionary Data Center Class Strawmen . . . . . . . . . . . . . . . . . . . . . . . . 164
7.2.1 Heavy Node Strawmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.2.1.1 A Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.2.1.2 Scaling Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.2.1.3 Power Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.2.1.4 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.2.2 Light Node Strawmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.2.2.1 A Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

ix
ECS Report

34
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



7.2.2.2 Scaling Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.2.2.3 Power Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.2.2.4 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.3 Aggressive Silicon System Strawman . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.3.1 FPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.3.2 Single Processor Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.3.3 On-Chip Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.3.4 Processing Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.3.5 Rack and System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.3.5.1 System Interconnect Topology . . . . . . . . . . . . . . . . . . . . . 182
7.3.5.2 Router Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.3.5.3 Packaging within a rack . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.3.6 Secondary Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.3.7 An Adaptively Balanced Node . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.3.8 Overall Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.3.9 Other Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.3.10 Summary and Translation to Other Exascale System Classes . . . . . . . . . 187

7.3.10.1 Summary: Embedded . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.3.10.2 Summary: Departmental . . . . . . . . . . . . . . . . . . . . . . . . 189
7.3.10.3 Summary: Data Center . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.4 Exascale Resiliency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.5 Optical Interconnection Networks for Exascale Systems . . . . . . . . . . . . . . . . 191

7.5.1 On-Chip Optical Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.5.2 Off-chip Optical Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.5.3 Rack to Rack Optical Interconnect . . . . . . . . . . . . . . . . . . . . . . . . 195
7.5.4 Alternative Optically-connected Memory and Storage System . . . . . . . . . 196

7.6 Aggressive Operating Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.6.1 Summary of Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.6.2 Phase Change in Operating Environments . . . . . . . . . . . . . . . . . . . . 199
7.6.3 An Aggressive Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.6.4 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.7 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.8 Exascale Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.8.1 WRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.8.2 AVUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.8.3 HPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.9 Strawman Assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8 Exascale Challenges and Key Research Areas 207
8.1 Major Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.1.1 The Energy and Power Challenge . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.1.1.1 Functional Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
8.1.1.2 DRAM Main Memory Power . . . . . . . . . . . . . . . . . . . . . . 211
8.1.1.3 Interconnect Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.1.1.4 Secondary Storage Power . . . . . . . . . . . . . . . . . . . . . . . . 212

8.1.2 The Memory and Storage Challenge . . . . . . . . . . . . . . . . . . . . . . . 212
8.1.2.1 Main Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.1.2.2 Secondary Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

x
ECS Report

35
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



8.1.3 The Concurrency and Locality Challenge . . . . . . . . . . . . . . . . . . . . 214
8.1.3.1 Extraordinary Concurrency as the Only Game in Town . . . . . . . 214
8.1.3.2 Applications Aren’t Going in the Same Direction . . . . . . . . . . . 216

8.1.4 The Resiliency Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.2 Research Thrust Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.2.1 Thrust Area: Exascale Hardware Technologies and Architecture . . . . . . . 219
8.2.1.1 Energy-efficient Circuits and Architecture In Silicon . . . . . . . . . 220
8.2.1.2 Alternative Low-energy Devices and Circuits for Logic and Memory 222
8.2.1.3 Alternative Low-energy Systems for Memory and Storage . . . . . . 222
8.2.1.4 3D Interconnect, Packaging, and Cooling . . . . . . . . . . . . . . . 223
8.2.1.5 Photonic Interconnect Research Opportunities and Goals . . . . . . 224

8.2.2 Thrust Area: Exascale Architectures and Programming Models . . . . . . . . 225
8.2.2.1 Systems Architectures and Programming Models to Reduce Com-

munication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
8.2.2.2 Locality-aware Architectures . . . . . . . . . . . . . . . . . . . . . . 225

8.2.3 Thrust Area: Exascale Algorithm and Application Development . . . . . . . 227
8.2.3.1 Power and Resiliency Models in Application Models . . . . . . . . . 228
8.2.3.2 Understanding and Adapting Old Algorithms . . . . . . . . . . . . . 228
8.2.3.3 Inventing New Algorithms . . . . . . . . . . . . . . . . . . . . . . . 229
8.2.3.4 Inventing New Applications . . . . . . . . . . . . . . . . . . . . . . . 229
8.2.3.5 Making Applications Resiliency-Aware . . . . . . . . . . . . . . . . 230

8.2.4 Thrust Area: Resilient Exascale Systems . . . . . . . . . . . . . . . . . . . . 230
8.2.4.1 Energy-efficient Error Detection and Correction Architectures . . . 230
8.2.4.2 Fail-in-place and Self-Healing Systems . . . . . . . . . . . . . . . . . 230
8.2.4.3 Checkpoint Rollback and Recovery . . . . . . . . . . . . . . . . . . . 231
8.2.4.4 Algorithmic-level Fault Checking and Fault Resiliency . . . . . . . . 231
8.2.4.5 Vertically-Integrated Resilient Systems . . . . . . . . . . . . . . . . 231

8.3 Multi-phase Technology Development . . . . . . . . . . . . . . . . . . . . . . . . . . 232
8.3.1 Phase 1: Systems Architecture Explorations . . . . . . . . . . . . . . . . . . . 232
8.3.2 Phase 2: Technology Demonstrators . . . . . . . . . . . . . . . . . . . . . . . 232
8.3.3 Phase 3: Scalability Slice Prototype . . . . . . . . . . . . . . . . . . . . . . . 232

A Exascale Study Group Members 235
A.1 Committee Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
A.2 Biographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

B Exascale Computing Study Meetings, Speakers, and Guests 245
B.1 Meeting #1: Study Kickoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
B.2 Meeting #2: Roadmaps and Nanotechnology . . . . . . . . . . . . . . . . . . . . . . 246
B.3 Special Topics Meeting #1: Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . 246
B.4 Meeting #3: Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
B.5 Meeting #4: Memory Roadmap and Issues . . . . . . . . . . . . . . . . . . . . . . . 248
B.6 Special Topics Meeting #2: Architectures and Programming Environments . . . . . 249
B.7 Special Topics Meeting #3: Applications, Storage, and I/O . . . . . . . . . . . . . . 250
B.8 Special Topics Meeting #4: Optical Interconnects . . . . . . . . . . . . . . . . . . . 250
B.9 Meeting #5: Report Conclusions and Finalization Plans . . . . . . . . . . . . . . . . 251

C Glossary and Abbreviations 253

xi
ECS Report

36
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



xii
ECS Report

37
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

mr22
Text Box
This page intentionally left blank.



List of Figures

4.1 Three classes of multi-core die microarchitectures. . . . . . . . . . . . . . . . . . . . 29
4.2 Microprocessor feature size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Microprocessor transistor density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Microprocessor cache capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Microprocessor die size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Microprocessor transistor count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Microprocessor Vdd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.8 Microprocessor clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.9 Microprocessor chip power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.10 Microprocessor chip power density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.11 Performance metrics for the Top 10 supercomputers over time. . . . . . . . . . . . . 53
4.12 Efficiency for the Top 10 supercomputers while running Linpack. . . . . . . . . . . . 54
4.13 Processor parallelism in the Top 10 supercomputers. . . . . . . . . . . . . . . . . . . 55
4.14 Clock rate in the Top 10 supercomputers. . . . . . . . . . . . . . . . . . . . . . . . . 56
4.15 Thread level concurrency in the Top 10 supercomputers. . . . . . . . . . . . . . . . . 57
4.16 Total hardware concurrency in the Top 10 supercomputers. . . . . . . . . . . . . . . 58
4.17 Memory capacity in the Top 10 supercomputers. . . . . . . . . . . . . . . . . . . . . 58

5.1 Predicted speedup of WRF “Large”. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Time breakdown of WRF by operation category. . . . . . . . . . . . . . . . . . . . . 64
5.3 Application functionalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Predicted speedup of AVUS to latency halving. . . . . . . . . . . . . . . . . . . . . . 66
5.5 Predicted speedup of WRF to latency halving. . . . . . . . . . . . . . . . . . . . . . 67
5.6 Predicted speedup of AMR to latency halving. . . . . . . . . . . . . . . . . . . . . . 67
5.7 Predicted speedup of Hycom to latency halving. . . . . . . . . . . . . . . . . . . . . . 67
5.8 Spatial and temporal locality of strategic applications. . . . . . . . . . . . . . . . . . 68
5.9 Performance strategic applications as a function of locality. . . . . . . . . . . . . . . 70
5.10 Growth of communications overhead. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.11 WRF performance response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.12 AVUS performance response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.13 HPL performance response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.14 WRF with log(n) communications growth. . . . . . . . . . . . . . . . . . . . . . . . . 78
5.15 AVUS with log(n) communications growth. . . . . . . . . . . . . . . . . . . . . . . . 79
5.16 Future scaling trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 ITRS roadmap logic device projections . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Relative change in key power parameters . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Power-constrained clock rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xiii
ECS Report

38
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



6.4 Technology outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5 Simple transport model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.6 Transistor sub-threshold leakage current and leakage power in recent microprocessors 93
6.7 Technology outlook and estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.8 Frequency and power scaling with supply voltage . . . . . . . . . . . . . . . . . . . . 95
6.9 Sensitivities to changing Vdd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.10 Technology scaling, Vt variations, and energy efficiency. . . . . . . . . . . . . . . . . 97
6.11 Hybrid logic circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.12 CPU and memory cycle time trends. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.13 ITRS roadmap memory density projections. . . . . . . . . . . . . . . . . . . . . . . . 105
6.14 DRAM cross section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.15 Programmed and un-programmed NAND cells. . . . . . . . . . . . . . . . . . . . . . 107
6.16 DRAM retention time distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.17 Memory module RMA results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.18 Variable retention time as it affects refresh distribution. . . . . . . . . . . . . . . . . 112
6.19 Industry memory projections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.20 Reduced latency DRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.21 Center-bonded DRAM package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.22 Commodity DRAM module power efficiency as a function of bandwidth. . . . . . . . 116
6.23 Commodity DRAM voltage scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.24 Block diagram of 1Gbit, X8 DDR2 device. . . . . . . . . . . . . . . . . . . . . . . . . 118
6.25 DDR3 current breakdown for Idle, Active, Read and Write. . . . . . . . . . . . . . . 119
6.26 Nanoscale memory addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.27 Nanoscale memory via imprint lithography . . . . . . . . . . . . . . . . . . . . . . . 122
6.28 Disk capacity properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.29 Disk power per Exabyte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.30 Disk transfer rate properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.31 Disk price per GB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.32 Interconnect bandwidth requirements for an Exascale system. . . . . . . . . . . . . . 128
6.33 Comparison of 3D chip stacking communications schemes. . . . . . . . . . . . . . . . 131
6.34 Entire optical communication path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.35 Modulator approach to integrated optics. . . . . . . . . . . . . . . . . . . . . . . . . 135
6.36 Representative current and future high-end level 1 packaging. . . . . . . . . . . . . . 139
6.37 Estimated chip counts in recent HPC systems. . . . . . . . . . . . . . . . . . . . . . 144
6.38 Scaling trends for environmental factors that affect resiliency. . . . . . . . . . . . . . 146
6.39 Increase in vulnerability as a function of per-socket failure rates. . . . . . . . . . . . 148
6.40 Projected application utilization when accounting for checkpoint overheads. . . . . . 149

7.1 Projections to reach an Exaflop per second. . . . . . . . . . . . . . . . . . . . . . . . 154
7.2 Energy per cycle for several cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.3 DRAM as main memory for data center class systems. . . . . . . . . . . . . . . . . . 156
7.4 Memory access rates in DRAM main memory. . . . . . . . . . . . . . . . . . . . . . . 158
7.5 Potential directions for 3D packaging (A). . . . . . . . . . . . . . . . . . . . . . . . . 160
7.6 Potential directions for 3D packaging (B). . . . . . . . . . . . . . . . . . . . . . . . . 161
7.7 Potential directions for 3D packaging (C). . . . . . . . . . . . . . . . . . . . . . . . . 161
7.8 A typical heavy node reference board. . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.9 Characteristics of a typical board today. . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.10 Heavy node strawman projections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

xiv
ECS Report

39
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



7.11 Heavy node performance projections. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.12 Heavy node GFlops per Watt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.13 Power distribution in the light node strawman. . . . . . . . . . . . . . . . . . . . . . 172
7.14 Light node strawman performance projections. . . . . . . . . . . . . . . . . . . . . . 174
7.15 Light node strawman Gflops per watt. . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.16 Aggressive strawman architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.17 Possible aggressive strawman packaging of a single node. . . . . . . . . . . . . . . . . 181
7.18 Power distribution within a node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.19 The top level of a dragonfly system interconnect. . . . . . . . . . . . . . . . . . . . . 183
7.20 Power distribution in aggressive strawman system. . . . . . . . . . . . . . . . . . . . 186
7.21 Chip super-core organization and photonic interconnect. . . . . . . . . . . . . . . . . 192
7.22 Gateway functional block design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.23 Super-core to super-core optical on-chip link. . . . . . . . . . . . . . . . . . . . . . . 194
7.24 Optical system interconnect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.25 A possible optically connected memory stack. . . . . . . . . . . . . . . . . . . . . . . 197

8.1 Exascale goals - Linpack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.2 Critically of each challenge to each Exascale system class. . . . . . . . . . . . . . . . 209
8.3 The power challenge for an Exaflops Linpack. . . . . . . . . . . . . . . . . . . . . . . 211
8.4 The overall concurrency challenge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.5 The processor parallelism challenge. . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
8.6 Future scaling trends present DARPA-hard challenges. . . . . . . . . . . . . . . . . . 217
8.7 Sensitivities to changing Vdd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

xv
ECS Report

40
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



xvi
ECS Report

41
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

mr22
Text Box
This page intentionally left blank.



List of Tables

2.1 Attributes of Exascale class systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Attributes of Exascale class systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Power distribution losses in a typical data center. . . . . . . . . . . . . . . . . . . . . 32

5.1 Summary applications characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Some performance comparisons with silicon. . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 2005 projection of potential RSFQ logic roadmap. . . . . . . . . . . . . . . . . . . . 101
6.3 Area comparisons of various memory technologies. . . . . . . . . . . . . . . . . . . . 104
6.4 Memory types and characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.5 Commodity DRAM operating current. . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.6 Projected disk characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.7 Energy budget for optical modulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.8 Summary interconnect technology roadmap. . . . . . . . . . . . . . . . . . . . . . . . 138
6.9 Internal heat removal approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.10 External cooling mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.11 Root causes of failures in Terascale systems. . . . . . . . . . . . . . . . . . . . . . . . 145
6.12 BlueGene FIT budget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.1 Non-memory storage projections for Exascale systems. . . . . . . . . . . . . . . . . . 162
7.2 Light node baseline based on Blue Gene. . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.3 Summary characteristics of aggressively designed strawman architecture. . . . . . . 176
7.4 Expected area, power, and performance of FPUs with technology scaling. . . . . . . 176
7.5 Expected area, power, and performance of FPUs with more aggressive voltage scaling.178
7.6 Energy breakdown for a four FPU processor core. . . . . . . . . . . . . . . . . . . . . 178
7.7 Power budget for strawman multi-core chip. . . . . . . . . . . . . . . . . . . . . . . . 180
7.8 Area breakdown of processor chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.9 Power allocation for adaptive node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.10 Exascale class system characteristics derived from aggressive design. . . . . . . . . . 188
7.11 Failure rates for the strawman Exascale system. . . . . . . . . . . . . . . . . . . . . . 190
7.12 Checkpointing overheads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.13 Optical interconnect power parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.14 Optical on-chip interconnect power consumption. . . . . . . . . . . . . . . . . . . . . 194
7.15 Optical system interconnect power consumption. . . . . . . . . . . . . . . . . . . . . 196

8.1 The relationship between research thrusts and challenges. . . . . . . . . . . . . . . . 210

A.1 Study Committee Members. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
xvii

ECS Report

42
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Chapter 1

Executive Overview

This report presents the findings and recommendations of the Exascale Working Group as
conducted over the summer and fall of 2007. The objectives given the study were to understand
the course of mainstream computing technology, and determine whether or not it would allow a
1,000X increase in the computational capabilities of computing systems by the 2015 time frame.
If current technology trends were deemed as not capable of permitting such increases, then the
study was also charged with identifying where were the major challenges, and in what areas may
additional targeted research lay the groundwork for overcoming them.

The use of the word “Exascale”1 in the study title was deliberately aimed at focusing the
group’s attention on more than just high end, floating point intensive, supercomputers (“exaflops”
machines), but on increasing our ability to perform computations of both traditional and emerging
significance at across-the-board levels of performance. The study thus developed as a more precise
goal the understanding of technologies to accelerate computing by 1,000X for three distinct classes
of systems:

• data center-sized systems, where the focus is on achieving 1,000 times the performance of
the “petaflop” class systems that will come on line in the next few years, and for more than
just numeric intensive applications.

• departmental-sized systems that would allow the capabilities of the near-term Petascale
machines to be shrunk in size and power to fit within a few racks, allowing widespread
deployment.

• embedded systems that would allow something approximating a “Terascale” rack of com-
puting such as may be found in the near-term Petascale systems to be reduced to a few chips
and a few ten’s of watts that would allow deployment in a host of embedded environments.

Clearly, if done right, a technology path that permits Terascale embedded systems would allow
variants of that to serve in Petascale departmental systems, and then in turn grow into larger
Exascale supercomputers. The study group recognizes that even though the underlying technologies
may be similar, when implementing real systems the actual mix of each technology, and even the
architecture of the systems themselves may be different. Thus it was not our focus to design such
systems, but to develop a deep understanding of the technological challenges that might prohibit
their implementation.

1The term “Exa” is entering the national dialog through discussions of total Internet bandwidth and on-net storage
- see for example Unleashing the ‘Exaflood’ in the Feb. 22, 2008 Wall Street Journal.

1
ECS Report

43
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



In total, the study concluded that there are four major challenges to achieving Exascale
systems where current technology trends are simply insufficient, and significant new research is
absolutely needed to bring alternatives on line.

• The Energy and Power Challenge is the most pervasive of the four, and has its roots in
the inability of the group to project any combination of currently mature technologies that
will deliver sufficiently powerful systems in any class at the desired power levels. Indeed, a
key observation of the study is that it may be easier to solve the power problem associated
with base computation than it will be to reduce the problem of transporting data from one
site to another - on the same chip, between closely coupled chips in a common package, or
between different racks on opposite sides of a large machine room, or on storing data in the
aggregate memory hierarchy.

• The Memory and Storage Challenge concerns the lack of currently available technology
to retain data at high enough capacities, and access it at high enough rates, to support the
desired application suites at the desired computational rate, and still fit within an acceptable
power envelope. This information storage challenge lies in both main memory (DRAM today)
and in secondary storage (rotating disks today).

• The Concurrency and Locality Challenge likewise grows out of the flattening of silicon
clock rates and the end of increasing single thread performance, which has left explicit, largely
programmer visible, parallelism as the only mechanism in silicon to increase overall system
performance. While this affects all three classes of systems, projections for the data center
class systems in particular indicate that applications may have to support upwards of a billion
separate threads to efficiently use the hardware.

• A Resiliency Challenge that deals with the ability of a system to continue operation in
the presence of either faults or performance fluctuations. This concern grew out of not only
the explosive growth in component count for the larger classes of systems, but also out of
the need to use advanced technology, at lower voltage levels, where individual devices and
circuits become more and more sensitive to local operating environments, and new classes of
aging effects become significant.

While the latter three challenges grew out of the high end systems, they are certainly not limited
to that class. One need only look at the explosive grow of highly multi-core microprocessors and
their voracious appetite for more RAM.

The study’s recommendations are thus that significant research needs to be engaged in four
major research thrusts whose effects cross all these challenges:

1. Co-development and optimization of Exascale Hardware Technologies and Architec-
tures, where the potential of new devices must be evaluated in the context of new architec-
tures that can utilize the new features of such devices to solve the various challenges. This
research includes development of energy efficient circuits for communication, memory, and
logic; investigation of alternative low-energy devices; development of efficient packaging, in-
terconnection, and cooling technologies; and energy efficient machine organizations. Each of
these research areas should be investigated in the context of all Exascale system classes, and
metrics should be in terms of energy efficiency realized in this context.

2. Co-development and optimization of Exascale Architectures and Programming Mod-
els, where the new architectures that arise out of either the device efforts of the previous

2
ECS Report

44
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



thrust or those needed to control the explosive growth in concurrency must be played out
against programming models that allow applications to use them efficiently. This work in-
cludes developing locality-aware and communication-efficient architectures to minimize energy
consumed through data movement, and developing architectures and programming models
capable of handling billion-thread concurrency.

3. Co-development of Exascale Algorithms, Applications, Tools, and Run-times, where
substantial alternatives are needed for programmers to develop and describe, with less that
heroic efforts, applications that can in fact use the new architectures and new technology
capabilities in efficient enough ways that permit true “Exascale” levels of performance to be
sustained.

4. Development of a deep understanding of how to architect Resilient Exascale Systems,
where the problems in both sheer hardware and algorithmic complexity, and the emergence
of new fault mechanisms, are studied in a context that drives the development of circuit,
subsystem, and system-level architectures, and the programming models that can exploit
them, in ways that allows Exascale systems to provide the kind of dependable service that
will make them technically and economically viable.

Further, such research must be very heavily inter-disciplinary. For example, power is the number
one concern, but research that focuses only on low-power devices is unlikely to solve the systemic
power problems the study encountered. Co-optimization of devices and circuits that employ those
devices must be done within the framework of innovative micro and system architectures which can
leverage the special features of such devices in the most efficient ways. An explicit and constant
attention must be made to interconnect, namely the technologies by which one set of functions
exchange data with another.

As another example, research that leads to increasing significantly the density of memory parts
will clearly help reliability by reducing part count; it may also reduce power significantly by reducing
the number of off-chip interfaces that need to be driven, and reduce the number of memory controller
circuits that must be incorporated elsewhere.

Finally, if the appropriate technologies are to be developed in time to be considered for 2015
deployments, then, given the level of technical maturity seen by the study group in potential
emerging technologies, a three phase research agenda is needed:

1. A System Architecture Exploration Phase to not only enhance the maturity of some
set of underlying device technologies, but to do enough of the higher level system architecture
and modeling efforts to identify how best to employ the technology and what the expected
value might be at the system level.

2. A Technology Demonstration Phase where solutions to the “long poles” in the challenges
are developed and demonstrated in an isolated manner.

3. A Scalability Slice Prototyping Phase where one or more of the disparate technologies
demonstrated in the preceding phase are combined into coherent end-to-end “slices” of a
complete Exascale system that permits believable scaling to deployable systems. Such slices
are not expected to be a complete system in themselves, but should include enough of mul-
tiple subsystems from a potential real system that the transition to a real, complete, system
integration is feasible and believable.

The rest of this report is organized as follows:
3

ECS Report

45
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



• Chapter 2 defines the major classes of Exascale systems and their attributes.

• Chapter 3 gives some background to this study in terms of prior trends and studies.

• Chapter 4 discuss the structure and inter-relationship of computing systems today, along with
some key historical data.

• Chapter 5 concentrates on developing the characteristics of applications that are liable to be
relevant to Exascale systems.

• Chapter 6 reviews the suite of relevant technologies as we understand them today, and devel-
ops some roadmaps as to how they are likely to improve in the future.

• Chapter 7 takes the best of known currently available technologies, and projects ahead what
such technologies would yield at the Exascale. This is particularly critical in identifying the
holes in current technology trends, and where the challenges lie.

• Chapter 8 summarizes the major challenges, develops a list of major research thrusts to
answer those challenges, and suggests a staged development effort to bring them to fruition.

4
ECS Report

46
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Chapter 2

Defining an Exascale System

The goal of this study was not to design Exascale systems, but to identify the overall challenges
and problems that need special emphasis between now and 2010 in order to have a technology base
sufficient to support development and deployment of Exascale-class systems by 2015. However, to
do this, it is first necessary to define more carefully those classes of systems that would fall under
the Exascale rubric. In this chapter, we first discuss the attributes by which achievement of the
label “Exascale” may be claimed, then the classes of systems that would lever such attributes into
“Exascale” systems.

2.1 Attributes

To get to the point of being able to analyze classes of Exascale systems, we first need a definition of
what “Exascale” means. For this study, an Exascale system is taken to mean that one or more key
attributes of the system has 1,000 times the value of what an attribute of a “Petascale” system of
2010 will have. The study defined three dimensions for these attributes: functional performance,
physical attributes, and application performance. Each is discussed below.

2.1.1 Functional Metrics

We define a functional metric as an attribute of a system that directly measures some parameter
that relates to the ability of the system to solve problems. The three major metrics for this category
include:

• Basic computational rate: the rate at which some type of operation can be executed per
second. This includes, but is not limited to:

– flops: floating point operations per second.

– IPS: instructions per second.

– and (remote) memory accesses per second.

• Storage capacity: how much memory is available to support holding different forms of the
problem state at different times. Specific metrics here include the capacities of various parts
of the storage hierarchy:

– Main memory: the memory out of which an application program can directly access
data via simple loads and stores.

5
ECS Report

47
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



– Scratch Storage: the memory needed to hold checkpoints, I/O buffers, and the like
during a computation.

– Persistent Storage: the storage to hold both initial data sets, parameter files, com-
puted results, and long-term data used by multiple independent runs of the application.

• Bandwidth: the rate at which data relevant to computation can be moved around the
system, usually between memory and processing logic. Again, a variety of specialized forms
of bandwidth metrics are relevant, including:

– Bisection bandwidth: for large systems, what is the bandwidth if we partition the
system in half, and measure the maximum that might flow from one half of a system to
the other.

– Local memory bandwidth: how fast can data be transferred between memories and
closest computational nodes.

– Checkpoint bandwidth: how fast copies of memory can be backed up to a secondary
storage medium to permit roll-back to some fixed point in the program if a later error
is discovered in the computations due to hardware fault.

– I/O bandwidth: the rate at which data can be extracted from the computational
regions of the system to secondary storage or visualization facilities where it can be
saved or analyzed later.

– On chip bandwidth: how fast can data be exchanged between functional units and
memory structures within a single chip.

2.1.2 Physical Attributes

The second class of attributes that are relevant to an Exascale discussion are those related to the
instantiation of the design as a real system, primarily:

• Total power consumption

• Physical size (both area and volume)

• Cost

Since this is primarily a technology study, cost is one metric that will for the most part be
ignored.

While peak values for all the above are important, from a technology vantage, it proved to
be more relevant to use these metrics as denominators for ratios involving the functional metrics
described above. Further, for power it will also be valuable to focus not just on the “per watt”
values of a technology, but a “per joule” metric. Knowing the rates per joule allows computation of
the total energy needed to solve some problem; dividing by the time desired gives the total power.

2.1.3 Balanced Designs

While individual metrics give valuable insight into a design, more complete evaluations occur when
we consider how designs are balanced, that is how equal in efficiency of use is the design with
respect to different high-cost resources. This balance is usually a function of application class.

6
ECS Report

48
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



For example, some systems based on special purpose processor designs such as Grape[97] may be
“well-balanced” for some narrow classes of applications that consume the whole machine (such as
multi-body problems), but become very inefficient when applied to others (insufficient memory,
bandwidth, or ability to manage long latencies). Other systems such as large scale search engines
may be built out of more commodity components, but have specialized software stacks and are
balanced so that they perform well only for loads consisting of large numbers of short, independent,
queries that interact only through access to large, persistent databases.

Classically, such balance discussions have been reduced to simple ratios of metrics from above,
such as “bytes to flops per second” or “Gb/s per flops per second.” While useful historical vignettes,
care must be taken with such ratios when looking at different scales of applications, and different
application classes.

2.1.4 Application Performance

There are two major reasons why one invests in a new computing system: for solving problems not
previously solvable, either because of time to solution or size of problem, or for solving the same
kinds of problems solved on a prior system, but faster or more frequently. Systems that are built for
such purposes are known as capability and capacity systems respectively. The NRC report Getting
Up to Speed ([54] page 24) defines these terms more formally:

The largest supercomputers are used for capability or turnaround computing where the
maximum processing power is applied to a single problem. The goal is to solve a larger
problem, or to solve a single problem in a shorter period of time. Capability computing
also enables the solution of problems that cannot otherwise be solved in a reasonable
period of time (for example, by moving from a two-dimensional to a three-dimensional
simulation, using finer grids, or using more realistic models). Capability computing also
enables the solution of problems with real-time constraints (e.g. intelligence processing
and analysis). The main figure of merit is time to solution.

Smaller or cheaper systems are used for capacity computing, where smaller problems
are solved. Capacity computing can be used to enable parametric studies or to explore
design alternatives; it is often needed to prepare for more expensive runs on capability
systems. Capacity systems will often run several jobs simultaneously. The main figure
of merit is sustained performance per unit cost.

Capacity machines are designed for throughput acceleration; they accelerate the rate at which
certain types of currently solvable applications can be solved. Capability machines change the
spectrum of applications that are now “solvable,” either because such problems can now be fit in
the machine and solved at all, or because they can now be solved fast enough for the results to be
meaningful (such as weather forecasting).

We note that there is significant fuzziness in these definitions, especially in the “real-time”
arena. A machine may be called a capability machine if it can take a problem that is solvable in
prior generations of machines (but not in time for the results to be useful), and make it solvable
(at the same levels of accuracy) in some fixed period of time where the results have value (such
a weather forecasting). A machine that solves the same problems even faster, or solves multiple
versions concurrently, and still in real-time, may be called a capacity machine. It is not uncommon
for today’s capability systems to become tomorrow’s capacity systems and newer, and even more
capable, machines are introduced.

7
ECS Report

49
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Also, some machines may have significant aspects of both, such as large scale search engines,
where the capability part lies in the ability to retain significant indexes to information, and the
capacity part lies in the ability to handle very large numbers of simultaneous queries.

Although there is significant validity to the premise that the difference between a capacity
and a capability machine may be just in the “style” of computing or in a job scheduling policy,
we will continue the distinction here a bit further mainly because it may affect several system
parameters that in turn affect real hardware and related technology needs. In particular, it may
relate to the breadth of applications for which a particular design point is “balanced” to the point
of being economically valuable. As an example, it appears from the strawmen designs of Chapter
7 that silicon-based Exascale machines may be significantly memory-poor in relation to today’s
supercomputing systems. This may be acceptable for some large “capability” problems where the
volume of computation scales faster than required data size, but not for “capacity” applications
where there is insufficient per-node memory space to allow enough copies of enough different data
sets to reside simultaneously in the machine in a way that can use all the computational capabilities.

2.2 Classes of Exascale Systems

To reiterate the purpose of this study, it is to identify those technology challenges that stand in
the way of achieving initial deployment of Exascale systems by 2015. The approach taken here for
identifying when such future systems may be called “Exascale” is multi-step. First, we partition
the Exascale space based on the gross physical characteristics of a deployed system. Then, we
identify the functional and application performance characteristics we expect to see needed to
achieve “1,000X” increase in “capability.” Finally, we look at the ratios of these characteristics to
power and volume as discussed above. Then by looking at these ratios we can identify where the
largest challenges are liable to arise, and which class of systems will exhibit them.

In terms of overall physical size and power, we partition the 2015 system space into three
categories:

• “Exa-sized” data center systems,

• “Peta-sized” departmental computing systems,

• and “Tera-sized” Embedded systems.

It is very important to understand that these three systems are not just a 1,000X or 1,000,000X
scaling in all parameters. Depending on the application class for each level, the individual mix
of parameters such as computational rates, memory capacity, and memory bandwidth may vary
dramatically.

2.2.1 Data Center System

For this study, an exa-sized data center system of 2015 is one that roughly corresponds to a
typical notion of a supercomputer center today - a large machine room of several thousand square
feet and multiple megawatts of power consumption. This is the class system that would fall in
the same footprint as the Petascale systems of 2010, except with 1,000X the capability. Because
of the difficulty of achieving such physical constraints, the study was permitted to assume some
growth, perhaps a factor of 2X, to something with a maximum limit of 500 racks and 20 MW for
the computational part of the 2015 system.

8
ECS Report

50
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



2.2.2 Exascale and HPC

In high-end computing (i.e. supercomputing or high-performance computing), the major
milestones are the emergence of systems whose aggregate performance first crosses a threshold
of 103k operations performed per second, for some k. Gigascale (109) was achieved in 1985 with
the delivery of the Cray 2. Terascale (1012) was achieved in 1997 with the delivery of the Intel
ASCI Red system to Sandia National Laboratory. Today, there are contracts for near-Petascale
(1015) systems, and the first will likely be deployed in 2008. Assuming that progress continues to
accelerate, one might hope to see an Exascale (1018) system as early as 2015.

For most scientific and engineering applications, Exascale implies 1018 IEEE 754 Double Pre-
cision (64-bit) operations (multiplications and/or additions) per second (exaflops1). The High
Performance Linpack (HPL) benchmark[118], which solves a dense linear system using LU fac-
torization with partial pivoting, is the current benchmark by which the community measures the
throughput of a computing system. To be generally accepted as an Exascale system, a computer
must exceed 1018 flops (1 exaflops) on the HPL benchmark. However, there are critical Defense and
Intelligence problems for which the operations would be over the integers or some other number
field. Thus a true Exascale system has to execute a fairly rich instruction set at 1018 operations
per second lest it be simply a special purpose machine for one small family of problems.

A truly general purpose computer must provide a balance of arithmetic throughput with memory
volume, memory and communication bandwidth, persistent storage, etc. To perform the HPL
benchmark in a reasonable period of time, an Exascale system would require on the order of 10
petabytes (1016 Bytes) of main memory. Such a system could credibly solve a small set of other
problems. However, it would need at least another order-of-magnitude of additional main memory
(1017 bytes) to address as broad a range of problems as will be tackled on near-Petascale systems
in the next year or so. Amdahl’s rule of thumb was one byte of main memory per operation, but
in recent years systems have been deployed with less (0.14 to 0.3), reflecting both the diverging
relative costs of the components as well as the evolving needs of applications. Chapter 5 tries to
get a better handle on this as we scale algorithms up.

Finally, an Exascale system must provide data bandwidth to and from at least local subsets
of its memory at approximately an exabyte per second. Section 5.6 discusses sensitivities of many
current algorithms to bandwidth.

To store checkpoints, intermediate files, external data, results, and to stage jobs, an Exascale
system will need at least another order-of-magnitude (i.e., 1018 Bytes) of persistent storage, anal-
ogous to today’s disk arrays, with another 10-100X for file storage. Section 5.6.3 explores these
numbers in more detail.

2.2.3 Departmental Systems

The discussion in the previous was oriented towards the requirements for a leadership-class Exascale
system deployed to support a handful of national-scale, capability jobs. To be economically viable,
the technology developed for such a system must also be utilized in higher volume systems such
as those deployed for departmental-scale computing in industry and government. To the casual
eye, the biggest difference will be in the physical size of the departmental systems, which will only
fill a few racks. Power density will be a critical aspect of these systems, as many customers will
want them to be air cooled. Others may only have building chilled water available. Thus, a peta-
sized departmental system of 2015 would be one whose computational capabilities would match

1We denote a computation involving a total of 1018 floating point operations as an exaflop of computation; if
they are all performed in one second then the performance is one exaflops.

9
ECS Report

51
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



roughly those of a 2010 Petascale data center-sized system, but in the form factor of a departmental
computing cluster - perhaps one or two racks, with a maximum power budget of what could be
found in reasonable computer “cluster” room of today - perhaps 100-200KW at maximum. In a
sense this is around 1/1,000th in both capability and size of the larger systems.

The principle differentiation between the Exascale data center systems and departmental sys-
tems will be the need to support a large set of third-party applications. These span a broad range
from business applications like Oracle to engineering codes like LS-DYNA[32]. These are very large,
sophisticated applications that demand the services of a full featured operating system, usually a
derivative of UNIX, not a micro-kernel as may suffice on the early Exascale systems. The operating
system will need to support virtualization and to interact with a Grid[45] of external systems as
the department will likely be part of a much larger, geographically distributed enterprize.

To support a broad range of such mainstream applications, departmental systems composed of
Exascale components will require a proportionately larger main memory and persistent store. It’s
not uncommon today to see systems such as the SGI Altix delivered with only four Intel Itanium
CPUs yet a terabyte of main memory. Latency and bandwidth to the memory hierarchy (DRAM
and disk) is already a problem today for mainstream applications, and probably cannot be tapered
as aggressively as it likely will be on a leadership, Exascale system.

The third party applications whose availability will be critical to the success of departmental
scale systems in 2015 run on up to 100 processors today. Only a handful of scaling studies or heroic
runs exceed that. Petascale departmental systems will likely have 105, perhaps even 106 threads
in them. Extending enough of today’s applications to this level of parallelism will be a daunting
task. In the last fifteen years, commercial software developers have struggled to transition their
codes from one CPU (perhaps a vector system) to O(1000) today. They will have to expand this
scalability by another three orders-of-magnitude in the next decade. This will require breakthroughs
not only in computer architecture, compilers and other software tools, but also in diverse areas of
applied mathematics, science, and engineering. Not amount of system concurrency can overcome
an algorithm that does not scale well. Finally, mainstream applications can not be expected to have
evolved to the point where they can adapt to faults in the underlying system. Thus mean-time-to
failure comparable to today’s large-scale servers will be necessary.

2.2.4 Embedded Systems

One of the motivations for the development of parallel computing systems in the late 1980’s and
early 1990’s was to exploit the economies of scale enjoyed by the developers of mainstream, com-
modity components. At the time, commodity meant personal computers and servers. Today, the
volume of electronics created for embedded systems, such as cell phones, dwarfs desktop and servers,
and this trend will likely continue. Thus its increasingly clear that high-end computing will need
to leverage embedded computing technology. In fact, the blending of embedded technology and
HPC has already begun, as demonstrated by IBM’s Blue Gene family of supercomputers, and HPC
derivatives, such as the Roadrunner at Los Alamos National Labs, using the STI Cell chip (which
has its origins in game systems).

If one hopes to use Exascale technology in embedded systems, not just leadership and depart-
mental scale systems, then there are a number of additional issues that must be addressed. The
first is the need to minimize size, weight, and power consumption. While embedded systems are
often very aggressive in their use of novel packaging technology (e.g. today’s DRAM stacks), they
cannot similarly exploit the most aggressive liquid cooling technology which is often available in
large machine rooms.

Historically embedded processors traded lower performance for greater power efficiency, whereas
10

ECS Report

52
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



processors designed for large servers maximized performance, and power was only constrained by
the need to cool the system. At Exascale, this will no longer be the case. As this study documents,
limiting power consumption will be a major issue for Exascale systems. Therefore, this major
difference in the design of embedded and server systems may very well disappear. This is not to
say that the two processor niches will merge. Servers will need to be engineered as components in
much larger systems, and will have to support large address spaces that will not burden embedded
systems.

Embedded systems, especially those developed for national security applications, often operate
in hostile environment conditions for long periods of time, during which they cannot be serviced.
Space is the obvious example, and to be useful in such an environment, one must be able to extend
Exascale technology to be radiation hard. The architecture must be fault tolerant, and able to
degrade gracefully when individual components inevitably fail. It is interesting to speculate that this
distinction between the fault tolerance design standards for today’s embedded vs. enterprise systems
may disappear as we approach Exascale since smaller geometries and lower voltage thresholds will
lead to components that are inherently less reliable even when deployed in normal, well controlled
environments.

As with departmental scale systems, the biggest difference between pioneering embedded Exas-
cale systems and their contemporary embedded systems will likely be the software. Whereas most
scientific and engineering applications operate on double precision values, embedded applications
are often fixed point (there is no need to carry more precision than the external sensors provide) or,
increasingly, single precision. The applications and hence the operating system will often have hard
real time constraints. The storage required to hold application is often limited, and this bounds
the memory footprint of the operating systems and the application.

2.2.5 Cross-class Applications

While the three classes were discussed above in isolation, there are significant applications that may
end up needing all three at the same time. Consider, for example, a unified battlefield persistent
surveillance system that starts with drones or other sensor platforms to monitor a wide spectrum
of potential information domains, proceeds through local multi-sensor correlation for real-time event
detection, target development, and sensor management to post-event collection management and
forensic analysis, where tactical and strategic trends can be identified and extracted.

A bit more formally, a recent DSB report[18] (page 103) defines persistent surveillance as follows:

The systematic and integrated management of collection processing, and customer col-
laboration for assured monitoring of all classes of threat entities, activities and envi-
ronments in physical, aural or cyber space with sufficient frequency, accuracy, resolu-
tion, precision, spectral diversity, spatial extent, spatial and sensing diversity and other
enhanced temporal and other performance attributes in order to obtain the desired
adversary information, even in the presence of deception.

Implementing such systems may very well require Exascale embedded systems in a host of
different platforms to do radar, video, aural, or cyber processing, analysis, and feature extraction;
Exascale departmental systems may be needed to integrate multiple sensors and perform local event
detection and sensor management, and larger Exascale data center class systems are needed for
overall information collection and deep analysis.

11
ECS Report

53
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Attributes
Aggregate
Compu-
tational
Rate

Aggregate
Memory
Capacity

Aggregate
Band-
width

Volume Power

Exa Scale Data Center Capacity System relative to 2010 Peta Capacity System
Single Job Speedup 1000X flops Same 1000X Same Same

Job Replication 1000X flops up to 1000X 1000X Same Same
Exa Scale Data Center Capability System relative to 2010 Peta Capability System
Current in Real-Time 1000X flops,

ops
Same 1000X Same Same

Scaled Current Apps up to 1000X
flops, ops

up to 1000X up to
1000X

Same Same

New Apps up to 1000X
flops, ops,
mem accesses

up to 1000X
- with more
persistence

up to
1000X

Same Same

Peta Scale Department System relative to 2010 Peta HPC System
Same Same Same 1/1000 1/1000

Tera Scale Embedded System relative to 2010 Peta HPC System
1/1000 1/1000 1/1000 1/1 million 1/1 million

Table 2.1: Attributes of Exascale class systems.

2.3 Systems Classes and Matching Attributes

The following subsections discuss each of these target system, with Table 2.1 summarizing how the
various metrics might inter-relate. The header row for each class includes a reference to the type
of system used as a baseline in estimating how much on an increases in the various attributes are
needed to achieve something that would be termed an Exascale system. Attribute columns with
the value “same” should be interpreted as being close to (i.e. perhaps within a factor of 2) of the
same numbers for the 2010 reference point.

2.3.1 Capacity Data Center-sized Exa Systems

A 2015 data center sized capacity system is one whose goal would be to allow roughly 1,000X the
production of results from the same applications that run in 2010 on the Petascale systems of the
time. In particular, by “same” is meant “approximately” (within a factor of 2 or so) the same data
set size (and thus memory capacity) and same application code (and thus the same primary metric
of computational rate as for the reference 2010 Petascale applications - probably still flops).

There are two potential variants of this class, based on how the increase in throughput is
achieved: by increasing the computational rate as applied to a single job by 1,000X, or by con-
currently running multiple (up to 1,000) jobs through the system at the same time. In either case
the aggregate computational rates must increase by 1,000X. For the single job speedup case, band-
widths probably scale linearly with the 1,000X in rate, but total memory capacity will stay roughly
flat at what it will be in 2010.

For systems supporting concurrent jobs, the total memory capacity must scale with the degree
of concurrency. While most of the lower levels of bandwidth must scale, it may be that the system-

12
ECS Report

54
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



wide bandwidth need not scale linearly, since the footprint in terms of racks needed for each job
may also shrink.

2.3.2 Capability Data Center-sized Exa Systems

A 2015 data center sized capability system is one whose goal would be to allow solution of problems
up to 1,000 times “more complex” than solvable by a 2010 peta capability system. In contrast to
capacity machines, these systems are assumed to run only one application at a time, so that sizing
the various attributes need reflect only one application. There are least three variants of such
systems:

• Real-time performance: where the same application that runs on a peta system needs to run
1,000X faster to achieve value for predictive purposes. As with the capacity system that was
speedup based, computational rate and bandwidth will scale, but it may be that memory
capacity need not.

In this scenario, if the basic speed of the computational units does not increase significantly
(as is likely), then new levels of parallelism must be discovered in the underlying algorithms,
and if that parallelism takes a different form than the current coarse-grained parallelism used
on current high end systems, then the software models will have to be developed to support
that form of parallelism.

• Upscaling of current peta applications: where the overall application is the same as exists
for a 2010 peta scale system, but the data set size representing problems of interest needs to
grow considerably. There the meaning of a 1000X increase in computing may have several
interpretations. A special case is the weak-scaling scenario in which a fixed amount of data
is used per thread; if the computation is linear time in the data size, then this corresponds
to a 1000x increase in memory capacity along with computation and bandwidth. Another
obvious one may mean solving problem sizes that require 1,000X the number of computations
in the same time as the maximum sized problems did on the reference peta system. Here
computational and bandwidths scale by 1,000X, and memory must scale at least as fast enough
to contain the size problems that force the 1,000X increase in computation. This memory
scaling may thus vary from almost flat to linear in the performance increase. Intermediate
numbers are to be expected, where, for example, 4D simulations may has an N3/4 law, meaning
that 1,000X in performance requires 10003/4 = 178X the memory capacity.

A second interpretation of a 1000X gain in computation is that there may be some product
between increase in performance and increase in problem size (i.e. storage). Thus, for exam-
ple, a valid definition of an Exascale system may be one that supports data sets 100X that of
today, and provides 10X more computation per second against its solution, regardless of how
long the total problem execution takes.

• New applications: where the properties of the desired computation looks nothing like what
is supportable today. This includes the types of operations that in the end dominate the
computational rate requirements (instead of flops, perhaps integer ops or memory accesses),
the amount and type of memory (very large graphs, for example, that must persist in memory
essentially continuously), to bandwidth (which might even explode to become the dominant
performance parameter). These new application might very well use algorithms that are
unknown today, along with new software and architecture models.

13
ECS Report

55
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



2.3.3 Departmental Peta Systems

Another version of an exa sized system might be one that takes a 2010 peta scale system (encom-
passing 100s’ of racks) and physically reduces it to a rack or two that may fit in, and be dedicated
to, the needs of a small part of an organization, such as a department. This rack would thus in
2015 have the computational attributes of a 2010 peta system in the footprint of a 2010 tera scale
systems.

If the goal is to shrink a 2010 peta scale system, then the overall computational rate and
memory capacity at an absolute level, are unchanged from the 2010 numbers. The power and
volume limits, however, must scale by a factor of about 1/1000. Also, while the aggregate internal
system bandwidth is unchanged from the 2010 system, reducing the physical size also means that
where the bandwidth requirements must be met changes. For example, going to a 1-2 rack system
means that much more of the 2015 inter-rack data bandwidth must be present within a single rack.

2.3.4 Embedded Tera Systems

The final exa technology-based system in 2015 would be a system where the computational potential
of a 2010 tera scale system is converted downwards to a few chips and a few tens of watts. This might
be the basis for a tera scale workstation of PC, or a tera scale chip set for embedded applications.
The latter has the most relevance to DoD missions, and is least likely to be achieved by commercial
developments, so it will be the “low end” of the Exascale systems for the rest of this report.

Much of the discussion presented above for the departmental sized system is still relevant, but
with all the bandwidth now supported between a handful of chips.

If we still reference a peta scale system as a starting point, this means that the key attributes
of rate, capacity, and bandwidth all decrease by a factor of 1,000, and the volume and power ratios
by a factor of 1 million. This, however, may not be very precise, since the application suite for a
tera-sized system that fits in say an aircraft will not be the same suite supported by a Petascale
system. This is particularly true for memory, where scaling down in performance may or may not
result in a different scaling down in memory capacity

2.4 Prioritizing the Attributes

If as is likely, achieving factors of 1,000X in any particular dimension are liable to be the most
difficult to achieve, then looking at which systems from the above suite have the most 1,000X
multipliers is liable to indicate both which system types might be the most challenging, and which
attributes are liable to be the most relevant to the greatest number of systems.

Table 2.2 summarizes the metrics from the prior chart when they are ratioed for “per watt”
and “per unit volume.” At the bottom and on the left edge the number of attribute entries
that are “1,000X” are recorded. From these, it is clear that the capability, departmental, and
embedded systems seem to have the most concurrent challenges, and that the computational rate
and bandwidth “per watt” and ”per volume” are uniformly important. The only reason why
memory capacity doesn’t rise to the same level as these other two is that we do not at this time
fully understand the scaling rules needed to raise problems up to the exa level, although the analysis
of Chapter 5 indicates that significantly more than is likely in our strawmen of Chapter 7 is likely.

Regardless of this analysis, however, the real question is how hard is it to achieve any of these
ratios, for any of the systems, in the technologies that may be available.

14
ECS Report

56
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Attributes
Comp.
Rate

Memory
Cap.

BW Comp.
Rate

Memory
Cap.

BW # of
1000X
Ratios

Exa Scale Data Center Capacity System relative to 2010 Peta Capacity System
Single Job Speedup 1000X Same 1000X 1000X Same 1000X 4

Job Replication 1000X up to
1000X

1000X 1000X up to
1000X

1000X 6

Exa Scale Data Center Capability System relative to 2010 Peta Capability System
Current in Real-Time 1000X Same 1000X 1000X Same 1000X 4
Scaled Current Apps up to

1000X
up to
1000X

up to
1000X

up to
1000X

up to
1000X

up to
1000X

6

New Apps up to
1000X

up to
1000X

up to
1000X

up to
1000X

up to
1000X

up to
1000X

6

Peta Scale Department System relative to 2010 Peta HPC System
1000X 1000X 1000X 1000X 1000X 1000X 6

Tera Scale Embedded System relative to 2010 Peta HPC System
1000X 1000X 1000X 1000X 1000X 1000X 6

# of 1000X ratios 7 5 7 7 5 7

Table 2.2: Attributes of Exascale class systems.

15
ECS Report

57
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



16
ECS Report

58
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

mr22
Text Box
This page intentionally left blank.



Chapter 3

Background

This chapter provides a bit of background about trends in leading edge computational systems that
are relevant to this work.

3.1 Prehistory

In the early 1990s, it became obvious that there was both the need for, and the potential to, achieve
a trillion (1012) floating point operations per second against problems that could be composed by
dense linear algebra. This reached reality in 1996 when the ASCI Red machine passed 1 teraflops1

(a teraflop per second) in both peak2 and sustained3 performance.
In early 1994, more than two years before the achievement of a teraflops, an effort was started[129]

to define the characteristics of systems (the device technologies, architectures, and support software)
that would be needed to achieve one thousand times a teraflops, namely a petaflops - a million
billion floating point operations per second, and whether or not there were real and significant
applications that could take advantage of such systems. This effort triggered multiple government-
sponsored research efforts such as the HTMT (Hybrid Technology Multi-Threaded)[47] and
HPCS (High Productivity Computing Systems)[4] programs, which in turn helped lead to
peak petaflops systems within a year of now, and sustained petaflops-level systems by 2010.

At the same time as this explosion at the high end of “classical” scientific computing occurred, an
equally compelling explosion has occurred for applications with little to do with such floating point
intensive computations, but where supporting them at speed requires computing resources rivaling
those of any supercomputer. Internet commerce has led to massive server systems with thousands
of processors, performing highly concurrent web serving, order processing, inventory control, data
base processing, and data mining. The explosion of digital cameras and cell phones with rich
multi-media capabilities have led to growing on-line, and heavily linked, object data bases with the
growing need to perform real-time multimedia storage, searching, and categorization. Intelligence
applications after 9/11 have developed to anticipate the actions of terrorists and rogue states.

Thus in a real sense the need for advanced computing has grown significantly beyond the need
for just flops, and to recognize that fact, we will use the terms gigascale, Terascale, Petascale,
etc to reflect such systems.

1In this report we will define a gigaflop, teraflop, etc to represent a billion, trillion, etc floating point operations.
Adding an “s” to the end of such terms will denote a “per second” performance metric

2Peak performance is a measure of the maximum concurrency in terms of the maximum number of relevant
operations that the hardware could sustain in any conditions in a second

3Sustained performance is a measure of the number of relevant operations that a real application can execute
on the hardware per second

17
ECS Report

59
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



In addition to this drive for high-end computing, equally compelling cases have been building
for continually increasing the computational capabilities of “smaller” systems. Most of the non “top
10” of the “Top 500” systems are smaller than world-class systems but provide for an increasing
base of users the performance offered by prior years supercomputing. The development of server
blades has led to very scalable systems built out of commercial microprocessor technology. In a real
sense, updates to the prior generation of Terascale computing has led to the Petascale computing
of the high end, which in turn is becoming the technology driver for the next generation of broadly
deployed Terascale computing.

In the embedded arena, the relentless push for more functionality such as multi-media, video,
and GPS processing, in smaller packages (both for personal, industrial and scientific uses) has
become a linchpin of our modern economy and defense establishment, with a growing need to allow
such packages to function in a growing suite of difficult environmental conditions. Thus just as
we have moved to gigascale laptops, PDAs, etc with today’s technologies, the trend is clearly to
migrate into Terascale performance in similar sizes.

3.2 Trends

At the same time the above events were happening, a series of trends have emerged that has cast
some doubt as to the ability of “technology development as usual” to provide the kind of leap that
drove Terascale and Petascale computing. These include:

• Moore’s Law, if (correctly) interpreted as doubling the number of devices per unit of area on
a chip every 18-24 months, will continue to do so.

• Moore’s Law, if (incorrectly) interpreted as of doubling performance every 24 months, has hit
a power wall, where clock rates have been essentially flat since the early 2000s.

• Our ability to automatically extract from serial programs more operations out of normal
programs to perform in parallel in the hardware has plateaued.

• Our ability to hide the growing memory latency wall by increasingly large and complex cache
hierarchies has hit limits in terms of its effectiveness on real applications.

• Memory chip designs are now being driven by the need to support large amounts of very
cheap nonvolatile memory, ideally with medium high bandwidth but where read and write
latencies are almost irrelevant.

• Our ability to devise devices with finer and finer feature sizes is being limited by lithography,
which seems to be stuck for the foreseeable future with what can be formed from 193 nm
deep ultraviolet light sources.

• The cost of designing new microprocessors in leading edge technologies has skyrocketed to
the point where only a very few large industrial firms can afford to design new chips.

• Funding for new research in computer architecture to look for alternatives to these trends
has declined to the point where senior leaders in the field have raised alarms[100], and ma-
jor research communities organized studies outlining the problem and why it should be
addressed[12]. The traditional model of single-domain research activities where hardware
and software techniques are explored in isolation will not address the current challenges.

18
ECS Report

60
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



3.3 Overall Observations

While it took something approaching 16 years to get from the first serious discussions of Petascale
computers (1994) to their emergence as deployable systems (expected in 2010), the technologies,
architectures, and programming models were all remarkably foreseen early on[129], and in retro-
spect bear a real family resemblance to the early Terascale machines. Looking forward to another
similar three-order jump in computational capabilities (termed here as Exascale systems), several
observations emerge:

• There is a continuing need for critical applications to run at much higher rates of performance
than will be possible even with the Petascale machines.

• These applications are evolving into more complex entities than those from the Terascale era.

• This need for increasing computing capability is more than just as absolute numbers, but also
for reducing the size of the systems that perform today’s levels of computing into smaller and
smaller packages.

• Technology is hitting walls for which there is no visible viable solutions, and commercial
pressures are not driving vendors in directions that will provide the advanced capabilities
needed for the next level of performance.

• There is a dearth of advanced computer architecture research that can leverage either existing
or emerging technologies in ways that can provide another explosive growth in performance.

• Our programming methodologies have evolved to the point where with some heroics scientific
codes can be run on machines with tens’ of thousands of processors, but our ability to scale
up applications to the millions of processors, or even port conventional “personal” codes to a
few dozen cores (as will be available soon in everyone’s laptops) is almost non-existent.

Given this, and given the clear need for deploying systems with such capabilities, it seems clear
that without explicit direction and support, even another 16 years of waiting cannot guarantee the
emergence of Exascale systems.

3.4 This Study

The project that led to this report was started by DARPA in the spring of 2007, with the general
objective of assisting the U.S. government in exploring the issues, technical limitations, key con-
cepts, and potential enabling solutions for deploying Exascale computing systems, and ensuring
that such technologies are mature enough and in place by 2015, not a decade later.

A contract was let to the Georgia Institute of Technology to manage a study group that would
cover the technological spectrum. A study chair, Dr. Peter Kogge of the University of Notre
Dame, was appointed, and a group of nationally recognized experts assembled (Appendix A). The
study group’s charter was to explore the issues, technical limitations, key concepts, and potential
solutions to enable Exascale computing by addressing the needed system technologies, architectures,
and methodologies.

The key outcome of the study was to develop an open report (this document) that identifies the
key roadblocks, challenges, and technology developments that must be tackled by 2010 to support
potential 2015 deployment. A subsidiary goal was to generate ideas that will permit use of similar
technologies for Terascale embedded platforms in the same time frame.

19
ECS Report

61
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Over the summer and fall of 2007, almost a dozen meetings were held at various venues, with
a large number of additional experts invited in for discussions on specific topics (Appendix B).

3.5 Target Timeframes and Tipping Points

A target time for the development of Exascale technologies and systems was chosen as 2015. This
was chosen as an aggressive goal because it represented about 1/2 of the time required to get to
Petascale from the first workshop in 1994, and mirrors the approximate time period required to
formulate and execute the HPCS program from start to finish.

This target of 2015 included both technologies and systems as goals. Achieving the former would
mean that all technologies would be in place by 2015 to develop and deploy any class of Exascale
system. Achieving the latter means that systems of some, but not necessarily all, Exascale classes
(perhaps embedded or departmental) with Exascale levels of capabilities (as defined here) would
be possible.

For such 2015 deployments to be commercially feasible, the underlying technologies must have
been available long enough in advance for design and development activities to utilize them. Thus,
a secondary time target was placed at 2013 to 2014 for base technologies out of which product
components could be designed.

Finally, in looking back at the Petascale development, even though there was a significant effort
invested in the early years, it wasn’t until the early 2000s’ that it became clear to commercial
vendors that Petascale systems were in fact going to be commercially feasible, even if it wasn’t
obvious what the architecture or exact designs would be. We refer to such a time as the tipping
point in terms of technology development, and thus set as a study goal the task of defining what
emerging technologies ought be pushed so that an equivalent tipping point in terms of their potential
usefulness for Exascale systems would be reached by 2010. At this point, it is hoped that industry
can see clearly the value of such technologies, and can begin to pencil in their use in systems by
2015.

3.6 Companion Studies

Concurrent with this study were two other activities with significant synergism. First is a DoE-
sponsored study entitled “Simulation and Modeling at the Exascale for Energy, Ecological Sus-
tainability and Global Security (E3SGS)”4, whose goal is to set the stage for supercomputer-class
Exascale applications that can attack global challenges through modeling and simulation. A series
of town-hall meetings was held in order to develop a more complete understanding of the properties
of such applications and the algorithms that underly them.

These meetings focused primarily on Exascale applications and possible algorithms needed for
their implementation, and not on underlying system architecture or technology.

Second is a workshop held in Oct. 2007 on “Frontiers of Extreme Computing,” which repre-
sented the third in a series of workshops5 on pushing computation towards some sort of ultimate
limit of a zettaflops (1021) flops per second, and the kinds of technologies that might conceivably
be necessary to get there. While this series of workshops have included discussions of not just
applications, but also device technologies and architectures, the time frame is “at the limits” and
not one as “near term” as 2015.

4http://hpcrd.lbl.gov/E3SGS/main.html
5http://www.zettaflops.org/

20
ECS Report

62
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



3.7 Prior Relevant Studies

For reference, during the time from 1994 through the present, a long series of studies have continued
to build consensus into the importance and justification for advanced computing for all classes of
systems from embedded to supercomputing. The sections below attempt to summarize the key
findings and recommendations that are most relevant to this study. Since the focus of this study
is mostly technical, findings and recommendations discussed below will be largely those with a
technical bent: investment and business environment-relevant factors are left to the original reports
and largely not covered here.

3.7.1 1999 PITAC Report to the President

The February 1999 PITAC Report to the President - Information Technology Research: Investing
in Our Future[75] was charged with developing “future directions for Federal support of research
and development for information technology.”

The major findings were that Federal information technology R&D investment was inadequate
and too heavily focused on near-term problems. In particular relevance to this report, the study
found that high-end computing is essential to science and engineering research, it is an enabling el-
ement of the United States national security program, that new applications of high-end computing
are ripe for exploration, that US suppliers of high-end systems suffer from difficult market pres-
sures, and that innovations are required in high-end systems and application-development software,
algorithms, programming methods, component technologies, and computer architecture.

Some major relevant recommendations were to create a strategic initiative in long-term infor-
mation technology R&D, to encourage research that is visionary and high-risk, and to fund research
into innovative computing technologies and architectures.

3.7.2 2000 DSB Report on DoD Supercomputing Needs

The October 2000 Defense Science Board Task Force on DoD Supercomputing Needs[17] was charged
with examine changes in supercomputing technology and investigate alternative supercomputing
technologies in the areas of distributed networks and multi-processor machines.

The Task Force concluded that there is a significant need for high performance computers
that provide extremely fast access to extremely large global memories. Such computers support
a crucial national cryptanalysis capability. To be of most use to the affected research community,
these supercomputers also must be easy to program.

The key recommendation for the long-term was to invest in research on critical technologies for
the long term. Areas such as single-processor architecture and semiconductor technology that are
adequately addressed by industry should not be the focus of such a program.Areas that should be
invested in include architecture of high-performance computer systems, memory and I/O systems,
high-bandwidth interconnection technology, system software for high-performance computers, and
application software and programming methods for high-performance computers.

3.7.3 2001 Survey of National Security HPC Architectural Requirements

The June 2001 Survey and Analysis of the National Security High Performance Computing Archi-
tectural Requirements[46] was charged with determining if then-current high performance computers
that use commodity microprocessors were adequate for national security applications, and also was
there a critical need for traditional vector supercomputers.

21
ECS Report

63
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



One key finding was that based on interviews conducted, commodity PCs were providing useful
capability in all of 10 DoD-relevant application areas surveyed except for the cryptanalysis area.
Another was that while most big applications had scaled well onto commodity PC HPC systems
with MPI, several had not, especially those that must access global memory in an irregular and
unpredictable fashion.

A summary of the recommendations was to encourage significant research into the use of
OpenMP on shared-memory systems, and establish a multifaceted R&D program to improve the
productivity of high performance computing for national security applications.

3.7.4 2001 DoD R&D Agenda For High Productivity Computing Systems

The June 2001 White Paper DoD Research and Development Agenda For High Productivity Com-
puting Systems[40] was charged with outlining an R&D plan for the HPCS program to revitalize
high-end computer industry, providing options for high-end computing systems for the national
security community and, developing improved software tools for a wide range of computer archi-
tectures. The key findings were that:

• The increasing imbalance among processor speed, communications performance, power con-
sumption, and heat removal results in high-end systems that are chronically inefficient for
large-scale applications.

• There exists a critical need for improved software tools, standards, and methodologies for ef-
fective utilization of multiprocessor computers. As multi-processor systems become pervasive
throughout the DoD, such tools will reduce software development and maintenance - a major
cost driver for many Defense system acquisitions.

• Near-elimination of R&D funding for high-end hardware architectures has resulted in a dra-
matic decrease in academic interest, new ideas, and people required to build the next gener-
ation high-end computing systems.

The recommendations were that the attention of academia and industry needed to be drawn
to high bandwidth/low latency hierarchical memory systems using advanced technologies, develop
highly scalable systems that balance the performance of processors, memory systems, intercon-
nects, system software, and programming environments, and address the system brittleness and
susceptibility of large complex computing systems.

3.7.5 2002 HPC for the National Security Community

The July 2002 Report on High Performance Computing for the National Security Community[41]
was charged with supporting the Secretary of Defense in submitting a development and acquisition
plan for a comprehensive, long-range, integrated, high-end computing program to Congress.

The key finding was that the mix of R&D and engineering programs lacked balance and coordi-
nation and was far below the critical mass required to sustain a robust technology/industrial base
in high-end supercomputing, with requirements identified as critical by the national security com-
munity, especially improved memory subsystem performance and more productive programming
environments, not being addressed. Another relevant finding was that then current communication
interfaces for moving data on and off chips throttled performance.

22
ECS Report

64
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



The key recommendation was to restore the level and range of effort for applied research in fun-
damental HEC concepts, and apply it nearly evenly across seven general research areas: systems ar-
chitectures; memory subsystems; parallel languages and programmer tools; packaging/power/ther-
mal management; interconnects and switches; storage and input/output; and novel computational
technologies (exclusive of quantum computing).

3.7.6 2003 Jason Study on Requirements for ASCI

The October 2003 Jason study on Requirements for ASCI [126] was charged with identifying the
distinct requirements of NNSA’s stockpile stewardship program in relation to the hardware pro-
curement strategy of the ASCI program.

The two most relevant findings were that a factor of two oversubscription in ASCI Capacity sys-
tems was projected to potentially worsen in the foreseeable future, and that future calculations were
estimated to take 125X in memory and 500X computations per zone to handle opacity calculations,
40X memory for reactive flow kinetics, and 4X in memory and performance for Sn transport.

Besides increasing ASCI’s capability machines, this report also recommended continuing and
expanding investments in computational science investigations directed toward improving the de-
livered performance of algorithms relevant to ASCI.

3.7.7 2003 Roadmap for the Revitalization of High-End Computing

The June 2003 Workshop on The Roadmap for the Revitalization of High-End Computing[119]
(HECRTF) was charged with developing a five-year plan to guide future federal investments in
high-end computing.

The overall finding was that short-term strategies and one-time crash programs were unlikely to
develop the technology pipelines and new approaches required to realize the Petascale computing
systems needed by a range of scientific, defense, and national security applications.

Specific findings and recommendations covered several areas. In enabling technologies, key
areas needing work included the management of power and improvements in interconnection per-
formance, the bandwidth and latency among chips, boards, and chassis, new device technologies
and 3D integration and packaging concepts, a long-term research agenda in superconducting tech-
nologies, spintronics, photonic switching, and molecular electronics, and system demonstrations of
new software approaches.

Specific findings and recommendations in architecture were split between COTS-based (Cus-
tom Off the Shelf) and Custom. For the former the emphasis was on exploiting scarce memory
bandwidth by new computational structures, and increasing memory bandwidth across the board.
For the latter, expected performance advantages of custom features were forecast of between 10X
and, programmability advantage of twofold to fourfold. Beyond a relatively near-term period, the
report concluded that continued growth in system performance will be derived primarily through
brute force scale, advances in custom computer architecture, and incorporation of exotic technolo-
gies, and that a steady stream of prototypes were needed to determine viability.

In terms of runtime and operating systems, the study found that the then-research community
was almost entirely focused on delivering capability via commodity-leveraging clusters, that for
HEC systems the two should merge and need to incorporate much more dynamic performance
feedback, and that the lack of large-scale testbeds was limiting such research. In addition, the
study concluded that as system sizes increased to 100,000 nodes and beyond, novel scalable and
high-performance solutions would be needed to manage faults and maintain both application and
system operation.

23
ECS Report

65
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



In terms of programming environments and tools, the study concluded that the most pressing
scientific challenges will require application solutions that are multidisciplinary and multiscale,
requiring an interdisciplinary team of scientists and software specialists to design, manage, and
maintain them, with a dramatic increase in investment to improve the quality, availability, and
usability of the software tools that are used throughout an application’s life cycle.

3.7.8 2004 Getting Up to Speed: The Future of Supercomputing

The November 2004 National Academy report Getting Up to Speed The Future of Supercomput-
ing [54] summarizes an extensive two-year study whose charge was to examine the characteristics
of relevant systems and architecture research in government, industry, and academia, identify key
elements of context, examine the changing nature of problems demanding supercomputing and
the implications for systems design, and outline the role of national security in the supercomputer
market and the long-term federal interest in supercomputing.

The key findings were that the peak performance of supercomputers has increased rapidly in the
last decades, but equivalent growth in sustained performance and productivity had lagged. Also,
the applications described in Section 3.7.3 were still relevant, but that about a dozen additional
application areas were identified, with performance needs often 1000X or more would be needed
- just over the next five years. Finally, while commodity clusters satisfied the needs of many
supercomputer users, important applications needed better main memory bandwidth and latency
hiding that are available only in custom supercomputers, and most users would benefit from the
simpler programming model that can be supported well on custom systems.

The key recommendations all dealt with the government’s necessary role in fostering the de-
velopment of relevant new technologies, and in ensuring that there are multiple strong domestic
suppliers of both hardware and software.

3.7.9 2005 Revitalizing Computer Architecture Research

A 2005 CRA Conference on Grand Challenges in Computer Architecture[72] was charged with
determining how changes in technology below 65 nm are likely to change computer architectures,
and to identify what problems are likely to become most challenging, and what avenues of computer
architecture research are likely to be of most value. To quote the report: “Separating computing and
communication is no longer useful; differentiating between embedded and mainstream computing
is no longer meaningful. Extreme mobility and highly compact form factors will likely dominate.
A distributed peer-to-peer paradigm may replace the client-server model. New applications for
recognition, mining, synthesis, and entertainment could be the dominant workloads.”

The findings of the workshop was that there were four specific challenges whose solutions would
potentially have a huge impact on computing in 2020:

1. A “featherweight supercomputer” that could provide 1 teraops per watt in an aggressive 3D
package suitable for a wide range of systems from embedded to energy efficient data centers.

2. “Popular parallel programming models” that will allow significant numbers of programmers
to work with multi-core and manycore systems.

3. “Systems that you can count on” that provide self-healing and trustworthy hardware and
software.

24
ECS Report

66
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



4. “New models of computation” that are not von Neumann in nature, and may better leverage
the properties of emerging technologies, especially non-silicon, in better ways for new and
emerging classes of applications.

3.7.10 2006 DSB Task Force on Defense Critical Technologies

The March 2006 the Report on Joint U.S. Defense Science Board and UK Defence Scientific Ad-
visory Council Task Force on Defense Critical Technologies[18] was charged with examine five
transformational technology areas that are critical to the defense needs of the US and UK, includ-
ing Advanced Command Environments, Persistent Surveillance, Power sources for small distributed
sensor networks, High Performance Computing, and Defence Critical Electronic Components.

They key finding on the HPC side were that there are a number of applications that cannot
be solved with sufficient speed or precision today, that the high performance needs of national
security will not be satisfied by systems designed for broader commercial market, and that two
new memory-intensive applications are becoming especially important: knowledge discovery and
integration and image and video processing.

The key recommendations on the HPC side were to make HPCS a recurring program, and
invest in technologies especially for knowledge discovery including new very large memory-centric
systems, programming tools, system software, improved knowledge discovery algorithms that can
run unattended, new inference engines, support for rapid, high productivity programming, appro-
priate metrics, and open test beds that permit research community to explore and evaluate without
revealing national securing information.

The recommendations on knowledge discovery and video processing were buttressed by the
findings and recommendations on Persistent Surveillance. In particular a recommendation was
to establish a US persistent surveillance effort.

3.7.11 2006 The Landscape of Parallel Computing Research

The report The Landscape of Parallel Computing Research: A View From Berkeley[11] summarized
a two-year effort by researchers at the University of California at Berkeley to discuss the effects
of recent emergence of multi-core microprocessors on highly parallel computing, from applications
and programming models to hardware and evaluation.

Their major finding was that multi-core was unlikely to be the ideal answer to achieving en-
hanced performance, and that a new solution for parallel hardware and software is desperately
needed. More detailed findings included that

• It is now memory and power that are the major walls.

• As chips drop below 65 nm feature sizes, they will have higher soft and hard error rates that
must be accounted for in system design.

• Both instruction level parallelism and clock rates have reached points of diminishing returns,
and conventional uniprocessors will no longer improve in performance by 2X every 18 months.

• Increasing explicit parallelism will be the primary method of improving processor perfor-
mance.

• While embedded and server computing have historically evolved along separate paths, in-
creasingly parallel hardware brings them together both architecturally and in terms of pro-
gramming models.

25
ECS Report

67
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



A key output of the report was the identification of 13 benchmark dwarves that together can
delineate application requirements in a way that allows insight into hardware requirements. In terms
of hardware projections, the report suggests that technology will allow upwards of a 1000 simple
and perhaps heterogeneous cores on a die (manycore), but that separating DRAM from CPUs
as is done today needs to be seriously revisited. Further, interconnection networks will become
of increasing importance, both on and off chip, with coherency and synchronization of growing
concern. In addition, more attention must be payed to both dependability and performance and
power monitoring to provide for autotuners, which are software systems that automatically adapt
to performance characteristics of hardware, often by searching over a large space of optimized
versions. New models of programming will also be needed for such systems.

26
ECS Report

68
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Chapter 4

Computing as We Know It

This chapter discuss the structure and inter-relationship of computing systems today, including
architecture, programming models, and resulting properties of applications. It also includes some
historical data on microprocessor chips, on the leading supercomputer systems in the world over
the last 20 years, and on web servers which make up many of the departmental sized systems of
today.

4.1 Today’s Architectures and Execution Models

This section should overview today’s deep memory hierarchy-based system architectures using
hot multi-core processing chips, dense DRAM main memory, and spinning, disk-based, secondary
memory.

4.1.1 Today’s Microarchitectural Trends

Contemporary microprocessor architectures are undergoing a transition to simplicity and paral-
lelism that is driven by three trends. First, the instruction-level parallelism and deep pipelining
(resulting in high clock rates) that accounted for much of the growth of single-processor computing
performance in the 1990s has been mined out. Today, the only way to increase performance beyond
that achieved by improved device speed is to use explicit parallelism.

Second, the constant field scaling that has been used to give “cubic”1 energy scaling for several
decades has come to an end because threshold voltage cannot be reduced further without prohibitive
subthreshold leakage current. As a result, power is the scarce resource in the design of a modern
processor, and many aggressive superscalar techniques that burn considerable power with only
modest returns on performance have been abandoned. Newer processors are in many cases simpler
than their predecessors to give better performance per unit power.

Finally, the increase in main memory latency and decrease in main memory bandwidth rela-
tive to processor cycle time and execution rate continues. This trend makes memory bandwidth
and latency the performance-limiting factor for many applications, and often results in sustained
application performance that is only a few percent of peak performance. Many mainstream pro-
cessors now adopt aggressive latency hiding techniques, such as out-of-order execution and explicit
multi-threading, to try to tolerate the slow path to memory. This, however, has an element of
self-defeatism, since they often results in worse than linear increase in the complexity of some ba-

1The energy per device shrinking as the 3rd power of the reduction in the device’s basic feature size

27
ECS Report

69
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



sic structure (such as comparators associated with a load-store buffer)to contributes a worse than
linear growth in power for a less than linear increase in performance.

4.1.1.1 Conventional Microprocessors

Conventional high-end microprocessors aim for high single-thread performance using speculative
superscalar designs. For example, the AMD K8 Core microarchitecture includes a 12 stage pipeline
that can execute up to 3 regular instructions per cycle. The complex out-of-order instruction issue,
retirement logic, and consumes considerable power and die area; only about 10% of the core die
area (not including L2 caches) is devoted to arithmetic units.

At the other end of the spectrum, Sun’s Niagara 2 chip[110] includes 8 dual-issue cores, each
of which supports up to 8-way multi-threading. The cores are simpler, with in-order execution,
sacrificing single-thread performance for the benefit of greater thread-level parallelism. These
simpler processors are more efficient, but still consume considerable area and energy on instruction
supply, data supply, and overhead functions.

To amortize the high overheads of modern processors over more operations, many processors
include a short vector instruction set extension such as Intel’s SSE. These extensions allow two or
four floating point operations to be issued per cycle drawing their operands from a wide (128b)
register file. Emerging processors such as Intel’s Larrabee take this direction one step further by
adding a wider vector processor.

4.1.1.2 Graphics Processors

Performance in contemporary graphics processing units (GPUs) has increased much more
rapidly than conventional processors, in part because of the ease with which these processors can
exploit parallelism in their main application area. Modern GPUs incorporate an array of pro-
grammable processors to support the programmable shaders found in graphics APIs. For example,
the Nvidia GForce 8800 includes an array of 128 processors each of which can execute one single-
precision floating-point operation each cycle.

The programmability and high performance and efficiency of modern GPUs has made them an
attractive target for scientific and other non-graphics applications. Programming systems such as
Brook-GPU [22] and Nvidia’s CUDA [111] have evolved to support general purpose applications
on these platforms. Emerging products such as AMD’s fusion processor are expected to integrate
a GPU with a conventional processor to support general-purpose applications.

4.1.1.3 Multi-core Microprocessors

In the early 2000s’ the confluence of limitations on per chip power dissipation and the flattening of
our ability to trade more transistors for higher ILP led to a stagnation in single-core single-thread
performance, and a switch in chip level microarchitectures to die with multiple separate processing
cores on them. This switch has occurred across the board from general purpose microprocessors to
DSPs, GPUs, routers, and game processors, and has taken on the generic names of multi-core,
manycore, or chip-level multi-processing (CMP).

The rise of multiple cores on a single die has also introduced a new factor in a die’s microarchi-
tecture: the interconnect fabric among the cores and between the cores and any external memory.
There are currently at least three different classes[86] of such die-level interconnect patterns, Figure
4.1:

28
ECS Report

70
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Cache/Memory

Cache

Core Core

. . .

. . .

Cache

Core Core

. . .

(a) Hierarchical Designs

C
O

R
E

C
O

R
E

C
O

R
E

M
E

M
. . .

Cache/Memory

(b) Pipelined Designs

C ache/

Memory

Core

Ca che/

Memory

Core

. . .

C ache/

Memory

Core

Ca che/

Memory

Core

. . .

Interconnect & Control

(c ) Array Designs

Figure 4.1: Three classes of multi-core die microarchitectures.

• Hierarchical: where cores share multi-level caches in a tree-like fashion, with one or more
interfaces to external memory at the top of the tree. Most general purpose microprocessors
fall into this category.

• Pipelined: where off-chip inputs enter one core, which then may communicate with the
“next” core, and so on in a pipelined fashion, and where the “last” core then sends processed
data off-chip. On-chip memory may be either as “stage” in its own right, associated with a
unique core, or part of a memory hierarchy as above. Many router and graphics processors
follow this microarchitecture, such as the Xelerator X10q[25], which contains 200 separate
cores, all arranged in a logically linear pipeline.

• Array: where each core has at least some local memory or cache, may or may not share
a common memory, and may communicate with other cores either with some sort of X-Y
routing or through a global crossbar. Examples of designs for 2 or 3D X-Y interconnect
include both EXECUBE[85][144] and Intel’s Teraflops Research Chip[149]; examples of
crossbar interconnect include Sun’s Niagara 2 chip[110] and IBM’s Cyclops[8]; examples of
reconfigurable tiles include RAW[146].

4.1.2 Today’s Memory Systems

Today’s general purpose computer systems incorporate one or more chip multiprocessors (CMPs)
along with external DRAM memory and peripherals. Each processor chip typically falls into the
hierarchical arrangement as discussed above, and combines a number of processors (currently rang-
ing from 2-24) along with the lower levels of the memory hierarchy. Each processor typically has
its own level-1 (L1) data and instruction caches. Some CMPs also have private L2 caches, while
others share a banked L2 cache (interleaved by cache block) across the processors on the chip.
Some CMPs, such as the Itanium-2TM, have large (24MB) on-chip shared level-3 caches. Some
manufacturers (Sun and Azul) provide some support for transactional memory functionality.

The on-chip processors and L2 cache banks are connected by an on-chip interconnection network.
In the small configurations found today, this network is typically either a bus, a crossbar, or a ring.
In the larger configurations expected in the near future, more sophisticated on-chip networks will
be required.

The main memory system is composed of conventional (DDR2) DRAM chips packaged on
small daughter cards often called variants of DIMMs (Dual Inline Memory Modules). A

29
ECS Report

71
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



small number of data bits leave the DIMM from each chip, usually 4, 8 or 9 bits. In most cases,
the data outputs of these chips connect directly to the processor chip, while in other cases they
connect to a north bridge chip that is connected to the processor via its front-side bus. In both
cases a memory controller is present either on the CPU, the north bridge, or as a separate chip,
and whose purpose is to manage the timing of accesses to the DRAM chips for both accesses and
for the refresh operations that are needed to keep their contents valid.

In today’s cache-based memory systems, the processor reads and writes in units of words, but
all transfers above the level of the L1 caches take place in units of cache lines which range from
32B to 128B. When there is a miss in the L1 cache, an entire line is transferred from L2 or from
main memory. Similarly when a dirty line is evicted from a cache, the entire line is written back.
Particularly with the larger granularity cache lines, such a line oriented memory system reduces
the efficiency of random fine-grained accesses to memory.

Pin bandwidth of modern DRAMs are about 1Gb/s using the Stub Series Terminated Logic
(SSTL) signaling standard. Modern commodity processors use interfaces ranging from 8B to 32B
wide to provide from 8 to 32GB/s of main memory bandwidth. This per pin rate is relatively low
because of the technology used on the DRAMs, and because of power consumption in the interface
circuits. In addition, typical DIMM4 may be paralleled up to 4 ways to increase the memory
capacity without expanding the pin count on the microprocessor. This increases the capacitance
on the data pins, thus making higher rate signalling more difficult.

One new technique to increase the data rate from a multi-card memory system is called Fully
Buffered DIMM (FB-DIMM), and uses a higher speed serialized point-to-point data and control
signalling protocol from the microprocessor side to an Advanced Memory Buffer (AMB) chip
on each FB-DIMM memory card. This AMB then talks to the on-card DRAM parts to convert
from their parallel data to the protocol’s serialized format. The higher speed of the protocol is
possible because each link is uni-directional and point-to-point, and multiple FB-DIMM cards are
arranged in a daisy-chain fashion with separate links going out and coming back. Additional
bandwidth is gained because this arrangement allows accesses to be pipelined both in terms of
outgoing commands and returning data.

A typical contemporary microprocessor has latencies of 1 cycle, 20 cycles, and 200 cycles to the
L1 cache, L2 cache, and external DRAM respectively. Memory systems such as FB-DIMM actually
increase such latencies substantially because of the pipelined nature of the card-to-card protocol.
These latencies make the penalty for a cache miss very high and motivate the use of latency-hiding
mechanisms.

4.1.3 Unconventional Architectures

Overcoming the memory wall has been a major emphasis of alternative architectures that have
begun to crop up, especially with the emergence of multi-core architectures that place extra pressure
on the memory system. Multi-threading has become more acceptable, with dual threads present
in many main-line microprocessors, and some chips such as Sun’s Niagara 2TMchip[110] support
even more. Cray’s MTATM[132] and XMTTM[44] processors were designed from the outset as
multi-threaded machines, with in excess of 100 threads per core supported.

Stream processors such as the IBM Cell[57] and SPI Storm-1TM are an emerging class of
architecture that has arisen to address the limits of memory latency and bandwidth. These proces-
sors have explicitly managed on-chip memories in place of (or in addition to) the conventional L2
cache. Managing the contents of these memories explicitly (vs. reactively as with a cache) enables
a number of aggressive compiler optimizations to hide latency and improve the utilization of scarce
bandwidth. Explicit management of the memory hierarchy, however, places additional burdens on

30
ECS Report

72
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



the application programmer and compiler writer.
Processing-In-Memory (PIM) chips reduce the latency of a memory access, and increase

the effective bandwidth by using more of the bits that are read from a dense, usually DRAM,
memory array at each access by placing one or more processors on the chip with the memory.
A variety of different processor architectures and interconnect patterns have been used, ranging
from arrangements of more or less conventional cores on EXECUBE[85], Cyclops[8] and Intel’s
Teraflops Research Chip[149], “memory chips” with embedded processing such as DIVA[60]
and YUKON[83], and VIRAM[88] - where multiple vector units are integrated onto a DRAM.

In addition, a new class of reconfigurable multi-core architectures are entering evaluation
where a combination of large and small grained concurrency is exploited by tiles of cores that may
be reconfigured on an algorithm by algorithm basis. These include TRIPS[123] and RAW[146].

4.1.4 Data Center/Supercomputing Systems

While no clear definition exists, supercomputing systems are commonly defined as the most
computationally powerful machines available at any time. Since the mid 1990s, all supercomputers
have been designed to be highly scalable, and thus a given system design may be scaled down or
up over a broad range. A typical supercomputer today may sell in configurations costing O($1M)
to O($100M).

4.1.4.1 Data Center Architectures

Supercomputing systems fall into two broad classes: clusters of conventional compute nodes, and
custom systems. Custom systems are machines where the individual compute nodes are designed
specifically for use in a large scientific computing system. Motivated by demanding scientific appli-
cations, these nodes typically have much higher memory bandwidth than conventional processors,
very high peak and sustained arithmetic rates, and some form of latency hiding mechanism —
often vectors as in the Earth Simulator. These custom processing nodes are connected by an in-
terconnection network that provides access to a global shared memory across the machine. Global
memory bandwidth is usually a substantial fraction of local memory bandwidth (e.g. 10%) and
global memory latency is usually only a small multiple of local memory latency (e.g. 4x).

Clusters of conventional nodes are, as the name suggests, conventional compute nodes connected
by an interconnection network to form a cluster. While most such nodes may use “mass-market”
chips, there are significant examples of specially designed chips that leverage prior processor designs
(such as the Blue Gene/L systems) Further, most such compute nodes are themselves SMPs, either
as collections of microprocessors, or increasingly multi-core processors, or both. These in fact make
up the majority of systems on the Top 500.

The individual nodes typically have separate address spaces and have cache-based memory
systems with limited DRAM bandwidth and large cache-line granularity. The nodes are connected
together by an interconnection network that can range from conventional 1G or 10G ethernet to
a cluster-specific interconnect such as Infiniband2, Myrinet3, Quadrics4, or even custom high
bandwidth interconnect such as the SeaStar[21] used in the Red Storm and derivatives in the Cray
XT line. Global bandwidth is usually a small fraction of local bandwidth and latencies are often
several microseconds (with much of the latency in software protocol overhead).

2Infiniband standard can be found at http://www.infinibandta.org/
3Myrinet standards can be found at http://www.myri.com/open-specs/
4http://www.quadrics.com

31
ECS Report

73
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Conversion Step Efficiency Delivered Dissipated Delivered Dissipated
AC In 1.00W 2.06W
Uninterruptible Power
Supply (UPS)

88% 0.88W 0.12W 1.81W 0.25W

Power Distribution
Unit (PDU)

93% 0.82W 0.06W 1.69W 0.13W

In Rack Power Supply
Unit (PSU)

79% 0.65W 0.17W 1.33W 0.35W

On Board Voltage
Regulator (VR)

75% 0.49W 0.16W 1.00W 0.33W

Target Logic 0.49W 0.49W 1.00W 1.00W

Table 4.1: Power distribution losses in a typical data center.

Another distinguishing characteristic for the interconnect is support addressing extensions that
provide the abstraction of a globally addressable main memory (as in the pGAS model). Several
interconnect protocols such as Infiniband and SeaStar provide such capabilities in the protocol, but
using them effectively requires support for large address spaces that, if not present in the native
microprocessor, in turn may require specialized network interface co-processors.

4.1.4.2 Data Center Power

Perhaps the single biggest impact of scale is on system power. Table 4.1 summarizes the different
steps in converting wall power to power at the logic for a typical data center today as projected by
an Intel study[7]. For each step there is:

• an “Efficiency” number that indicates what fraction of the power delivered at the step’s input
is passed to the output,

• a “Delivered” number that indicated how must of the power (in watts) is passed on to the
output if the power on the line above is presented as input,

• and a “Dissipated” power (again in watts) that is lost by the process.

There are two sets of the Delivered and Dissipated numbers: one where the net input power is
“1,” and one where the power delivered to the logic is “1.” The net efficiency of this whole process
is about 48%, that is for each watt taken from the power grid, only 0.48 watts are made available
to the logic, and 0.52 watts are dissipated as heat in the power conversion process.

A similar white paper by Dell[38] gives slightly better numbers for this power conversion process,
on the order of about 60%, that is for each watt taken from the power grid, 0.6 watts are made
available to the logic, and 0.4 watts are dissipated as heat in the power conversion process.

This same source also bounds the cost of the HVAC (heating, ventilating, and air conditioning)
equipment needed to remove the heat dissipated by the data center at about 31% of the total data
center power draw. This represents an energy tax of about 52% on every watt dissipated in either
the logic itself or in the power conditioning steps described above.

Since the focus on this report is on analyzing the power dissipation in a potential Exascale
data center, these numbers roll up to an estimate that for every watt dissipated by the electronics,
somewhere between 0.7 and 1.06 watts are lost to the power conditioning, and between 0.88 and 1.07
watts are lost to cooling. Thus the ratio between the power that may be dissipated in processing
logic and the wattage that must be pulled from the grid is a ratio of between 2.58 and 3.13 to 1.

32
ECS Report

74
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



As a reference point, Microsoft is reported5 to be building a data center near Chicago with an
initial power source of up to 40 MW. Using the above numbers, 40 MW would be enough for about
13 to 15 MW of computing - about 2/3 of the Exascale data center goal number.

4.1.4.2.1 Mitigation Mitigation strategies are often employed to help overcome the various
losses in the electricity delivery system. For example:

• UPS: At these power levels, many data centers choose to forgo UPS protection for the compute
nodes and only use the UPS to enable graceful shutdown of the disk subsystem (a small
fraction of the overall computer power dissipation). In the case where the UPS is used for
the entire data center, DC power is an increasingly studied option for reducing losses. The
primary source of losses within a UPS are the AC-DC rectification stage used to charge the
batteries, and then the DC-to-AC inversion stage used to pull power back off of the batteries
at the other end (which will again be rectified by the compute node power supplies). DC power
cuts out an entire layer of redundant DC-AC-DC conversion. Below 600VDC, the building
electrical codes and dielectric strengths of electrical conduits and UL standards are sufficient,
so most of the existing AC electrical infrastructure can be used without modification. Care
must be taken to control arc-flashes in the power supply connectors. In addition, the circuit
design modifications required to existing server power supplies are minimal. Using DC power,
one can achieve ¿95% efficiency for the UPS.

• PDUs: Using high-voltage (480VAC 3-phase) distribution within the data center can reduce
a layer of conversion losses from PDUs in the data center and reduce distribution losses due
to the resistivity of the copper wiring (or allow savings in electrical cable costs via smaller
diameter power conduits).

• PSUs: The Intel and Dell studies highlight the power efficiency typically derived from low-end
1U commodity server power supplies (pizza-box servers). Using one large, and well-engineered
power supply at the base of the rack and distributing DC to the components, power conversion
efficiencies exceeding 92% can be achieved. Power supplies achieve their best efficiency at 90%
load. When redundant power supplies are used, or the power supplies are designed for higher
power utilization than is drawn by the node, the power efficiency drops dramatically. In order
to stay at the upper-end of the power conversion efficiency curve one must employ circuit-
switching for redundant feeds, or N+1 redundancy (using multiple power supply sub-units)
rather than using the typical 2N redundancy used in modern commodity servers. Also, the
power supply should be tailored to the actual power consumption of the system components
rather than over-designing to support more than one system configuration.

The overall lesson for controlling power conversion losses for data centers is to consider the
data center as a whole rather than treating each component as a separate entity. The data-center
is the computer and power supply distribution chain must be engineered from end-to-end starting
with the front-door of the building. Using this engineering approach can reduce power-distribution
losses to ¡ 10% of the overall data center power budget.

4.1.4.3 Other Data Center Challenges

Regardless of the class of system, supercomputers face several unique challenges related to scale.
These include reliability, administration, packaging, cooling, system software scaling and perfor-
mance scaling. A large supercomputer may contain over 100 racks, each containing over 100

5http://www.data centerknowledge.com/archives/2007/Nov/05/microsoft plans 500m illinois data center.html

33
ECS Report

75
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



processor chips, each connected to tens of memory chips. Reliability is thus a major concern, and
component vendors targeting the much larger market of much smaller-scale machines may not be
motivated to drive component reliability to where it needs to be for reliable operation at large
scales.

Density is important in supercomputing systems, both because machine room floor may be
at a premium, and also because higher density reduces the average length of interconnect cables,
which reduces cost and increases achievable signaling rates. High density in turn creates power and
cooling challenges. Current systems can dissipate several tens of kilowatts per rack, and several
megawatts of total power.

Careful attention must be paid to all aspects of system administration and operation. System
booting, job launch, processor scheduling, error handling, file systems, networking and miscella-
neous system services must all scale to well beyond what is needed for the desktop and server
markets. Removing sources of contention and system jitter are key to effective scaling. Finally, the
applications themselves must be scaled to tens of thousands of threads today, and likely millions
of threads within the next five to ten years.

4.1.5 Departmental Systems

Today’s departmental systems fall into two main categories. There are symmetric multiproces-
sors (SMPs) that have one large, coherent main memory shared by a few 64-bit processors such
as AMD’s OpteronsTM, IBM’s Power 6TM and z series, Intel’s XeonTMand ItaniumTM, and Sun’s
UltraSparcTMT-series (also known as Niagara). The main memory is usually large, as is the ac-
companying file system. Its not uncommon to see systems with a terabyte of memory and only
a handful of CPUs. These systems are often used in mission critical applications such as on-line
transaction processing. Thus they offer their users higher availability than systems based on PC
components. Most importantly, they provide a graceful transition path to concurrent execution
for commercial applications whose software architecture goes back earlier than the mid-1990s, and
hence do not support a partitioned address space.

The second category of departmental systems is composed of clusters of PC boxes (often called
Beowulf systems), and at first glance resemble smaller versions of the supercomputers discussed
above. The main difference is that the departmental clusters generally do not include relatively
expensive components like the custom high-speed interconnects found in the supercomputers. Such
clusters also tend to run the Linux operating system, and are generally used to host a job mix
consisting of large ensembles of independent jobs that each use only a small number of CPUs.

4.1.6 Embedded Systems

Embedded systems is a term that covers a broad range of computers from ubiquitous hand held
consumer items like cellular phones to Defense reconnaissance satellites. In fact, the number of
CPUs manufactured for embedded applications dwarfs those for desktops and servers. Embedded
systems tend to be optimized for lower power consumption (AA battery lifetime is a key metric)
which in turn allows for higher packaging density. Flash memories are used to provide a modest
volume of persistent memory, and interconnection is often provided via ad hoc wireless networks.

Embedded systems usually run small, real-time operating systems. These are more sophisticated
than the micro-kernels on some supercomputers, but do not support the broad range of features
expected by desktop or server applications. Today’s embedded applications are generally written
in C. Historically, they were different than the applications seen in desktops and servers, but with
the new generation of hand-held Web interfaces (e.g. Apple’s iPhoneTM), the end user application

34
ECS Report

76
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



space may tend to become indistinguishable.

4.1.7 Summary of the State of the Art

The state of the art in computer architecture today is dominated by a 50 year reliance on the von
Neumann model where computing systems are physically and logically split between memory and
CPUs. Memory is “dumb,” with the only functionality being able to correlate an “address” with
a particular physical set of storage bits. The dominant execution model for CPUs is that of a
sequential thread, where programs are divided into lists of instructions that are logically executed
one at a time, until completion, and each operation applies to only a relatively small amount of
data. Higher performance architectures invest a great deal of complexity in trying to place more
instructions in play concurrently, without the logical model of sequential execution being violated,
especially when exceptions may occur.

Two technological developments have impacted this model of computer architecture. First is the
memory wall, where the performance of memory, in terms of access time and data bandwidth, has
not kept up with the improvement in clock rates for the CPU designs. This has led to multi-level
caches and deep memory hierarchies to try to keep most of the most relevant data for a program
close to the processing logic. This in turn has given rise to significantly increased complexity when
multiple CPUs attempt to share the same memory, and collaborate by explicitly executing separate
parts of a program in parallel.

The second technological development that has impacted architecture is the rise of power as a
first class constraint (the power wall), and the concomitant flattening of CPU clock rates. When
coupled with the memory wall, performance enhancement through increasing clock rates is no
longer viable for the mainstream market. The alternative is to utilize the still growing number of
transistors on a die by simple replication of conventional CPU cores, each still executing according
to the von Neumann model. Chips have already been produced with a 100+ cores, and there is
every expectation that the potential exists for literally thousands of cores to occupy a die. The
memory wall, however, is still with us, with a vengeance. Regardless of processor chip architectures,
more cores usually means more demand for memory access, which drives a requirement for more
memory bandwidth. Unfortunately, current technology sees a flattening of the number of off-chip
contacts available to a processor chip architect, and the rate at which these contacts can be driven
is tempered by power concerns and the technology used to make memory chips - one chosen for
density first, at low fabrication cost. High performance interfaces in such an environment are
difficult.

As Section 4.1.3 describes, there are attempts today to modify this von Neumann model by
blurring in various ways the distinction between memory “over here” and processing logic “over
there.” To date, however, the penetration into the commercially viable sector has been nearly nil.

4.2 Today’s Operating Environments

An operating environment is the environment in which users run programs. This can range
from a graphical user interface, through a command line interface, to a simple loader, run-time
scheduler, memory manager, and API through which application programs can interact with sys-
tem resources. Conventional software computing environments supporting high performance com-
puting platforms combine commercial or open source node local operating system software and
compilers with additional middle-ware developed to coordinate cooperative computing among the
myriad nodes comprising the total system (or some major partition thereof). For technical comput-
ing, local node operating systems are almost exclusively based on variants of the Unix operating

35
ECS Report

77
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



system introduced initially in the mid to late 1970s. While a number of successful commercial
Unix OS are provided by vendors, most notably IBM (AIX), Sun (Solaris), and HP (HPUX), the
dominant operating system in today’s production level high performance computing machines is
the Open Source Unix variant, Linux. In addition, a recent offering by Microsoft is providing a
Windows based HPC environment. On top of this largely Unix based node local foundation is ad-
ditional “middleware” for user access, global system administration, job management, distributed
programming, and scheduling.

In addition to these heavy-weight operating systems is a class of lightweight kernels. These
have been employed on some of the largest supercomputers including the IBM BlueGene/L system
(its own microkernel) and the Cray XT series (Compute Node Linux - a trimmed down Linux).

Further, most system actually employ nodes with a mix of operating environments, with service
or I/O nodes typically running a more complete offering to provide more complete functionality.

Finally, Catamount is a tailored HPC run-time that has run on several HPC systems, such as
Red Storm and Cray’s XT3 and XT4. Each is discussed briefly below.

4.2.1 Unix

Several key attributes of the Unix kernel make the system highly customizable and portable, espe-
cially as realized in Linux. At the core of the various Linux distributions, the modular monolithic
kernel is a contributing factor to the success of Linux in HPC. The Linux kernel is layered into a
number of distinct subsystems and the core ties these various modules together into the kernel.

The main subsystems of the Linux kernel are:

• System Call Interface (SCI): This is an architecture dependent layer that provides the
capability of translating user space function calls to kernel level calls.

• Process management: This provides ability for active threads to share CPU resources based
on a predefined scheduling algorithm. The Linux kernel implements the O(1) Scheduler
that supports symmetric multiprocessing.

• Memory Management: Hardware memory is commonly virtualised into 4KB chunks
known as pages, with the kernel providing the services to resolve these mapping. Linux
provides management structures such as the slab allocator to manage full, partially used
and empty pages.

• File system management: Linux uses the Virtual File System interface (VFS) (a
common high level abstraction supported by various file systems) to provide an access layer
between the kernel SCI and VFS-supported file systems.

• Network subsystem: The kernel utilizes the sockets layer to translate messages into the
TCP(/IP) and UDP packets in a standardized manner to manage connections and move data
between communicating endpoints.

• Device Drivers: These are key codes that help the kernel to utilize various devices, and
specify protocol description so that the kernel (SCI) can easily access devices with low over-
heads. The Linux kernel supports dynamic addition and removal of software components
(dynamically loadable kernel modules).

36
ECS Report

78
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



4.2.2 Windows NT Kernel

Windows Server 2003 has a hybrid kernel (also known as macrokernel) with several emulation
subsystems run in the user space rather than in the kernel space.

The NT kernel mode has complete access to system and hardware resources and manages
scheduling, thread prioritization, memory and hardware interaction. The kernel mode comprises
of executive services, the microkernel, kernel drivers, and the hardware abstraction layer.

• Executive: The executive service layer acts as an interface between the user mode application
calls and the core kernel services. This layer deals with I/O, object management, security and
process management, local procedural calls, etc through its own subsystems. The executive
service layer is also responsible for cache coherence, and memory management.

• MicroKernel: The microkernel sits between the executive services and the hardware ab-
straction layer. This system is responsible for multiprocessor synchronization, thread and
interrupt scheduling, exception handling and initializing device drivers during boot up.

• Kernel-mode drivers: This layer enables the operating system to access kernel-level device
drivers to interact with hardware devices.

• Hardware Abstraction Layer (HAL): The HAL provides a uniform access interface, so
that the kernel can seamlessly access the underlying hardware. The HAL includes hardware
specific directives to control the I/O interfaces, interrupt controllers and multiple processors.

4.2.3 Microkernels

A microkernel is a minimal run-time which provides little or no operating system services directly,
only the mechanisms needed to implement such services above it.

Compute Node Linux[152] (CNL) is an example of one such that has its origins in the SUSE
SLES distribution.

The microkernel for BlueGene/L[108] was designed to fit in small memory footprints, and whose
major function would be to support scalable, efficient execution of communicating parallel jobs.

Catamount[152] is an independently-developed microkernel based operating system that has
two main components: the quintessential kernel and a process control thread. The process
control thread manages physical memory and virtual addresses for a new process, and based on
requests from the process control thread the quintessential kernel sets up the virtual addressing
structures as required by the hardware. While Catamount supports virtual addressing it does not
support virtual memory. The process control thread decides the order of processes to be executed
and the kernel is responsible for flushing of caches, setting up of hardware registers and running
of the process. In essence the process control thread sets the policies and the quintessential kernel
enforces the policies. Catamount uses large (2 MB) page sizes to reduce cache misses and TLB
flushes.

• Quintessential Kernel: The Q. Kernel (QK) sits between the process control thread
(PCT) and the hardware and performs services based on requests from PCT and user level
processes. these services include network requests, interrupt handling and fault handling.
if the interrupt or fault request is initiated by the application then the QK turns over the
control to PCT to handle those requests. . The QK handles privileged requests made by
PCT such as running processes, context switching, virtual address translation and validation.

37
ECS Report

79
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



• Process Control Thread: The PCT is a special user-level process with read/write access to
the entire memory in user-space and manages all operating system resources such as process
loading, job scheduling and memory management. QKs are non communicating entities, while
the PCTs allocated to an application can communicate to start, manage and kill jobs.

• Catamount System Libraries: While QK and PCT provide the mechanisms to effect
parallel computation, Catamount libraries provide applications access to harness their mech-
anisms. Catamount system libraries comprise of Libc, libcatamount, libsysio and libportals,
Applications using these services have to be compiled along with the Catamount system
libraries.

4.2.4 Middleware

Additional system software is provided to simplify coordination of the distributed resources of the
scalable MPPs and commodity clusters most prevalent today. Tool sets such as PBS, the Maui
scheduler, and Loadleveler provide such system wide environments. Management of secondary
storage from parallel systems is provided by additional file system software such as the open source
PVFS and Lustre systems and the IBM proprietary GPFS. Although Lustre is open source, is it
supported and maintained in large part by Sun.

4.2.5 Summary of the State of the Art

The vast majority of operating systems on current the Top-500 list are Unix or its derivatives
and the majority of these are Linux in various forms. Unix provides a well understood and time
tested set of services and interfaces. Systems today are ensembles of compute subsystems with
the majority organized as distributed memory collections. The operating environments reflect
this division by providing node operating systems with supporting middleware to coordinate their
scheduling and allocation to user workloads. Therefore, as the physical system is a collection of
multiprocessor or multicore nodes integrated via one or more system interconnect networks, so the
logical system is a collection of Unix or Linux domains managing distinct sets of cores integrated
by a scheduling layer. A separate but important piece of the operating environment is the mass
storage system including the file system. Parallel file systems manage large numbers of disk drives
often with multiple controllers each servicing a number of spindles. An emerging trend in operating
environments is the use of lightweight kernels to manage some or all of the compute nodes. The
original environment on the Cray XT3 was the Catamount lightweight kernel system. The IBM
Blue Gene system has mixed mode environments with a lightweight kernel on each of its compute
nodes managed by an I/O node hosting a Linux system. The challenge for the immediate future is
to develop advanced Unix and Linux versions that can support up to hundreds of cores per shared
memory node. But over the longer term, lightweight kernel systems may prove valuable for systems
comprising millions of small cores such as the Cell architecture.

4.3 Today’s Programming Models

A programming model is comprised of a set of languages and libraries that define the program-
mer’s view of a machine. Examples of programming models for parallel machines include traditional
sequential languages combined with a message passing layer or a thread library, parallel languages
like UPC or HPF, and sequential languages combined with parallelizing compilers. A single machine
may support multiple programming models that are implemented through compiler translation and

38
ECS Report

80
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



run-time software layers. In a broad sense, each parallel programming model combines a control
model that specifies how the parallelism is created and managed, and a communication model that
allows the parallel entities to cooperate somehow by sharing data.

An execution model is distinct from the programming model and consists of the physical and
abstract objects that comprise the evolving state of the computation. It defines how the physical and
abstract objects that actually perform the computation and track its results interact. An execution
model ties together all layers of the vertical functionality stack from the application and algorithms
by means of the programming language and compiler, the run-time and operating system, and
goes down to the system wide and local micro-architecture and logic design. The execution model
conceptually binds all elements of a computing system in to a single coordinated cooperating
computing corporation. An execution model may consist of a fixed set of thread or process states,
each with its own program stack, and a set of message queues and other state information needed
to communicate between the threads. A programming model may be very similar to its underlying
execution model, although in some cases they can also be quite different. For example, a data
parallel languages like HPF provide the illusion of an unbounded set of lightweight processors that
execute each statement in lock step, while compilers for distributed memory architectures convert
this data parallel code into a smaller set of physical threads that correspond to the number of
physical processors; the threads execute independently and communicate with explicit message
passing.

The execution model determines how a program executes, whereas the programming model
determines how it is expressed.

As computing technology has evolved it has enabled ever more powerful, often increasingly
parallel, computer architectures. Innovations in execution models have included vector and SIMD,
dataflow and systolic, message passing and multi-threaded, with a diversity of variations of each.
Such execution models have differed in the form of parallelism explicitly exploited, while tak-
ing advantage of others intrinsic to the micro-architecture structures such as ILP, pipelines, and
prefetching. The programming models have similarly evolved, starting with serial languages (with
automatically parallelization) on the vector execution model, data parallel languages with SIMD
execution, and functional languages on dataflow.

The communicating sequential processes[65] (CSP) execution model (essentially a formal-
ism of message passing) has dominated much of the last two decades and drives many of the largest
systems today including the IBM Blue Gene, Cray XTn, and commodity Linux clusters. Execution
models based on threads communicating through shared variables are often used on smaller ma-
chines with cache coherent shared memory, and a hybrid model may be used on machines that are
built from as clusters of shared memory nodes, especially on the IBM Power architectures with a
relatively large number of processor cores per node. Performance experience with the hybrid model
is mixed, and in many cases programmers use message passing processes even on individual cores
of a shared memory node.

Users select programming models based on a number of factors, including familiarity, produc-
tivity, convenience, performance, compatibility with existing code, and portability across current
and future machines. Today’s Terascale codes are written predominantly in the MPI Message
Passing Interface using a traditional sequential language like Fortran, C or C++. Mixed language
applications are also quite common, and scripting languages like Python are often used in putting
together complex application workflows built from multiple programming models.

Machine architectures may enable newer and (by some criteria) better programming models,
but there is a great deal of inertia in existing models that must be overcome to move a significant
fraction of the user community. Historically, this has happened when the execution model changes
significantly due to underlying architectural changes, and the programming model of choice is either

39
ECS Report

81
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



unsupported or offers reduced performance capabilities. When vector machines were the dominant
high end architecture, they were programmed primarily with annotated sequential languages, such
as Fortran with loop annotations. When large-scale SIMD machines were popular (e.g. the CM-2
and Maspar), data parallel languages like CMFortran, *Lisp, and C* were the preferred model.
These models were quickly overtaken by message passing models as distributed memory machines
including low-cost Beowulf clusters became the architecture of choice.

In each case, there were efforts to move the previous model to an execution model that could
be supported on the new machines. Attempts to move automatic parallelism from the vector
execution model to shared memory threads was not successful in practice, in spite of significant
investment and many positive research results on the problem. Motivated by the success of vector
compiler annotations, OpenMP was designed to provide a similar programming model for the shared
memory execution model and this model is successful, although the annotations are significantly
more complex than earlier vector annotations. The HPF language effort was initiated to take a
data parallel model to message passing hardware, but performance was not considered adequate for
larger scale machines. Similarly, despite many efforts to provide shared memory programming on
a message passing execution model, this is not used in practice today. Partitioned Global Address
Space languages like UPC and Co-Array Fortran have seen some success in limited application
domains, because they give programmers control over data layout and local, but they are missing
the kind of broad adoption that MPI enjoys.

Somewhere between Petascale and Exascale computing, due in large part to the increased
exposure of on-chip parallelism, the MPI model may find its limit, as a separate process with its
own address space may be too heavyweight for individual cores. Each process requires its own
process state and message buffers, in addition to replicas of user level data structures that are
needed by multiple processes. As the number of cores per chip increases, either hybrid parallelism
or some new model is likely to take hold.

4.3.1 Automatic Parallelization

Automatic parallelization has long been the holy grail of parallel computing, allowing programmers
to take advantage of parallel hardware without modifying their programs. There are many examples
of successful automatic parallelization in the research literature, especially for programs dominated
by arrays and loops and for machines with a modest number of processors and hardware-supported
shared memory. Parallelizing compilers have been challenged by the use of languages like C that rely
heavily on pointers, since they make the necessary dependence analysis difficult to impossible. The
shift towards distributed memory machines in parallel computing further complicated the automatic
parallelization problem, since on top of parallelization, compilers needed to automatically partition
data structures across the compute node memory. Again, while progress was made on this problem
for some applications, it soon became clear that programmers needed to provide the partitioning
information to make this practical, and the user community, impatient for an immediate solution,
instead switched to message passing.

4.3.2 Data Parallel Languages

Data parallel languages in their purest form have serial semantics, which means that every execution
for a given program and input (broadly construed to include all environment information, such as
random number seeds and user input) will produce the same result. Operationally, one can see
all behavior of the data parallel code using a deterministic serial machine execution. Data parallel
languages are distinguished from conventional serial languages through their use of operations and

40
ECS Report

82
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



assignments over aggregate data types, typically arrays. The following code fragment shows some
data parallel operations arrays A and B:

A = B;
B(1:N-1) = 2*B(1:N-1) - shift(B(2:N),{-1}) - shift(B(0:N-2,{1}));
A = B;

The first statement assigns all of the elements in B to the corresponding elements at the same
indices in A. The set of assignments within the statement can be done in any order, and because
any serial or parallel order is guaranteed to give the same result, one can treat the statement
semantically as if it were serial, e.g., the elements are assigned left to right. The second statement
is more interesting, because it has side effects on array B that also appears on the right-hand-side.
Under data parallel semantics, the entire right-hand-side is evaluated to produce an array, which we
can think of as being stored in a temporary array, and that array is then assigned to the left-hand
side. This preserves the serial semantics, since the side effects happen only after the expression
evaluation is complete. This particular expression shows a relaxation operation (3-point stencil) in
which the interior of array B, indicated by B(1:N-1), is updated with after scaling all the values
by 2 and subtracting the left and right neighboring values.

There is an implicit barrier between statements, meaning that one statement cannot appear
to execute before the previous has completed, although an optimizing compiler may regroup and
reorder instructions as long as those reorderings do not introduce a change in semantic behavior. A
compiler for the above code might divide A and B into contiguous blocks, use one per processor and
allocate a “ghost region” around the blocks of B to allow for space to hold copies of neighboring
values. The code could be a Single Program Multiple Data style code with one thread per processor,
which performs a local assignment of the local elements of A to B, followed by communication with
processing that own neighboring blocks to fill in ghost values of B, followed by a local update of B
and then (without communication or synchronization) another assignment of the elements of B to
A.

Data parallel languages were quite popular on SIMD architectures like the Connection Machine
(CM-2) and Maspar, where the fine-grained parallelism was supported in hardware. Once clusters
began dominating high end computing, data parallel languages became less popular, because the
compilation problem described above was challenging in the general case. The HPF language
effort was designed to address this problem by adding “layout” specifications to arrays, so that the
compiler could more easily determine how to break up the problem, and the computation would
follow the data using an “owner computes” rule. The HPF effort had two conflicting agendas, one
being support of general computational methods, including sparse, adaptive, and unstructured,
while also providing performance that was competitive with message passing style programs. This
created significant langauge and compiler challenges, and the application community and U.S.
funding agencies soon became impatient for results. There are notable examples of successful HPF
applications, including two on the Earth Simulator System in Japan, which benefited from both
architectural support in the form of vectors processing nodes and a significant sustained compiler
effort that lasted longer after funding for HPF within the U.S. had dried up.

4.3.3 Shared Memory

The Shared Memory Model reflects a paradigm where parallel threads of computation com-
municate by reading and writing to shared variables, and there is, implicitly, a uniform cost to
accessing such shared variables. The data parallel model uses shared variables to communicate,

41
ECS Report

83
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



but the term “shared memory terminology” is used here to capture programming models with an
explicit form of parallelism, such as user-defined threads. The uniform cost model distinguished
shared memory models from the partitioned global address space models, where there is an explicit
notion of near and far memory in the programming langauge.

4.3.3.1 OpenMP

OpenMP is an API that supports parallel programming on shared memory machines. The API
is a defined by a set of compiler directives, library routines, and environment variables. These
are implemented as a set of extensions to Fortran, C, and C++, which are added as comments
to the base language to simplify maintenance of programs that work in both a pure serial mode
without OpenMP compiler support and in parallel with such support. OpenMP was developed by
an consortium of major computer hardware and software vendors with the goal of addressing the
technical computing community, and it currently runs on most shared memory parallel machines.
There are many features of OpenMP to support a variety of parallelization patterns, but the
most common is the parallel loop. The parallel loop annotations can also include mechanisms to
distinguish shared and private variables, to load balance the iterations across processors, and to
perform operations like reductions, which create dependencies across loop iterations and therefore
require special attention to avoid data races in the generated code. OpenMP offers more general
form of parallelism besides loops, in which independent tasks (threads) operate on shared variables.
OpenMP programs are typically translated to an execution layer in which threads read and write
variables that live in shared memory.

OpenMP is generally considered an easier programming model than message passing, both an-
tidotally and in user studies.[66] There is no programmer control over data layout within OpenMP,
which is key to its programming simplicity, but a limitation in scalability. There have been research
efforts to run OpenMP on a software shared memory execution layer on top of distributed memory
hardware, and efforts to expand OpenMP to directly support clusters, but in practice OpenMP is
used only on cache-coherent shared memory hardware. Many of the largest systems today are built
from shared memory nodes, and several application teams have developed hybrid versions of their
codes that combine MPI between nodes and OpenMP within nodes. To date, the performance
results for such hybrid codes have been mixed when compared to a flat message passing model with
one process per core. While the OpenMP code avoids the costs of message construction, buffering,
matching and synchronization, it often performs worse than message passing due to a combination
of false sharing, coherence traffic, contention, and system issues that arise from the difference in
scheduling and network interface moderation for threads as compared to processes. Well optimized
OpenMP can outperform MPI on shared memory, and with sophisticated compiler and runtime
techniques, it has also been demonstrated to be competitive on cluster hardware.[151] But the his-
tory of shared memory programming and message passing programming cannot be ignored: despite
an expectation that hybrid programming would become popular on machines built as a distributed
memory network of shared memory nodes, it has not.

There is speculation that OpenMP will see gains in popularity with multi-core systems, since
most multi-core architectures today support cache-coherent shared memory. The on-chip caching
should exhibit lower overheads than on multi-socket SMPs today, and the programming convenience
of OpenMP continues to make it attractive for programmers newly introduced to parallelism.
Whether the hybrid model will become popular for Exascale programs will depend primarily on
how the performance and memory scaling tradeoffs are resolved with large number of cores per
chip; the momentum in this case is in favor of a flat MPI model, which avoids the need to use two
different forms of parallelism in a single application.

42
ECS Report

84
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



4.3.3.2 Threads

Many modern operating environments support the POSIX threads (PThreads), or a similar thread-
ing interface that is specific to a given operating system. library. This library allows for a simple
thread creation mechanism as well as mutex locks, conditional signal mechanisms, and shared
memory maps. A major advantage of this model, and in particular the POSIX API, is that it is
available on a vast number of shared memory platforms and (unlike OpenMP) does not require
compiler support. A thread library includes mechanisms to create and destroy threads, as well
as locks and other synchronization mechanisms to protect accesses to shared variables. Variables
allocated in the program heap are typically available to other threads, and a common programming
idiom is to package the shared state in a single structure and pass a pointer to that state to each
thread.

There are various special cases of threading that arise in specific languages. In several cases the
language-based implementations uses a lexically scoped threads mechanism, such as cobegin/coend,
in which the lifetime of a thread is visible in the program text. The POSIX model, in contrast,
gives a the thread handle a the creation point, and that thread may be terminated any point in
the program where the handle is available. The paired mechanisms are simpler to reason about for
formally and informally, but are less expressive and require some language and compiler support
to enforce the pairing. For example, the Cilk language extends C with threads and requires a
compiler to translate the language syntax into lower level system threads, such as PThreads. As
another example of language support for threading, the Java mechanism uses its object-orientation
to support threads, whereby a class is created to contain application-specific thread state that is
derived from a standard thread class, and methods on that class allow the threads to be created
and managed.

An important distinction in thread systems is whether the threads are fairly scheduled in the
face of long-running computations within a single thread. Fair scheduling ensures that all threads
make progress independent of the number of hardware cores or hardware-supported threads that
are available, and in general fairness requires some kind of preemption to ensure that one or more
threads cannot dominate all available resources and leave other threads stalled. Fair scheduling is
important is if programs use spin locks or more subtle forms of shared memory synchronization and
the number of threads exceeds hardware resources. For example, if there are two types of worker
threads in a system, one producing work and the other sharing it, and those threads synchronized
by accessing shared queues, then consumer threads may starve producers if they continually poll
for work by reading the shared queues but are never descheduled.

Fairness and preemption comes with a cost, though, since each thread can have a significant
amount of state stored in registers, which must be explicitly saved at a preemption point, and
caches, which may be slowly saved as the preempting thread refills the cache. An alternate model
is cooperating threading, in which the programmer is informed that threads may run to completion
and need only give up control over processor resources at explicit synchronization or yield points.
The Cilk language takes advantage of this by allowing programmers to specify a larger number
of threads that are executed simply as either function calls or as separate threads depending on
resource availability. In this way, a Cilk thread is a logical thread that only translates to a more
expensive physical thread when hardware is available to hold the thread state. In this case the
previous producer-consumer programmer or programs with spin locks are not supposed to work.
Cooperating threading models have advantages in performance by avoiding preemption at points
where locality is critical, e.g., in the middle of a dense matrix operation; they also have memory
footprint advantages, since thread state may be created lazily when processors become available to
run them.

43
ECS Report

85
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



4.3.4 Message Passing

The Message Passing InterfaceindexMessage Passing Interface (MPI) is a specification of a set
of library routines for message-passing. These routines handle communication and synchronization
for parallel programming using the message-passing model. MPI is targeted for distributed memory
machines but can also be used effectively on shared memory systems. The MPI interface was derived
from a number of independent message passing interfaces that had been developed by hardware
vendors and application groups to address the growing interest on distributed memory hardware in
the early 90s. In this sense, MPI was the standardization of a popular programming model, rather
than the introduction of a new model. Its success can be attributed to this preexisting popularity for
the model, to its high performance and scalability across shared memory and distributed memory
platforms, and its wide availability, which includes highly portable open source implementations
like MPICH and OpenMPI.

MPI has mechanisms to send and receive contiguous blocks of memory, and while there are
higher level mechanism to allow the implementation to pack and unpack non-contiguous data
structures, this is typically done by programmers of higher level libraries and applications for
performance considerations. Synchronous send and receive operations can easily result in deadlock,
if two processes try to simultaneously send to each other. MPI therefore supports asynchronous
messages, which allow send operations to complete even if the remote process is unavailable to
receive, and asynchronous receive operations which can available buffer copying by having the user
level target data structure allocated before the message arrives.

An important feature of MPI besides its point-to-point messages are collective communication
operations which allow a collection of processes to perform a single operation such as a broadcast,
reduction, or all-to-all communication operation. These operations can be built on top of send
and received, but can also use optimized execution models or architectures, such as a special
network. Collectives in MPI need not be globally performed across all processors, but sub-domains
can be identified using the notion of a communicator which is defined over a subset of physical
processes. This can be used to subdivide a single computation, e.g., perform reductions across
rows of a matrix, and to compose together programs that were written independently. The latter
is especially important with the growing interest on multi-physics simulations, in which separate
models, such as an ocean and wind dynamics model in a climate simulation, are combined to model
complex physical phenomenon.

MPI-2 is a second version of the MPI standard, which adds support for support for one-
sided communication, dynamic processes creation, intercommunicator collective operations, and
expanded IO functionality (the MPI-IO portion of the interface). While many of the MPI-2 is
supported in most implementations, in particular MPI-IO, support for, and optimization of, one-
sided communication has been slower. As noted above, the ubiquity of MPI relies on open source
implementations, and interconnect vendors may start with these open source version and optimize
certain features of the implementation.

MPICH is an implementation of the MPI-1 specification, while MPICH2 supports the ex-
panded MPI-2 interface. MPICH is one of the oldest and most widely used MPI implementations,
and benefits from continued, active development as well as wide scale usage in research and produc-
tion environments. OpenMPI is a relatively new implementation of the MPI-2 specification. It is
an open source project maintained by academic, research, and industry partners. The core devel-
opment team was composed of members of many different MPI implementations, and it represents
a consolidation of their experience and expertise. The focus for OpenMPI has been on increased
reliability. Specific features include support for dynamic process spawning, network and process
fault tolerance, and thread safety.

44
ECS Report

86
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



4.3.5 PGAS Languages

A Partitioned Global Address Space (PGAS) combines some of the features of message passing
and shared memory threads. Like a shared memory model, there are shared variables including
arrays and pointer-based structures that live in a common address space, and are accessible to all
processes. But like message passing, there the address space is logically “partitioned” so that a
particular section of memory is viewed as “closer” to one or more processes. In this way the PGAS
languages provide the necessary locality information to map data structure efficiently and scalably
onto both shared and distributed memory hardware. The partitioning provides different execution
and performance-related characteristics, namely fast access through conventional pointers or array
indexes to nearby memory and slower access through global pointers and arrays to data that is far
away. Since an individual process may directly read and write memory that is near another process,
the global address space model directly supports one-sided communication: no participation from
a remote process is required for communication. Because PGAS languages have characteristics of
both shared memory threads and (separate memory) processes, some PGAS languages use the term
“thread” while others use “process.” The model is distinguishable from shared memory threads
such as POSIX or OpenMP, because the logical partitioning of memory gives programmers control
over data layout. Arrays may be distributed at creation time to match the access patterns that
will arise later and more complex pointer-based structures may be constructed by allocating parts
in each of the memory partitions and linking them together with pointers.

The PGAS model is realized in three decade-old languages, each presented as an extension to
a familiar base language: Unified Parallel C (UPC)[31] for C; Co-Array Fortran (CAF)[112]
for Fortran, and Titanium[160] for Java. The three PGAS languages make references to shared
memory explicit in the type system, which means that a pointer or reference to shared memory
has a type that is distinct from references to local memory. These mechanisms differ across the
languages in subtle ways, but in all three cases the ability to statically separate local and global
references has proven important in performance tuning. On machines lacking hardware support
for global memory, a global pointer encodes a node identifier along with a memory address, and
when the pointer is dereferenced, the runtime must deconstruct this pointer representation and test
whether the node is the local one. This overhead is significant for local references, and is avoided
in all three languages by having expression that are statically known to be local, which allows the
compiler to generate code that uses a simpler (address-only) representation and avoids the test on
dereference.

These three PGAS languages used a static number of processes fixed at job start time, with
identifiers for each process. This Single Program Multiple Data (SPMD) model results in a one-to-
one mapping between processes and memory partitions and allows for very simple runtime support,
since the runtime has only a fixed number of processes to manage and these typically correspond to
the underlying hardware processors. The languages run on shared memory hardware, distributed
memory clusters, and hybrid architectures. On shared memory systems and nodes within a hybrid
system, they typically use a thread model such as Pthreads for the underlying execution model.

The distributed array support in all three languages is fairly rigid, a reaction to the implemen-
tation challenges that plagued the High Performance Fortran (HPF) effort. In UPC distributed
arrays may be blocked, but there is only a single blocking factor that must be a compile-time
constant; in CAF the blocking factors appear in separate “co-dimensions;” Titanium does not have
built-in support for distributed arrays, but they are programmed in libraries and applications using
global pointers and a built-in all-to-all operation for exchanging pointers. There is an ongoing
tension in this area of language design between the generality of distributed array support and the
desire to avoid significant runtime overhead.

45
ECS Report

87
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Each of the languages is also influenced by the philosophy of their base serial language. Co-
Array Fortran support is focused on distributed arrays, while UPC and Titanium have extensive
support for pointer-based structures, although Titanium also breaks from Java by adding extensive
support for multidimensional arrays. UPC allows programmers to deconstruct global pointers and
to perform pointer arithmetic such a incrementing pointers and dereferencing the results. Titanium
programs retain the strong typing features of Java and adds language and compiler analysis to prove
deadlock freedom on global synchronization mechanisms.

4.3.6 The HPCS Languages

As part of the Phase II of the DARPA HPCS Project, three vendors—Cray, IBM, and SUN—were
commissioned to develop new languages that would optimize software development time as well as
performance on each vendor’s HPCS hardware being developed over the same time period. Each of
the languages — Cray’s Chapel6,/indexChapel IBM’s X107, and Sun’s Fortress8—provides a global
view of data (similar to the PGAS languages), together with a more dynamic model of processes
and sophisticated synchronization mechanisms.

The original intent of these languages was to exploit the advanced hardware architectures being
developed by the corresponding vendors, and in turn to be particularly well supported by these
architectures. However, in order for these languages to be adopted by a broad sector of the com-
munity, they will also have to perform reasonably well on other parallel architectures, including
the commodity clusters on which much parallel software development takes place. (And, in turn,
the advanced architectures will have to run “legacy” MPI programs well in order to facilitate the
migration of existing applications.)

The goal of these language efforts was to improve the programmability of HPC systems. This
included both lowering the barrier to entry for new parallel programmers and making experienced
programmers more productive. The HPCS languages all provide high level language support for
abstraction and modularity using object-orientation and other modern language features, augment-
ing these with novel ideas for creating massive amounts of parallelism. The HPCS languages share
some characteristics with each other and with the PGAS languages: the use of global name space,
explicit representation of localities, and syntactic distinction of local and global data access. They
all differ from the previously-described PGAS languages because they allow for dynamic parallelism
and (in some cases) data parallelism, rather than a static number of threads. These languages re-
quire sophisticated compiler and runtime techniques, and in each case the vendors have developed
at least prototype implementations that demonstrate the feasibility of implementation, although
not necessarily at scale. Work on the implementations and analysis of productivity and performance
benefits of the languages is ongoing.

Chapel is a parallel programming language developed by Cray. It supports data parallel
programming and builds on some of the successful results from the ZPL languages. Chapel is
not an extension of an existing serial languages, but addresses some of the limitations of the
serial languages in addition providing parallelism support. A goal of Chapel is to provide better
abstractions for separating algorithmic logic and data structure implementation and to provide
programmers with a global view of the computation, rather than programming on a per-thread
basis. Chapel uses data parallelism: data is distributed over memory partitions known as locales,
and execution location can be controlled. Chapel is designed with features of the Cray’s Cascade
system in mind, including hardware support for a global address space, but is currently implemented

6http://chapel.cs.washington.edu/
7http://domino.research.ibm.com/comm/research projects.nsf/pages/x10.index.html
8http://projectfortress.sun.com/Projects/Community/

46
ECS Report

88
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



on top of the GASNet communication layer and using a source-to-source translation system which
make it portable across many existing machines.

Fortress is a parallel programming language designed at Sun. Like Chapel, Fortress uses a
new syntax and semantics, rather than building on an existing serial language. Fortress uses a
shared global address space but generalizes is though a hierarchical notion of partitioning, which
could prove useful on machines with hierarchical parallelism and for composing separately-written
modules. In an effort to expose maximum parallelism in applications, Fortress loops and argument
evaluations in function calls are both parallel by default. The focus is on extensibility, and there
is a novel type system for building libraries and allowing them to be analyzed and optimized by
the compiler. The language takes advantage of the support for modularity and extensibility by
implementing a small core langauge directly and then supporting a large set of standard libraries,
in the same spirit as the Java libraries. Including the libraries, Fortress also provide support
for matrices and vectors, with static checking for properties, such as physical units or boundary
conditions, included.

X10 is an extension of the Java programming language. Java was chosen as a base language
for its type safety features, object-oriented style, and familiarity among developers. X10 supports
distributed object-oriented programming. The target architecture for X10 are low and high end
systems comprised of multi-core SMP nodes. With X10, the memory is logically partitioned into
locales and data is explicitly distributed by programmers to those locales. Computations can be
explicitly assigned to particular locales which is implemented as remote function invocation. The
first implementation was done for shared memory with shared task queues, but a implementation
on top of the LAPI communication layer is also under development.

4.4 Today’s Microprocessors

In this section we review briefly the state of current microprocessor chips which form the basis of all
classes of computing from embedded to supercomputers. In most cases, historical data is combined
with data from the ITRS Roadmap[13] to show trends, and more importantly, where trends break.
The Roadmap data goes back to 2004 to overlap with the historical data and give an indication of
how accurate the ITRS projections have been in the past.

4.4.1 Basic Technology Parameters

Perhaps the single parameter that most drives the semiconductor industry in general and the
microprocessor vendors in particular, is the continued decline in the feature size of the transistors
that make up the logic and storage circuits of a microprocessor. Figure 4.2 diagrams this parameter
over time, with historical data from real microprocessors (labeled at the time of their first release)
combined with projections from the ITRS roadmap for transistors to be used in logic circuits. As
the trend line shows, the leading edge devices have been improving by a factor of about 0.88 per
year. Today, leading edge production is being done at the 65 nm node, with experimental chips
being produced at around 40 nm feature size.

A related characteristic is Figure 4.3, the density of transistors on a CMOS die over time,
measured in millions of transistors per sq. mm. There are two distinct trend lines in this figure:
that for the ITRS projections at a CAGR of 1.28 per year, and the historical trend of a higher
1.5 per year. A possible reason for this discrepancy is the huge growth in transistor-dense cache
structures during the time of the single core microprocessors. This is buttressed by Figure 4.4
which shows a historical CAGR of 1.82 - significantly in excess of the growth in transistor density.
How this will continue into the era of multi-core designs is unclear.

47
ECS Report

89
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



10

100

1,000

10,000

1960 1970 1980 1990 2000 2010 2020

F
e
a
tu

re
 S

iz
e

Historical ITRS Predictions ITRS:  CAGR = 0.88

Figure 4.2: Microprocessor feature size.

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

T
ra

n
s

is
to

r 
D

e
n

s
it

y
: 

M
il
li
o

n
/c

m
2

Historical Single Core Chip Historical Multi-Core Chip

ITRS Predictions ITRS: CAGR=1.28

Historical: CAGR=1.5

Figure 4.3: Microprocessor transistor density.

48
ECS Report

90
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1985 1990 1995 2000 2005 2010

C
a
c
h

e
 S

iz
e
 (

 K
B

)

Historical Single Core Chip Historical: CAGR=1.82

Figure 4.4: Microprocessor cache capacity.

4.4.2 Overall Chip Parameters

Two top level related chip-level parameters are the actual die size used for the chip (Figure 4.5)
and the actual number of transistors on that die (Figure 4.6). The former exhibited a continual rise
in size until 1995, after which the maximum die size varies, and is projected to continue to vary, in
the 200-33 sq. mm range. The latter is pretty much a direct product of the die size of Figure 4.5
and the density of Figure 4.3, and an interpretation is similar to that for those figures.

Of more direct importance to this study is the voltage level used for the microprocessors (Figure
4.7). The Vdd curve shows a constant voltage at 5 volts until about 1993, when constant field
scaling was employed and Vdd could be decreased very rapidly. As will be discussed later, this
decrease balanced several other factors that affected the power of the die, and allowed faster chips
to be deployed. After about 2000, however, this rapid decrease slowed, mainly because of minimums
in the threshold voltages of CMOS transistors. Looking into the future, Vdd is projected to flatten
even more, with a relatively tight range between what is used for high performance parts and that
used for low power embedded parts.

Likewise, the decrease in transistor feature size led directly to faster transistors, which in turn
led to increasing clock rates, as pictured in Figure 4.8. Up through the early 2000s’ the historical
clock rate increased at a CAGR of 1.3X per year. After 2004, the actual parts produced stagnated
at around 3 GHz, below even a decreased ITRS projection.

It is important to note that these ITRS clock projections were computed as a maximum number
assuming that the logic stays fixed at a 12 gate per pipeline stage delay, and the clock is raised up
to a rate commensurate with the intrinsic improvement in the individual transistor delay. As will
be discussed later, for power reasons, the actually implemented clock rates are now considerably
less than this curve.

Finally, Figures 4.9 and 4.10 give both the power dissipated per die and the power density - the
power dissipated per unit area. Both numbers went through a rapid increase in the 1990s, and then
hit a limit. The maximum power that could be cooled at reasonable expense for a die destined for
a high volume market was in the order of 100+ watts. Once this was reached, something had to
be done to reduce the power, and that was done by reducing the clock - regardless of how fast the
individual devices could go.

49
ECS Report

91
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



10

100

1000

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

D
ie

 S
iz

e
 (

m
m

^
2
)

Historical Single Core Chip Historical Multi-Core Chip

ITRS Projections Historical: CAGR=1.16

Figure 4.5: Microprocessor die size.

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

T
ra

n
s
is

to
r 

C
o

u
n

t 
(M

il
li

o
n

s
)

Historical Single Core Historical Multi-Core ITRS Projections

ITRS: CAGR=1.28 Historical: CAGR=1.42

Figure 4.6: Microprocessor transistor count.

50
ECS Report

92
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0

1

2

3

4

5

6

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

V
d

d

Historical Single Core Historical Multi-Core ITRS Hi Perf ITRS Low Power

Figure 4.7: Microprocessor Vdd.

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

C
lo

c
k
 (

M
H

z
)

Historical Single Core Historical Multi-Core

ITRS Max Clock Rate (12 invertors) Historical: CAGR=1.3

Figure 4.8: Microprocessor clock.

51
ECS Report

93
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1

10

100

1000

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

W
a
tt

s
 p

e
r 

D
ie

Historical Single Core Historical Multi-Core ITRS Hi Perf

Figure 4.9: Microprocessor chip power.

0.1

1

10

100

1000

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

W
a
tt

s
 p

e
r 

S
q

u
a
re

 c
m

Historical Single Core Historical Multi-Core ITRS Hi Perf

Figure 4.10: Microprocessor chip power density.

52
ECS Report

94
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1/1/93 1/1/95 1/1/97 1/1/99 1/1/01 1/1/03 1/1/05 1/1/07 1/1/09

G
F

lo
p

s

Rmax Rpeak Rmax Leading Edge Rpeak Leading Edge

Figure 4.11: Performance metrics for the Top 10 supercomputers over time.

4.4.3 Summary of the State of the Art

Microprocessor design has ridden Moore’s Law successfully for decades. However, the emergence of
the power wall has fundamentally changed not only the microarchitecture of microprocessors (with
the rise of multi-core as discussed in Section 4.1.1), but also their actual computational rates (as
evidenced by the flattening of clock rates). These trends will continue.

4.5 Today’s Top 500 Supercomputers

The Top 5009 is a list of the top 500 supercomputers (“data-center sized”) in the world as measured
by their performance against the Linpack dense linear algebra benchmark, with a metric of floating
point operations per second (flops). It has been updated every 6 months (June and November)
since 1993, and as such can give some insight into the characteristics and trends of one class of
both data center scale hardware systems and high end floating point intensive applications.

4.5.1 Aggregate Performance

Figure 4.11 gives two performance metrics for the top 10 from each list since 1993: Rpeak is the
theoretical peak performance of the machine in gigaflops, and Rmax is the best measure floating
point count when running the Linpack benchmark. The top 10 were chosen for study, rather
than all 500, because they tend to represent the best of the different architectural tracks without
introducing a lot of duplication based on replication size alone. Even so, as can be seen, the spread
in performance is uniformly about an order of magnitude.

9http://www.top500.org/

53
ECS Report

95
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1/1/93 1/1/95 1/1/97 1/1/99 1/1/01 1/1/03 1/1/05 1/1/07

L
in

p
a
c
k
 E

ff
ic

ie
n

c
y

Top 10 Top System

Figure 4.12: Efficiency for the Top 10 supercomputers while running Linpack.

As can be seen, the CAGR for Rpeak is about 1.89 and for Rmax it is 1.97. This translates into
about a 10X growth every 41-43 months, or 1000X in between 10 and 11 years. If 2010 is nominally
the year of the first sustained petaflops Rpeak, then if these rates were sustainable, it will be 2020
for the first exaflops machine.

4.5.2 Efficiency

We define efficiency as the ratio of the number of useful operations obtained from a computing
system per second to the peak number of operations per second that is possible. Figure 4.12 graphs
this metric as the ratio of Rmax to Rpeak, with the top system in each list indicated as a square
marker. The major observations from this chart are that:

• the range has historically been between 40 and 90

• there has been a tightening of the lower end over the last 5 years,

• the efficiency of the top performing system has not always been the highest, but has been in
a tighter range from 70 to 90

4.5.3 Performance Components

The performance of these machines can be expressed as the product of three terms:

• Parallelism: the number of separate “processor” nodes in the system, each nominally capable
of executing a separate thread of execution (none of the machines on the Top 500 are to date
multi-threaded).

54
ECS Report

96
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1/1/93 1/1/95 1/1/97 1/1/99 1/1/01 1/1/03 1/1/05 1/1/07 1/1/09

P
ro

c
e
s
s
o

r 
P

a
ra

ll
e
li

s
m

Top 10 Top System

Figure 4.13: Processor parallelism in the Top 10 supercomputers.

• Clock: the rate at which operations can be performed in any single processor.

• Thread Level Concurrency (TLC): this is equivalent to the number of separate operations
of interest (floating point for these Linpack-based kernels) that can be executed per cycle.

We note that if we look at the activities in each machine cycle, then the total number of
processors times the maximum TLC gives some sense to the “overall concurrency” in a system,
that is the total number of separate hardware units capable of parallel operation.

Each of these topics is discussed separately below. However, the clear take away from them is
that since 1993, the performance gains have been driven primarily by brute force parallelism.

4.5.3.1 Processor Parallelism

Parallelism is the number of distinct threads that makes up the execution of a program. None of
the top systems to date have been multi-threaded, so each processor as reported in the Top 500 list
corresponds to a single thread of execution, or in modern terms a “single core.” Figure 4.13 then
graphs this number in each of the top 10 systems over the entire time frame, with the top system
highlighted.

The key observation is that the top system tended to lead the way in terms of processor par-
allelism, with the period of 1993 to 1996 dominated by systems in the 100 to 1000 region, 1996
through 2003 in the 10,000 range, and 2004 to now in the 100,000 range.

55
ECS Report

97
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0.01

0.10

1.00

10.00

1/1/93 1/1/95 1/1/97 1/1/99 1/1/01 1/1/03 1/1/05 1/1/07 1/1/09

C
lo

c
k
 (

G
H

z
)

Top 10 Top System

Figure 4.14: Clock rate in the Top 10 supercomputers.

4.5.3.2 Clock

The clock is the rate at which operations can be performed in any single processor. Figure 4.14
graphs this for the top 10 systems, with the top system highlighted as before. Here the growth
rates are much different that for parallelism. While the highest clock rates for Top 10 systems have
in general been in line with the best of then-leading edge technology, the clock rate growth for the
top system has been extremely modest, with a range of from 500 to 700 MHz for well over a decade.

4.5.3.3 Thread Level Concurrency

Thread Level Concurrency (TLC) is an attempt to measure the number of separate operations
of interest that can be executed per cycle. For the Top 500 to date the operation of interest has been
floating point operations (based on the Linpack-based kernels). It is computed as the performance
metric (Rmax or Rpeak) divided by the product of the number of processors and the clock rate as
given in the lists.

TLC is meant to be similar to the Instruction Level Parallelism (ILP) term used in com-
puter architecture to measure the number of instructions from a single thread that can either be
issued per cycle within a microprocessor core (akin to a “peak” measurement), or the number of
instructions that are actually completed and retired per second (akin to the sustained or “max”
numbers of the current discussion). Figure 4.15 graphs both the peak and the max for the top 10
systems, with the top system highlighted as before.

As can be seen, these numbers reflect the microarchitecture of underlying processors. Those
systems with peak numbers on the 16 to 32 range have for the most part been vector machines.
Virtually all of the rest have been 4 or less, both in max and peak, and correspond to more or less

56
ECS Report

98
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0.1

1.0

10.0

100.0

1/1/93 1/1/95 1/1/97 1/1/99 1/1/01 1/1/03 1/1/05 1/1/07 1/1/09

T
h

re
a
d

 L
e
v
e
l 

C
o

n
c
u

rr
e
n

c
y

Rmax Rpeak Rmax Top System Rpeak Top System

Figure 4.15: Thread level concurrency in the Top 10 supercomputers.

conventional microprocessor designs with just a very few floating point units, each often counted
as being capable of executing up to two operations per cycle (a fused multiply-add).

With the exception of the Earth Simulator, virtually all of the top systems over the last decade
have been these relatively low TLC designs.

4.5.3.4 Total Concurrency

Total concurrency is the total number of separate operations of interest that can be computed
in a system at each clock cycle. For the Top 500 these operations are floating point, and such a
measure thus reflects (within a factor of 2 to account for fused multiply-add) the total number of
distinct hardware units capable of computing those operations.

For our Top 10 list, this metric can be computed as the number of processors times the peak
TLC. Figure 4.16 graphs these numbers, with the top system highlighted as before. Unlike just
the processor parallelism of Section 4.5.3.1 (which is very stair-stepped), and the clock of Section
4.5.3.2 and the TLC of Section 4.5.3.3 (which have at best very irregular trends), the Top 1 system
tends to ride at the very top of the curve, and to advance in a monotonic fashion. To see this more
clearly, a trend line is included that touches the transitions of the top system almost perfectly. The
CAGR for this line is about 1.65, meaning that a 10X increase in concurrency is achieved every
4.5 years, and a 1000X in 13.7 years. We note that this CAGR is equivalent to about 2.17X every
18 months, which is somewhat above Moore’s Law, meaning that the rate in increase in separate
computational units is increasing faster than the number that can be placed on a die, implying
that relatively more chips are being added to the peak systems of each succeeding generation.

57
ECS Report

99
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1/1/93 1/1/95 1/1/97 1/1/99 1/1/01 1/1/03 1/1/05 1/1/07 1/1/09

T
o

ta
l 

C
o

n
c
u

rr
e
c
n

c
y

Top 10 Top System Top 1 Trend

Figure 4.16: Total hardware concurrency in the Top 10 supercomputers.

1

10

100

1000

10000

1 10 100 1000 10000

Rpeak(TF)

S
to

ra
g

e
 (

T
B

)

1 Byte/Flops 0.5
Byte/Flops

0.3
Byte/Flops

0.1
Byte/Flops

0.01 Byte/Flops

0.001 Byte/Flops

Figure 4.17: Memory capacity in the Top 10 supercomputers.

58
ECS Report

100
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



4.5.4 Main Memory Capacity

Another important aspect of such machines that has a direct affect on the actual problems that
can be placed on them is the amount of directly addressable memory that is available to hold the
data. Figure 4.17 plots main memory capacity versus Rpeak for a set of the most recent top 10
machines. Also included are lines of “bytes per flops.”

As can be seen, virtually all the recent machines are clustered in the 0.1 to 0.5 bytes per flops
range. If these trends continue, we would thus expect that the near term Petascale systems may
have main memory capacities in the 100-500TB range.

When we look at future machines, two points may be worth considering. First, most of the
current Top 10 machine architectures are clusters that employ message passing. Thus there may
be some extra memory consumed in duplicate programs, and in data space for data exchange (i.e.
“ghost node” data) that might not be present in a shared address space machine. Second, the
x-axis in Figure 4.17 is Rpeak, not Rmax. The latter reflects at least an executing program, and not
just a simple“100% busy FPU” calculation. With real efficiencies in the 70-90%, the storage per
“useful” flop is actually somewhat higher than shown.

59
ECS Report

101
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



60
ECS Report

102
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

mr22
Text Box
This page intentionally left blank.



Chapter 5

Exascale Application Characteristics

This chapter attempts to develop a characterization of a class of applications that are liable to
be significant to Exascale systems. Because of our long history of difficulties inherent in porting
such applications to the largest computing systems, and because the middle departmental class
of Exascale systems is still at the scale as today’s largest, the bulk of the discussion will be on
applications relevant to data center class systems.

At these scales, the overall performance of a system is a complex function of many parameters
of the system’s design, such as logic clock speeds, latencies to various memory structures, and
bandwidths. Our discussion will attempt to analyze effects on performance due to changes in one
or multiple parameters.

Section 5.1 first defines a graphical representation that will be used for exploring these effects.
Section 5.2 describes the concepts of balance and the von Neumann bottleneck in terms of applica-
tions and performance. Section 5.3 then describes a typical application of significance today, and
how a machine that is “balanced” in its design parameters might behave as those parameters are
changed. Section 5.4 briefly discusses how different classes of applications may be composed of
more basic functionality. Section 5.5 then performs an analysis of several strategic applications of
today that are particularly sensitive to memory system parameters.

Section 5.6 then focuses on understanding what it means to “scale performance” of applications
by 1000X. Section 5.7 then looks at several applications and how they in fact scale to higher levels
of performance.

Section 5.8 then summaries what this all means to a potential Exascale program.

5.1 Kiviat Diagrams

The performance of real applications on real computers is a complex mapping between multiple
interacting design parameters. The approach used here to describe such interactions is through use
of Kiviat diagrams, or “radar plots.” In such diagrams a series of radial axes emanate from the
center, and a series of labeled concentric polygonal grids intersect these axes. Each axis represents
a performance attribute of the machine that might be individually improved, such as peak flops,
cache bandwidth, main memory bandwidth, network latency etc. Each polygon then represents
some degree of constant performance improvement (usually interpreted here as a ”speedup”) of the
application relative to some norm, with ‘1” (the degenerate polygon at the center) representing a
baseline performance of the machine with no modifications. The units of the axis are normalized
improvement.

A dark lined polygon drawn on this diagram then represents the effects on application per-
61

ECS Report

103
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



formance resulting from improving the design parameters associated with each axis by some fixed
amount, such as 2X. Thus by moving from axis to axis, and seeing where this dark line lies in
relation to the labeled grid polygons, one can tell the relative effect of each component taken in
isolation. Vertices of this dark polygon that are further out from the origin than other vertices thus
correspond to attributes where the relative change has a larger effect on overall performance.

In many cases, some axes are labeled for combinations of parameters. In such cases, the resultant
measurement is performance when all those parameters are simultaneously improved by the same
amount.

5.2 Balance and the von Neumann Bottleneck

The term “balanced design” refers to a design where some set of resources, which individually “cost”
about the same, are used at about the same levels of efficiency, so that adding more of one resource
without adding the same amount of the others adds very little to overall system performance.
In terms of computing, such balancing acts typically revolve around the computational versus
memory access resources. The von Neumann bottleneck, i.e. limited data transfer rate between the
processor and memory compared to the amount of memory, has been a performance limiter since
the inception of the digital computer. From Wikipedia: the term “von Neumann bottleneck” was
coined by John Backus in his 1977 ACM Turing award lecture. According to Backus:

Surely there must be a less primitive way of making big changes in the store than by
pushing vast numbers of words back and forth through the von Neumann bottleneck.
Not only is this tube a literal bottleneck for the data traffic of a problem, but, more
importantly, it is an intellectual bottleneck that has kept us tied to word-at-a-time
thinking instead of encouraging us to think in terms of the larger conceptual units of
the task at hand. Thus programming is basically planning and detailing the enormous
traffic of words through the von Neumann bottleneck, and much of that traffic concerns
not significant data itself, but where to find it.

This bottleneck is exacerbated by modern architectural trends, and is particularly irksome in
scientific computing that consists primarily in evaluating mathematical expressions exemplified
by a simple example: A = B + C. To carry out this calculation, the computer must fetch the
arguments B and C into the processor from wherever they reside in the memory, then carry out
the mathematical operation, then store the result A back into memory; unfortunately the fetching
and storing steps can take several of orders of magnitude longer than the mathematical operation
(+) on today’s processors.

This imbalance is growing as an indirect result of Moore’s Law, which states that the density
of transistors on a chip doubles every 18 months or so. The resulting smaller logic and shorter
signaling distances has primarily been used to enable ever higher processor clock frequencies, with
resulting faster processors for carrying out mathematical operations, while the absolute distance
to memory off-chip remains about the same, and thus the relative time to access this data (time
measured in processor clock cycles per access) becomes greater with every turn of Moore’s Law.
This phenomenon has been termed “red shift” because, analogous to our expanding universe,
computers seem to recede in relative distance to their own local memory and storage, and each
other, with every turn of Moore’s Law. Another implication of red shift is that modern computers
spend most of their time moving data, rather than performing mathematical operations, when
running today’s memory intensive applications. We also observe that more and more applications

62
ECS Report

104
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1.1

1.12

1.14

registers and stateless

logic

on-chip cache (L1)

off-chip cache (L2)

main memory

Figure 5.1: Predicted speedup of WRF “Large”.

become memory-bound in the same sense (i.e. they spend the greatest percentage of their time
moving data).

As a historical context: the Cray XMP[157], the world’s fastest supercomputer in 1983-1985,
was a “balanced machine” in that it could perform 2 fetches and 1 store from main memory, as
well as up to 2 floating-point mathematical operation, per cycle. Thus operations such as vector
inner products could run at the maximum memory rate, and yet still utilize 100% of the floating
point units capabilities.

In contrast, today’s fastest supercomputer, the IBM BG/L[48], can accomplish 4 floating-point
mathematical operations in 1 (much shorter) cycle yet requires around 100 such cycles to fetch just
1 argument from memory, at a rate of somewhere between 0.5 and 0.8 bytes per cycle if the data
must come from local memory. This explains why the XMP would spend about 50% of its time
moving data on a memory intensive code, but BG/L may spend 99% of its time moving data when
executing the same code.

5.3 A Typical Application

Let us consider a “typical” scientific computation of today. As depicted in Figure 5.1, Datastar,
SDSC’s IBM Power4-based supercomputer, is approximately a “balanced” machine for the WRF
(Weather Research and Forecasting) benchmark when run on 256 CPUs with various system
parameters are doubled relative to IBM Power4 on a well-known input (the HPCMO “Large” test
case). This balance comes from the observation that the predicted speedup up is about the same
factor (to one decimal place of precision) if any one of the following occur:

1. the arithmetic logic and registers are clocked faster, by a factor of 2.

2. the latency to the on-chip L1 cache is halved without improving anything else,

3. the latency to the off-chip L2 cache is halved, again exclusive of other improvements,

4. the latency to main memory halved.

As can be seen by the dark polygon of Figure 5.1, the relative performance improvement for
any one of these individual improvements is within a percent or two of only 14%. The reason for

63
ECS Report

105
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



% "easy" flops

19%

% other ops

8%

%L1 flops & 

memops

30%

%L2 flops and 

memops

12%

%MM flops and 

memops

30%

% barrier

0%

% message

1%

Figure 5.2: Time breakdown of WRF by operation category.

this balance is clear from consulting Figure 5.2 below which shows the time fraction spent by WRF
in executing operations in different categories on DataStar, defined as follows:

• “Easy” flops that reuse data in registers (there is no associated memory fetch to get in the
way of their completion).

• “Other ops” include address arithmetic, branch compares and etc.

• “L1 flops and memops” (memory operations) are either fetches from L1, or flops that cannot
be issued until such a fetch completes.

• “L2 flops and memops” are either fetches from L2, or flops that cannot be issued until such
a fetch completes.

• “MM flops and memops” are either fetches from main memory, or flops that cannot be issued
until such a fetch completes.

• “Barrier MPI” are MPI global barriers for synchronization (minuscule contribution for WRF).

• “Message MPI” are MPI messages involving data exchange.

Note that the “easy” + “other” pie slice is approximately the same size as the L1 and MM slices
while L2 is slightly smaller. An almost exactly balanced machine for this problem would result if
DataStar’s L2 latency were a little longer (approximately 50 cycle) and then the L2 slice would
be about the same size as the others. Also note that WRF is not spending a high percentage of
its time doing MPI. In general, we would not consider a machine or application that is spending a
large fraction of its time doing communications, or one that would benefit as much from improving
communications as from improving the processor and memory, as “balanced” because we think of
communications as being pure overhead (that is, something to be minimized). And usually, for

64
ECS Report

106
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Multi-Scale, Multi-Model

Optimization

Implicit Solvers

Adaptive Mesh Refinement

Data analysis

Linear and nonlinear solvers

Graph algorithms

Agent-based modeling

High-precision arithmetic

High-dim. parameter spaces

Data assimilation

B
1.

C
lim

at
e

B
2.

E
n
er

g
y

B
3.

B
io

lo
g
y

B
4.

A
st

ro
p
h
ys

ic
s

B
6.

C
lim

at
e

S
o
ci

o
E
co

n
o
m

ic
s

B
10

. I
n
d
u
st

ri
al

P
ro

ce
ss

es
&

M
an

u
fa

ct
u
ri
n
g

M
in

im
a
l

E
x
te

n
s
iv

e

Legend

M
in

im
a
l

E
x
te

n
s
iv

e

Legend

Figure 5.3: Application functionalities.

a parallel application such as WRF, if communications time is the same or greater than compute
time in the other categories, then the application is past the knee of its scaling curve and should
just be run on fewer processors (this may be not possible if the problem is too large to fit in the
physical memory of a reduced number of processors).

By Amdahl’s Law (which limits the rate of return for speeding up just one part of a multi-part
task), Moore’s Law, even if it continues to hold, will not speed up memory-bound applications such
as WRF by more than a few percent. For example the MM flops and memops section of the pie
chart would not shrink, unless new technologies are applied to improve or mitigate red shift. If
doubling of transistor density per chip is just devoted to speeding up mathematical operations that
are already 100 times faster than argument fetching and storing in code that (like the example)
has about an equal mix of both, then not much performance improvement of memory intensive
applications will be gained.

In either case it is clear that widening, mitigating, or eliminating the Von Neumann Bottleneck
must be a thrust of research to enable Exascale computing as it lies in the path to increasing
calculation speed by 1000x.

5.4 Exascale Application Characteristics

Exascale applications, particularly for the departmental and data center classes of problems, are
liable to be rather complex in their structure, with no single overriding attribute that governs their
characteristics. To get some insight into this, Figure 5.31 looks into several classes of applications
taken from [54], and what kinds of lower level functionalities would be found in them. In this figure,
the columns represent classes of applications and the rows represent different types of algorithms
that might be employed in one form or another. The degree of shading in each box represents the
degree to which such algorithms play an important part of the application.

1Figure courtesy of D. Koester from [84]

65
ECS Report

107
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0

0.5

1

1.5

2

2.5
L1X2

L2X2

L3X2

MMX2

Figure 5.4: Predicted speedup of AVUS to latency halving.

The key take-away from this is that the days of very regular, simplistic, applications are over, and
that applications of the future will involve a richer and more diverse suite of underlying algorithms,
all of which must perform well on an underlying machine architecture in order for a system to
deliver truly significant and efficient performance.

The following sections delve in more detail into some of these applications and algorithms.

5.5 Memory Intensive Applications of Today

Of all the performance parameters discussed earlier, memory latency in all its forms is often the
dominant one. Applications for which this is particularly true are called memory intensive, and
are discussed here.

5.5.1 Latency-Sensitive Applications

Figure 5.4 through 5.7 depict Kiviat diagrams predicting the performance speedup of several strate-
gic applications due to a halving of latency to different steps in the target machine’s memory hierar-
chy (thus shrinking the length of the bottleneck). These applications cover a spectrum of strategic
science uses:

• AVUS (Air Vehicle Unstructured Solver) is a CFD code used in airplane design,

• WRF is a weather prediction code mentioned above,

• AMR (Adaptive Mesh Refinement) is a benchmark representative of many domains of
computational science,

• Hycom is an ocean modeling code.

These applications or their variants are run in a production mode by federal agencies including
DoD, DoE, NSF, and NOAA, and consume tens of millions of supercomputer hours annually.
They are not chosen for this study solely because they are memory intensive but because they are
scientifically and strategically important.

The speedups graphed above in Figure 5.4 through 5.7 are forecast by performance models
relative to an existing base system (a 2048 processor IBM Power4 based supercomputer). Each
radial axis of these graphs represents the predicted speedup of halving the latency (in Power4

66
ECS Report

108
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0

0.5

1

1.5

2
L1X2

L2X2

L3X2

MMX2

Figure 5.5: Predicted speedup of WRF to latency halving.

0

0.5

1

1.5

2
L1X2

L2X2

L3X2

MMX2

Figure 5.6: Predicted speedup of AMR to latency halving.

0

0.5

1

1.5

2
L1X2

L2X2

L3X2

MMX2

Figure 5.7: Predicted speedup of Hycom to latency halving.

67
ECS Report

109
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Temporal locality

S
p

a
ti

a
l 

lo
c
a
li

ty

HPLSTREAM

small RARFCTH

Overflow

AVUS

AMR

Hycom

WRF

Figure 5.8: Spatial and temporal locality of strategic applications.

cycles) of memory accesses to successive levels of the memory hierarchy (“L1” is the level 1 cache,
“L2” is the level 2 cache, etc. “MM” is main memory). The units of each axis are predicted speedup
of the application’s total run-time relative the base system’s speed if the base machine were to be
improved in just that dimension. For example, a value of 1 on an axis would represent no predicted
speedup of the application for halving the latency to that level of the memory hierarchy while a
value of 2 would predict the most speedup one could reasonably expect from halving the latency
of that level of the memory hierarchy (and imply the application is only doing memory references
to that level of the memory hierarchy).

Of note is that all these applications are forecast to benefit more from decreasing main memory
latency than from decreasing L1 (on chip) latency. So Moore’s law, even if it continues to hold,
will not help these applications much unless it is exploited in a way different from the ways it has
been historically.

5.5.2 Locality Sensitive Applications

The performance of memory intensive applications such as the above on today’s machines depends
mostly on the application’s spatial and temporal locality and the ability of the machine to take
advantage of those to mitigate the effect of the von Neumann Bottleneck. Here by locality we
mean the likelihood of a memory reference will be in some sense “local” to some prior memory
access. Spatial locality is the tendency of a computation to access memory locations that are
contiguous by address location to prior references - these addresses are then amenable to prefetching
which can improve performance by hiding latency when they are accessed. Temporal locality
is the tendency of a computation to access memory locations that it has already accessed - these
addresses are amenable to caching which can improve performance by storing the data in small,
near-to-the-processor memories which can be accessed with reduced latency.

Figure 5.8 shows spatial and temporal locality of a number of strategic applications (including
those of Figures 5.4 2 through 5.7) where spatial and temporal locality are assigned a numeric
score in the range [0,1] as defined in [155], with a score of 1 being the highest possible locality
(every reference is local to some previous one) and a score of 0 being the least (there is no locality
correlation of any kind).

68
ECS Report

110
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



To help put these applications into perspective with respect to locality, they are plotted in
Figure 5.9 along with a suite of smaller kernels (highlighted):

• HPL, a small-footprint, cache-friendly benchmark with near maximal temporal locality used
to generate the Top500 list,

• STREAM, a unit-stride benchmark with near perfect spatial locality but no reuse,

• small Random Access (RA), a benchmark with almost no locality whatever.

HPL, for comparison, runs very efficiently on modern machines where it gets “balanced” per-
formance, that is, it usually achieves about 1 cycle for a memory reference to on-chip L1 and thus
can run at near theoretical peak floating-point issue rate.

STREAM gets reasonably good performance on modern machines as it uses a whole cache line
and benefits from prefetching; when a large-memory STREAM test case is run its performance is
limited by bandwidth (rather than latency) to main memory.

Small Random Access performs poorly on most modern machines, at about the latency of main
memory (in the neighborhood of greater than 100 cycles per memory operation). This is despite
the fact that it fits in cache like HPL, but jumps around without striding through cache lines.

Real applications fall between these kernel extremes both in locality and in performance as
shown in Figure 5.9 where performance in terms of something proportional to “cycles per instruc-
tion” (CPI)/ondex(CPI) is plotted on the Z axis. Higher numbers on this Z axis correspond to
“lower performance.” As can be seen from this Figure, applications with higher locality are “eas-
ier” for today’s machines to run fast; they average lower cycles per operation by either doing more
memory references in nearer caches (reducing latency) or prefetching data from future addresses
(mitigating latency by Little’s Law).

Unfortunately, however, there are strategic applications that are even more memory intensive
than those graphed in Figures 5.4 through 5.7 such as Overflow, a CFD code run by NASA, and
RFCTH, a blast physics code. These perform but poorly on all of today’s machines.

As a general rule of thumb: these applications require a minimum of 0.5GB of local main
memory for each 1 GFlops of processor (and some such as Overflow and RFCTH require more than
2x that).

Also as a general rule the amount of level 2 and level 3 cache required by these applications
corresponds inversely to their temporal locality score (see reference for details). For example WRF
is relatively cache-friendly code and can get by today with an L2 cache size of 1MB while Overflow
and RFCTH need at least a 12 MB L3 cache (and would perform better if it were a 12 MB L2).

5.5.3 Communication Costs - Bisection Bandwidth

Generally speaking as depicted in Figure 5.10, the fraction of time spent in communications in-
creases for these applications as a fixed problem size is solved with more processors. In such cases,
increasing the number of processors results in smaller amounts of data that is “close to” each pro-
cessor. In other words an increase in concurrency is offset by a decrease in locality; and at some
point diminishing returns are reached.

A current standard metric for such communication costs is bisection bandwidth- if a system
is arbitrarily divided into two halves, the bisection bandwidth is the minimum bandwidth that is
still guaranteed to be available between these two halves. How well this metric holds up in the
future will depend on the characteristics of the applications and the patterns of how different sites
of computation must communicate with other sites, such as:

69
ECS Report

111
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0.1

1

10

100

1000

A
v
e
ra

g
e
 c

y
c
le

s
 p

e
r 

m
e
m

p
ry

Spatia
l Locality

Temporal Locality

HPL

STREAM

Small Random Access

RFCTH

Overflow

AVUS

AMR

Hycom

WRF

A
p

p
r
o

x
i
m

a
t
e
 
c
y

c
l
e
s
 
p

e
r
 
i
n

s
t
r
u

c
t
i
o

n

Figure 5.9: Performance strategic applications as a function of locality.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

64 128 512 1024 2048

Processor count

F
ra

c
ti

o
n

 o
f 

ti
m

e
 s

p
e
n

t 
in

c
o

m
m

u
n

ic
a
ti

o
n

WRF AVUS AMR HYCOM

Figure 5.10: Growth of communications overhead.

70
ECS Report

112
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



• scientific and engineering codes such as PDEs and 3D meshes:

– structured grids involve nearest neighbor communications,

– unstructured grids where indirection through link tables is the norm,

– adaptive mesh refinements where a fair amount of data must be moved around the
machine at unpredictable times to rebalance and load-balance the application.

• multi-scale and multi-model applications that act like amalgams of multiple “single algorithm”
applications as above, but must do so simultaneously, meaning that any sort of regularize
mapping between data and processors becomes very difficult, and the aggregate bandwidth
patterns become “random.”

• new applications such as those involving large unstructured graphs may simply be impossible
to partition to minimize communication for long periods of time.

• as discussed in Section 6.7.4, the growing need to “copy memory” for application-level data
checkpointing to increase the resiliency of the system to internal faults.

5.6 Exascale Applications Scaling

The applications discussed in the previous section require around 0.5GB per Gflops of computation
when run on today’s high end systems. How such numbers, and similar parameters for other
applications, will change as we move towards Exascale is crucial to sizing the complexity and basic
architecture of Exascale computers, and is the subject of this section.

5.6.1 Application Categories

To start such discussions, we consider four categories of applications in terms of their “scalability,”
and ordered in approximate ease of implementation:

I. Those applications that would solve the same problem as today but with a 1000x more data
points. This represents using the “same physics” and the “same algorithm,” but over larger
surfaces, and is normally called “weak scaling.” In this category might be, for example, global
weather models at sub 1km resolution (effectively solving a WRF calculation at the granularity
used today to forecast hurricanes but at the breadth of the entire earth’s atmosphere rather
than over the Gulf alone).

II. Those that could solve the same problem as today but 1000x faster. In this category for
example might be real-time CFD to stabilize a physically morphable airplane wing (effectively
recalculating every few seconds an AVUS calculation that now takes hours). Another example
would be running an operational weather forecast of a hurricane storm track in minutes rather
than days (thus improving advanced warning).

III. Those would that would solve the same problem, at the same size, as today, but with 1000x
more time steps. In this category for example might be local weather models at climatic
timescales (effectively solving a WRF calculation at the size today used for medium-term
weather forecasting but projecting out for centuries).

71
ECS Report

113
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



IV. Those that would solve the same problem as today but at 1000x more resolution (usually
requiring increased physics and chemistry in every cell). In this category might be for example
global ocean and tide models such as Hycom to include micro-features such as wave refraction
and coastal turbulent mixing.

Category I applications are those that often go by the term “embarrassingly parallel” where it is
obvious how to partition instances up into almost arbitrarily many pieces that can all be computed
in parallel. Thus systems with more parallelism in them can in fact be used by such applications
for near linear increases in performance.

Categories II, III, and IV are all versions of strong scaling, with category II being the con-
ventional version, but category IV being the most challenging because of the need to model more
science with more computation. In all of these categories, the relationship between parallelism and
performance is highly non-linear.

Clearly Exascale applications could have aspects of any combination of the above; for example
one could perform a calculation at 100x resolution and 10x more time-steps, for a total of 1000x
more computation than is possible today.

5.6.2 Memory Requirements

We next want to consider three aspects of the memory footprint of Exascale applications:

1. their total memory size requirements,

2. the size of working sets (locality clusters) in their data that in turn would determine the
sizes of local main memory and local caches they require, and

3. the latency and bandwidth requirements they would place on each level of the memory hier-
archy, including global interconnect.

As to applications in category I above, the total memory footprint would increase 1000x but
the sizes and latencies of the local memory hierarchy would not need to change relative to today.
However, to enable scalability and efficient deployment of more processors, the interconnect between
processors would have to improve in latency, or trade latency for bandwidth, in proportion to some
function of the topology (i.e. square root of 1000 ≈ 32-fold for a torus) to preserve the performance
of global data communications and synchronization.

As to category II above, the total memory footprint would not change. But latency would have
to be improved 1000x to each level of the memory hierarchy unless a combination of code tuning
and machine features could unlock sufficient parallelism in memory references to cover some of the
additional latency requirements via increased bandwidth2. In that case it would be the bandwidth
that would need to be improved proportionally.

Category III requirements are the same as for category II.
Category IV applications are similar to category I unless the higher resolution problem is highly

parallelizable (and this depends on the nature of the science problem on a case-by-case basis) in
which case it resembles more category II. In other words, if additional resolution or additional
physics in the local calculation does not improve coarse-grained task parallelism, then improved
latency (or improved local memory bandwidth and ILP) is the only way to increase memory per-
formance. If on the other hand, additional resolution or physics results in greater task parallelism,

2Bandwidth can be traded for latency by Little’s Law

72
ECS Report

114
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



then one can achieve increased performance by adding more processors that each look like today’s,
a la category II.

Thus we have four categories of potential Exascale applications, and several dimensions of
Exascale memory technology to consider that could speed them up 1000x. Futuristic AVUS is
perhaps an exemplar of Category II, variants of WRF could be category I, II or III, and extensions
to Hycom of category IV.

5.6.3 Increasing Non-Main Memory Storage Capacity

Historically, storage beyond the DRAM of main memory has fallen into several categories:

• scratch storage used for both checkpointing and for intermediate data sets needed for “out
of core” solvers.

• file storage used for named input and output files that will persist beyond the lifetime of
the application execution.

• archival storage used for long term storage of data.

5.6.3.1 Scratch Storage

Scratch storage in the past has been primarily driven by the size of main memory and the need to
periodically checkpoint (as discussed in Section 6.7.4. To date its implementation has been as a
large number of disk drives.

In the future, however, there will be an increasing need for larger scratch storage uses, such
as for applications that dynamically construct data derived models, that have such large memory
needs that “out of core” algorithms are necessary, and in capturing performance monitoring data
that is used by the system to do dynamic load-balancing and performance tuning.

Thus, it should be expected that such storage needs will grow on the order of 10 to 100X the
size of main memory.

5.6.3.2 File Storage

File storage represents persistent data sets that have real value to the end users (either as input
files or summary outputs), and may be shared among different applications that run at different
times. In addition, as systems become larger, at least a subset of the performance monitoring data
mentioned in the scratch storage discussion may need to be saved, along with fault data, to look
for trends that may require either repartitioning of future application runs or scheduling down time
for maintenance.

Besides the capacity issue, there is also a significant metadata problem with file storage, where
metadata relates to the directory information needed to both locate individual files in the system,
and monitor the state of those files. Today, there are many applications that even on sub petaflops
machines keep literally hundreds of thousands of files open at a time, and that number is growing.

At the end of the day, file system size is thus also at least linear with main memory, with
perhaps a 1000X multiplier present for Petascale systems.

5.6.3.3 Archival Storage

The size of archival storage is highly dependent on the application and the problem size. Tra-
ditionally, it has been driven by both checkpoint/restart as above, and by requirements where

73
ECS Report

115
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



subsets of such “checkpoints” represent time points in the computation that are to be used in 3D
visualizations. The latter terms will certainly grow rapidly as Category III applications become
important.

Further, as bad as the metadata problem is for file storage, it is even worse for archival storage,
especially as the number of time steps per application run increases.

Even within current supercomputers where the computational assets are unchanging, the growth
in archival storage needs has been significant, with 1.7 to 1.9 CAGR observed.

A recent study[55] about capturing data from NASA’s EOS/DIS (Earth Observing System/-
Data Information System) not only analyzer the cost efficiency of several approaches before sug-
gesting tape farms, but also introduced two additional classes of metrics: the number of (kilo-
/mega/giga) objects servable from such a system per second, and (more interestingly) the number
of “scans” of the entire data set that can be done per day. This latter term becomes critically
important as data mining and similar utilities become important.

In summary, such needs signal storage requirements that are easily in the 100X main memory
category.

5.6.4 Increasing Memory Bandwidth

Increasing memory bandwidth to the local processor would most benefit Category II, and Category
III applications. A machine that can do this would have to have radical technology advances to
improve local memory bandwidth such as 3D stacked memory chips with higher speed signalling.

5.6.5 Increasing Bisection Bandwidth

Increasing bisection bandwidth becomes very expensive as the system grows in size, and may be
a strong function of the maximum scale of the system and target application class. For example,
an Exascale departmental system that will execute variations of today’s applications (i.e. largely
Category I and II) should probably have a bisection bandwidth comparable to that provided by the
current 3D system topologies, but scaled to a petaflops. For example, a current XT4 supporting
a 40x32x24 topology at 318 Tflops has a bisection bandwidth of 19.4TB/s. Simply scaling each
dimension by a factor of 2 (to 80x64x48), and scaling the flops to 2.4 Pflops would thus require about
80 TB/s. For other Petascale applications, bisection bandwidth may be approaching the HPCS
goals of 0.5 to 3.2 PB/s. Thus, overall, machines will become useful with bisection bandwidths in
the O(50 TB/s) to O(1 PB/s) range.

As will be discussed later, Exascale applications that are destined for execution on the data
center class systems may scale differently. While an “existence proof” application (Category I) may
be runnable on systems with bandwidths in the O(1 PB/s) range, more realistic applications may
have to grow with the memory bandwidth (reflecting more random data exchange patterns), and
thus soar into the O(10 PB/s) to O(1 EB/s) range.

5.6.6 Increasing Processor Count

Increasing the number of processors (and local memory subsystems) would most benefit applications
in category I. A machine that can do this would have to have radical advances in scalability with
perhaps hundreds of millions of processors.

Category IV may require a combination of improved local memory bandwidth and increased
number of processors and local memories.

74
ECS Report

116
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1

4

1
6

6
4

2
5
6

1
0
2
4

1

4

16

64
256

1024

0

20

40

60

80

100

120

140

160

180

WRF Speedup

Clock Factor

Latency Reduction

160-180

140-160

120-140

100-120

80-100

60-80

40-60

20-40

0-20

Figure 5.11: WRF performance response.

5.7 Application Concurrency Growth and Scalability

Quantifying what it means to be ‘1000x harder” has aspects in:

• Performance Growth

• Storage Growth

• Interconnect Bandwidth Growth

• Scratch Storage Growth

• File System Growth

All of these will grow more or less than 1000x, often independently. This section looks at the
process of making such extrapolations, looking in particular for non-linear characteristics.

5.7.1 Projections Based on Current Implementations

For projecting to Exascale, we focus on three applications from Figure 5.9 that could be considered
“Easy,” “Hard,” and “Harder” from a memory spatial and temporal locality perspective: HPL,
WRF, and AVUS. We note that in the nomenclature defined above, WRF is a Category I, AVUS
a Category II application, and WRF is potentially a Category III application. For these projec-
tions we ignore Category IV because its requirements for memory and number of processors fall
somewhere in between Category I and Category II.

Figures 5.11 through 5.13 depict the performance response surface as predicted by the Con-
volution Method[130][131], and give forecast speedup for WRF, AVUS, and HPL as a function
of increasing on-chip operations rates such as flops (X axis), or decreasing latency to memory at
L2 and main memory level inclusive (Y axis). These convolutions are hardware agnostic, and do
not specify how such improvements would be obtained (as for example whether by adding more

75
ECS Report

117
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1

4

1
6

6
4

2
5
6

1
0
2
4

1

4

16

64
256

1024

0

50

100

150

200

250

300

AVUS Speedup

Clock Factor

Latency Reduction

250-300

200-250

150-200

100-150

50-100

0-50

Figure 5.12: AVUS performance response.

1 4

1
6

6
4

2
5
6

1
0
2
4

1

4

16

64
256

1024

0

100

200

300

400

500

600

700

800

900

HPL Speedup

Clock Factor

Latency Reduction

800-900

700-800

600-700

500-600

400-500

300-400

200-300

100-200

0-100

Figure 5.13: HPL performance response.

76
ECS Report

118
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



processors or by speeding up the clocking rate or otherwise improving the processors and/or mem-
ory). They simply assume that the machine has some way of doing work in the above operation
categories faster.

However, an underlying assumption in Figures 5.11 through 5.13 is that communications over-
head is a constant. (This perhaps overly optimistic assumption will be restricted later below). Note
even so, for example in Figure 5.2, that an initially small fraction of communications becomes the
bottleneck ultimately (by Amdahl’s Law); thus even with 1024-fold improvement of both flops and
memory, WRF can only be sped up about 180-fold according to the predictions. If communications
latencies also could be improved by the same factors, then the WRF performance response would
still have the same shape as Figure 5.2 but would reach higher levels of speedup.

Further, if one can trade bandwidth for latency then one could relabel the Y axis of Figure 5.2
and the subsequent figures as “memory bandwidth” rather than “1/memory latency.” However
the ability to trade bandwidth for latency tolerance via Little’s Law is a complex function of the
machine and the application. One needs to know for example, “how much inherent instruction-level
parallelism (ILP) is in the application?,” and “how much hardware support for in-flight instructions
is in the hardware?.” This is a level of detail not incorporated in the convolutions shown here. Thus
Figure 5.2 and subsequent figures could be considered the most optimistic performance results
obtainable by improving memory bandwidth rather than latency under the assumption that one
could use all that extra bandwidth to tolerate latency better (and real performance would probably
be less for that approach). Convolutions could of course be carried out under more pessimistic
assumptions, but that is reserved for future work.

The “balanced” nature of WRF is apparent again from Figure 5.11. The performance response
is symmetric for improving flops or memory latency. Once one is improved the other becomes the
bottleneck.

By contrast, comparing Figure 5.12 for AVUS to Figure 5.11 for WRF above, we see that AVUS
is a much more memory intensive code. Indeed, one must improve memory latency (or perhaps
bandwidth, see discussion above) by an order-of-magnitude to unlock measurable improvements
due to improving flops rate. One could even improve flops three orders of magnitude and get less
than 50-fold AVUS speedup if the memory subsystem is not also sped up. On the other hand,
AVUS does even less communications that WRF and so speeds up better for the same memory
improvements - high-bandwidth processors would help AVUS, and other such memory intensive
applications, a great deal.

Comparing Figure 5.13 for HPL to Figures 5.11 and 5.12 demonstrates what a pathologically
useless benchmark HPL is as a representative for broader classes of applications. Its peak is overly
optimistic (as it has almost no communications) and its lack of memory latency or bandwidth
demands is not representative of more robust calculations such as WRF and AVUS. Never-the-less,
even HPL will only speed up two orders of magnitude for three orders of magnitude improvement
in flops if some improvement of memory latency (or possibly bandwidth) is not also accomplished.

Figures 5.11 through 5.13 then are most straightforwardly interpreted as applying to fixed
problem size and processor/memory count, where it is reasonable to assume that communications
does not grow in an absolute sense, but just as a fraction of total run-time due to Amdahl’s Law.

Now let us consider the case of weak scaling, that is, building a system out to more processors
and memories to enable more aggregate flops and bandwidth, and also making the problem bigger.
Both of these approaches are not unreasonable to consider for WRF and AVUS as there are in-
deed larger problems (whole Earth atmosphere, full jet plane under maneuver) that can approach
Exascale and still be scientifically interesting. Figures 5.11 through 5.13 still make sense if we
interpret “speedup” to mean doing more work in a fixed time. But again recall the assumption
that communications time is a constant. Once again, for this to be true, it would seem to imply

77
ECS Report

119
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1

4

1
6

6
4

2
5
6

1
0
2
4

1

4

16

64
256

1024

0

5

10

15

20

25

30

35

Speedup

Clock Factor

Latency Reduction

30-35

25-30

20-25

15-20

10-15

5-10

0-5

Figure 5.14: WRF with log(n) communications growth.

we can trade increased bandwidth of the larger machine to cover increasing latency. Whether this
is true would again depend on the application and the architecture.

Figures 5.14 and 5.15 then give more pessimistic performance response surfaces of WRF and
AVUS if communications cost instead grows as a logarithmic function of improving flops or memory
latency/bandwidth (i.e. increasing problem size in the weak-scaling approach). One would have
to improve network latencies, or trade bandwidth for latency, at a rate better than log(cpu count)
to be able to get more than about 1 order of magnitude performance improvement reasonable for
scaling out by 1000X one of today’s machines 1000X.

Figures 5.14 and 5.15 then seem to argue for the importance of improving processor and memory
performance, especially to benefit Category II and higher, not just scaling out huge systems for
Category I, to enable a broad spectrum of important applications to operate at Exascale.

5.7.2 Projections Based on Theoretical Algorithm Analysis

A Petascale calculation of today, such as for the WRF projections in the previous section, is an
operational hurricane forecast. It requires both ultra-high-resolution of gradients across the eye-
wall boundaries (at ≈1 km or less), and representation of the turbulent mixing process correctly
(at ≈10 m or less). Today’s Petascale hurricane forecasting computation might have the following
parameters:

• a 100 kilometer square outer-most domain at 10 meter horizontal grid spacing and 150 vertical
levels,

• a 15-billion cell inner-most 10 meter nested domain,

• with a model time step of 60 milliseconds

Such a computation consumes about 18 machine hours per simulated day at a sustained
petaflop/second on 100,000 processors and takes up about 100 MB per task of data not count-
ing buffers, executable size, OS tax etc. (10 TB of main memory for application in aggregate). The
computation generates 24 1.8 terabyte data sets, or 43.2 TB per simulation day if hourly output of

78
ECS Report

120
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1

4

1
6

6
4

2
5
6

1
0
2
4

1

4

16

64
256

1024

0

10

20

30

40

50

60

Speedup

Clock Factor

Latency Reduction

50-60

40-50

30-40

20-30

10-20

0-10

Figure 5.15: AVUS with log(n) communications growth.

30 three-dimensional fields is performed. At an integration rate of 18 machine hours per simulated
day at a sustained petaflop, the average sustained output bandwidth required is 700 MB/second.

If we project a Category II Exascale WRF calculation (with a goal to track a single storm 1000X
faster) then no increase in physical memory size or I/O bandwidth is needed (though floating-point
issue and memory bandwidth have to improve by 1000X). This would allow forecasts of storm
tracks with lead time of days or even weeks instead of only hours or minutes, and would greatly
improve disaster preparedness lead time.

A different Petascale calculation of today is a WRF “nature run” that provide very high-
resolution “truth” against which more coarse simulations or perturbation runs may be compared
for purposes of studying predictability, stochastic parameterization, and fundamental dynamics.
Modeled is an idealized high resolution rotating fluid on the hemisphere to investigate scales that
span the k-3 to k-5/3 kinetic energy spectral transition. Computational requirements for a 907x907
grid with 101 levels, resolution at 25km, time step at 30s on 100,000 processors, is 100 MB main
memory per task (= 10 TB of main memory) and outputs about 100 TB per simulation day, or a
sustained 1K MB/s I/O.

Another Category I Exascale WRF calculation would be to perform a full nature run of l
hemisphere of earth at sub 1km resolution. This would capture small features and “the butterfly
effect” - large perturbations at long distance driven by small local effects. This very challenging
calculation at a sustained Exaflop would then require 10,000 GB = 10 PB of main memory. I/O
requirements would also go up 1000x.

If we project a Category III Exascale WRF hurricane calculation (track 10 storms of interest
at once as part of a simulation of a portion of the hurricane season), and predict each storm track
100X faster, then memory requirements scale up 10X and I/O 10X.

In other domains of science such as mantle physics, modeling earthquakes with multiple sce-
narios in short term disaster response or evolution of fault on geological timescale, is a “capacity”
(Category I) problem, while modeling the mantle of earth as a ”living thing” coupled to crust for
understanding tectonic plate system evolution is a “capability” (Category II) problem.

In biology, protein folding very long sequences, interactive protein docking, and calculating
multiple drug interactions is a ”capacity” (Category I) problem, while modeling membranes, organs,

79
ECS Report

121
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



organisms, and even going the other direction to cell modeling at molecular level of detail is a
”capability” Category II problem.

5.7.3 Scaling to Departmental or Embedded Systems

Pioneering Exascale applications, like those first expected to run at Petascale in the next year,
will likely be a handful of specialized scientific codes. These applications will be very narrowly
designed to solve specific problems. They will be selected for their ability to scale to billions of
concurrent operations without having to solve currently intractable problems such as partitioning
unstructured grids. They might relax normal synchronization constraints in order to avoid the
resulting bottlenecks. With heroic programming efforts, they will execute out of the smallest,
fastest levels of the memory hierarchy, minimizing the number of concurrent operations needed to
cover main memory latency.

For there to be a viable market for Petascale departmental systems, there will have to be viable
commercial applications to run on them. Such Petascale commercial applications will need to sus-
tain millions of concurrent operations, a daunting task when today, only a handful of commercial
codes can sustain even O(1000) concurrent operations on a few hundred multi-issue CPUs. Thus
the developers of such codes will share many of the same challenges as those developing Exascale
applications for the nation, how does one add four orders-of-magnitude to the level of concurrency
one struggles to sustain today. Other issues such as debugging at this scale or tolerating errors in in-
creasingly unreliable systems will also be common to developers of both Exascale and departmental
scale programs.

There will also be significant differences in the challenges facing commercial Petascale software.
Rather than solve a handful of problems of national interest, they will have to solve a broad range
of engineering and business problems. Rather than be small scale versions of Exascale scientific
codes, they will be Petascale versions of codes that also run on Terascale desk top systems. As
such, they will enjoy large numbers of users and hence be economically viable. However, their
developers will have to address a broader range of problems, including unstructured grids and more
robust numerical algorithms. Such applications today are millions of lines of code, and represent
an investment in labor that cannot be repeated, but rather must be evolve into the future. Thus
any new programming languages or features must be backward compatible to be accepted into
commercial software.

Petascale application will also put demands on departmental systems that make them different
than simply smaller Exascale systems. Petascale departmental systems will have to provide full
featured operating systems, not micro-kernels. They will have to efficiently process large ensembles
of end-user applications, not merely a handful of heroic jobs. Where Petascale scale systems do not
have enough main memory, their applications will go “out-of-core,”requiring a disproportionately
larger and higher performing file system to hold the balance of their state.

Scaling to embedded systems will also be an issue for Exascale applications. Just as today one
sees applications such as sPPM running on everything from the largest supercomputers (BG/L) to
Playstations, one can expect the same in the next decade, as users try to exploit any computing
system available to them. Their will be additional challenges however, making embedded applica-
tions more challenging than their departmental counterparts. Embedded codes often involve similar
computational kernels, but they tend to be implemented with specialized software. This reflects
both physical constraints such as volume and power, which reduce the size and performance of the
processors and memory, as well as novel software environments, such as real-time operating systems
with less functionality than those expected on departmental servers.

80
ECS Report

122
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Departmental Class Data Center Class
Range “Sweet Spot” Range “Sweet Spot”

Memory Footprint
System Mem-
ory

O(100TB) to O(1PB) 500 TB O(1PB) to O(1EB) 50 PB

Scratch Stor-
age

O(1PB) to O(100PB) 10 PB O(100PB) to O(100EB) 2 EB

Archival Stor-
age

>O(100PB) to O(100PB) 100 PB >O(100EB) 100 EB

Communications Footprint
Local Memory
Bandwidth
and Latency

Expect low spatial locality

Global Mem-
ory Bisection
Bandwidth

O(50TB/S) to O(1PB/s) 1PB/s O(10PB/s) to O(1EB/s) 200PB/s

Global Mem-
ory Latency

Expect limited locality

Storage Band-
width

Will grow at faster rate than system peak performance or system memory growth

Table 5.1: Summary applications characteristics.

5.8 Applications Assessments

5.8.1 Summary Observations

In terms of overall system characteristics, Table 5.1 attempts to summarize a first cut at how the
different memory, storage, and bandwidth considerations might play out for both a Departmental
class Exascale system and a Data Center class. It should be stressed that these numbers are
relatively speculative right now, and can only be validated when extensive work on real Exascale
applications is performed.

For a bit more detail on the internal structure of Exascale applications and how they may
achieve Exascale performance, Figure 5.16 attempts to summarize some of the trends observed in
terms of applications over time. The vertical axis refers to locality - how much information about
one memory reference can be used to improve the latency of accessing a future one. The horizontal
axis refers to how much concurrency is present.

The contents of the graph refer to classes of applications. Looking backwards in time, many
early “high end” numeric applications used simple 3D regular grids where the data could be posi-
tioned precisely before hand, and techniques such as red-black ordering provided potential levels of
parallelism that approached the number of grid points.

Moving forward to today, grids have become much more irregular, with a great deal of auxiliary
table look-ups needed to account for detailed modeling. The result has been some more potential
for concurrency (more points), but significantly decreased locality. This locality becomes even
worse when dynamic mesh refinement is used to change the grid dynamically.

Another class of applications are highly non-numeric, and have significantly different character-
istics, particularly in locality, than the first class. Searching a simple one-dimensional linked list,
for example, has almost no possible concurrency if no pre-computed pointers to intermediate nodes

81
ECS Report

123
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Seriality

In
v

e
rs

e
 o

f 
D

a
ta

 L
o

c
a

li
ty

Weak Scaling EP Apps

Molecular Dynamics

Desktop Applications

Sparse Graph Algorithms

High-order DataBase Search

Ordered Summation

HPL

Coupled Physics

WRF + Cloud and Eco model

Multigrid

Single Physics

WRF today

Non-uniform fields & grids

GUPS

Future of Desktop Apps

Graph Algorithms

Coupled organism models

Science going like this

Commercial going this way slowly

HPC
hard

ware
tre

nd

Easy to 

parallelize but 

hard to localize

Easy to 

parallelize and 

localize

Just plain 

hard to 

speedup

Here is DARPA Hard gap

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Seriality

In
v

e
rs

e
 o

f 
D

a
ta

 L
o

c
a

li
ty

Weak Scaling EP Apps

Molecular Dynamics

Desktop Applications

Sparse Graph Algorithms

High-order DataBase Search

Ordered Summation

HPL

Coupled Physics

WRF + Cloud and Eco model

Multigrid

Single Physics

WRF today

Non-uniform fields & grids

GUPS

Future of Desktop Apps

Graph Algorithms

Coupled organism models

Science going like this

Commercial going this way slowly

HPC
hard

ware
tre

nd

Easy to 

parallelize but 

hard to localize

Easy to 

parallelize and 

localize

Just plain 

hard to 

speedup

Here is DARPA Hard gap

Figure 5.16: Future scaling trends

exist to allow searches to jump into the middle of the list. It also has potentially very low locality
if each node of the list ends up in different memories.

Going forward to more relevant applications, searching large distributed graphs has as little
locality as the 1D search, but with a parallelism limited by the diameter of the graph. Finally,
applications similar to GUPS have potentially huge amounts of parallelism, but again little or no
locality.

5.8.2 Implications for Future Research

The discussions in this chapter lead fairly directly to several research directions that would directly
impact the ability of applications to take advantage of Exascale hardware:

• Develop additional hardware and architectural techniques to mitigate the impact of poor
locality within an application.

• Provide more hardware and architectural hooks to control the memory hierarchy, and provide
programming metaphors and APIs that allow an application to express how it wants to control
locality of data within this hierarchy.

• Through compiler technology, program transformation techniques, or address reordering tech-
niques, find or create improved locality automatically.

• For applications of direct interest to DoD, foster algorithm work that focuses on both paral-
lelism and locality.

82
ECS Report

124
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



• Develop algorithmic and programming techniques that can tolerate poor locality, such as
increasing asynchronicity in communications, and more prefetch opportunities.

In addition, in support of nearly all of these research directions, it appears reasonable to develop
suites of tools that can provide estimates of “upside potentials” of current and emerging codes,
including:

• tools to analyzes existing codes for dependencies and sequences of memory access addresses,

• tools to “data mine” the outputs of the above to look for and identify “patterns,”

• tools that allow such patterns to be translated into forms that can be used by systems to
implement these patterns in ways that increase performance,

• tools that analyze the codes to provide estimates of “oracle” parallelism opportunities, and
transform that into estimates of scaling when run on parallel hardware.

83
ECS Report

125
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



84
ECS Report

126
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

mr22
Text Box
This page intentionally left blank.



Chapter 6

Technology Roadmaps

This chapter reviews the suite of relevant technologies as we understand them today. This includes
both those that are well-established and in current use in today’s systems, and those that are just
emerging. For each such technology we discuss:

• Its fundamental operation and expected target usage.

• The key metrics by which to judge its progress.

• Its current state of maturity.

• For the key metrics both current values, physical limits as we understand them today, and
a roadmap as to how improvements are projected to occur with current funding and focus,
with an emphasis on the time between now and 2015.

• The fundamental reliability of subsystems built from such technologies.

• Particular areas where additional research may prove valuable in accelerating progress towards
reaching the limits of the technology.

The key technology areas reviewed in the sections below include:

• Section 6.2: technology from which logic and computational functions may be constructed.

• Section 6.3: technology from which the primary memory used in computers is constructed.

• Section 6.4: technology from which mass store such as file systems is constructed.

• Section 6.5: interconnect technology that permits different computing sites to communicate
with a single computing structure.

• Section 6.6: technology with which combinations of chips from the above categories (especially
logic and main memory) may be packaged together and cooled.

• Section 6.7: techniques used today to improve the overall resiliency of a computing system.

• Section 6.8: the (largely software) technologies for managing the operating environment of
the computing systems.

• Section 6.9: software technologies for extracting the parallelism and generating the application
code.

85
ECS Report

127
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



6.1 Technological Maturity

Gauging the maturity of a technology is an important aspect of performing any projections such
as done in this study, especially when time frames to get to deployable systems are important. In
this report we use a metric developed by NASA termed “Technology Readiness Levels,” which has
multiple levels as follows (taken from [99]):

1. Basic principles observed and reported

2. Technology concept and/or application formulated

3. Analytical and experimental critical function and/or characteristic proof-of concept

4. Component and/or breadboard validation in laboratory environment

5. Component and/or breadboard validation in relevant environment

6. System/subsystem model or prototype demonstration in a relevant environment

7. System prototype demonstration in a real environment

8. Actual system completed and “flight qualified” through test and demonstration

9. Actual system “flight proven” through successful operations

Such levels address the maturity of a technology in terms of how fully it has been developed.
However, it is important to distinguish such levels from the funding categories often used in de-
scribing development budgets used to bring such technologies to practice:

• 6.1 Basic Research

• 6.2 Applied Research

• 6.3 Advanced Technology Development

• 6.4 Demonstration and Validation

• 6.5 Engineering Manufacturing Development

• 6.6 Management Support

• 6.7 Operational Systems Development

It was the sense of the study group that for Exascale projects constructed from technologies
currently at TRL levels 1 and 2 most closely corresponded to 6.1 projects, TRL levels 3 and 4
corresponded to 6.2, and TRL levels 5 and 6 to 6.3. Once technologies have become more mature
that TRL 6, they are no longer “immature,” and need to stand on their own commercial value for
continued development and deployment.

In these terms, the goal of the study is thus to determine where technologies projected to be
“mature” in the 2013-2014 time frame by normal development will be inadequate to support Exas-
cale systems, and whether or not there is the potential for supporting the accelerated development
of new, currently “immature,” technologies that may bridge the gap.

86
ECS Report

128
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Units 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Feature Size nm 90 78 68 59 52 45 40 36 32 28 25 22 20 18 16 14

Logic Area relative 1.00 0.80 0.63 0.51 0.39 0.32 0.25 0.20 0.16 0.12 0.10 0.08 0.06 0.05 0.04 0.03

SRAM Area relative 1.00 0.78 0.61 0.48 0.38 0.29 0.23 0.18 0.14 0.11 0.09 0.07 0.06 0.04 0.03 0.03

50/50 Area relative 1.00 0.79 0.62 0.49 0.38 0.30 0.24 0.19 0.15 0.12 0.09 0.07 0.06 0.05 0.04 0.03

Delay ps 0.87 0.74 0.64 0.54 0.51 0.40 0.34 0.29 0.25 0.21 0.18 0.15 0.13 0.11 0.10 0.08

Average Device Capacitance relative 1.00 0.87 0.76 0.66 0.58 0.50 0.44 0.40 0.36 0.31 0.28 0.24 0.22 0.20 0.18 0.16

Circuit speedup: 1/delay relative 1.00 1.18 1.36 1.61 1.71 2.18 2.56 3.00 3.48 4.14 4.83 5.80 6.69 7.91 8.70 10.88

ITRS Max Clock relative 1.00 1.30 1.78 2.11 2.38 2.90 3.39 3.86 4.42 5.45 6.42 7.63 8.75 10.22 12.00 14.05

Vdd volts 1.10 1.10 1.10 1.00 1.00 1.00 1.00 0.90 0.90 0.90 0.80 0.80 0.70 0.70 0.70 0.70

Vdd/Vt ratio 5.64 6.55 6.67 6.10 4.22 6.62 6.85 6.08 5.39 5.49 4.82 4.10 3.50 3.48 3.41 3.37

Power Density @ Circuit Speedup relative 1.00 1.29 1.65 1.77 2.13 2.95 3.95 4.19 5.52 7.41 7.54 10.19 10.17 13.91 17.12 23.47

Power Density @ Max Clock relative 1.00 1.43 2.17 2.31 2.97 3.93 5.23 5.39 7.00 9.75 10.01 13.39 13.30 17.98 23.61 30.33

Energy/Operation relative 1.000 0.867 0.756 0.542 0.478 0.413 0.367 0.268 0.238 0.208 0.147 0.129 0.090 0.081 0.072 0.063

Delay ps 1.52 1.33 1.17 1.03 0.90 0.79 0.79 0.61 0.53 0.47 0.41 0.36 0.32 0.28 0.24 0.21

Circuit speedup: 1/delay relative 0.57 0.65 0.74 0.84 0.97 1.10 1.10 1.43 1.64 1.85 2.12 2.42 2.72 3.11 3.63 4.14

Vdd volts 0.90 0.90 0.80 0.80 0.80 0.70 0.70 0.70 0.60 0.60 0.60 0.50 0.50 0.50 0.50 0.50

Vdd/Vt ratio 3.13 2.97 2.81 2.95 2.90 3.10 3.00 3.03 2.33 2.40 2.39 2.10 2.09 2.07 2.06 2.03

Power Density @ Circuit Speedup relative 0.38 0.48 0.48 0.59 0.77 0.73 0.83 1.21 1.16 1.47 1.86 1.66 2.11 2.79 3.64 4.56

Energy/Operation relative 0.669 0.580 0.400 0.347 0.306 0.202 0.180 0.162 0.106 0.093 0.083 0.051 0.046 0.041 0.037 0.032

High Performance Devices

Low Operating Power Devices

Note: units of "relative" represent values normalized to those of the 2005 high performance technology

Figure 6.1: ITRS roadmap logic device projections

6.2 Logic Today

Perhaps the most mature technology that is in use today for logic and memory is CMOS silicon.
This section discusses the outlook for this technology through the end of the next decade in two
ways: in summary form as projected by the ITRS Roadmap, and then in terms of the inherent
device physics as seen by industry-leading sources. The latter is covered in two pieces: silicon-
related and non-silicon technologies.

6.2.1 ITRS Logic Projections

The 2006 ITRS Roadmap[13] projects the properties of silicon CMOS logic through the year 2020,
and is used as a standard reference for future trends. This section overviews some of the more
general projections as they may relate to Exascale logic sizings for 2015 developments. It is impor-
tant to note, however, that these projections are for “business as usual” CMOS silicon, and do not
represent potential alternative silicon device families.

For logic there are two kinds of devices that are most relevant: those designed for modern
leading-edge high performance microprocessors, and those designed for low operating power where
clock rates may be sacrificed. The differences lie primarily in the threshold voltages of the devices,
and the operating conditions of typical circuits (Vdd and clock rate).

For reference, Figures 4.2 through 4.10 combine both historical data with their matching pro-
jections from ITRS for a variety of key parameters. Figure 6.1 then summarizes numerically some
projections that are most relevant to this report. The columns represent years from 2005 through
the end of the roadmap in 2020. For each year, the “feature size” (Metal 1 half-pitch) is listed.

The table itself is divided into three sub-tables: area-related, speed and power for the high
performance devices, and similar speed and power for the low operating power devices. In this
figure, any row marked as being in “relative” units represents the actual values derived from the
roadmap, but normalized to the equivalent numbers for 2005 high performance devices. Thus the
key results have been normalized to industry-standard high performance 90nm CMOS technology.

The years highlighted in green represent the values most relevant to chips that might be em-
ployed in 2015 in real systems.

87
ECS Report

129
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



6.2.1.1 Power and Energy

Throughout all the rows in Figure 6.1, power consumed (and thus dissipated) for some fixed sub-
system of logic is computed using the formula (leakage power is ignored for now):

Power per subsystem = Capacitance of subsystem ∗ Clock ∗ V 2
dd (6.1)

Dividing this by the area of the subsystem yields the power density, or power dissipated per
unit area:

Power density = (Capacitance of subsystem/area of subsystem) ∗ Clock ∗ V 2
dd (6.2)

or

Power density = Capacitance per unit area ∗ Clock ∗ V 2
dd (6.3)

Also, canceling out the clock term in Equation 6.1 yields not the power of a circuit but (at least
for pipelined function units) an energy dissipated per machine cycle which, if the subsystem
is pipelined is the same as the energy per operation, and which will prove useful in later work:

Energy per operation = Capacitance per unit area ∗ V 2
dd (6.4)

It is instructive to express the capacitance of a subsystem as:

Capacitance of subsystem = Capacitance per device ∗ # of devices (6.5)

which yields another variant of Equation 6.2:

Power density = (Capacitance per device∗# of devices/area of subsystem)∗Clock∗V 2
dd (6.6)

However, the ratio of device count to area is exactly transistor density as discussed above, and
thus we can rewrite this as:

Power density = Capacitance per device ∗ Transistor density ∗ Clock ∗ V 2
dd (6.7)

Finally, we can also invert this last equation to yield one that indicates at what maximum clock
frequency a chip could run at in order to stay at or below some power density limit:

Clock = Power density/(Capacitance per device ∗ Transistor density ∗ V 2
dd) (6.8)

6.2.1.2 Area

The first three rows of Figure 6.1 reflect the effect of the technology on transistor density - the
number of transistors per unit area on a die. In the rows, these numbers are expressed as relative
“area” factors, that is by what factor would a circuit designed in 90nm technology shrink if it were
simply recast in succeeding year’s technology, with no enhancements or scaling. There are separate
rows for circuits that are pure logic, pure SRAM arrays, and circuits with a 50/50 mix of logic and
SRAM.

The key take-away is that for 2015 deployment, using ITRS projections we can assume that a
core designed initially for 90nm would shrink between a factor of 6 and 8 in area, allowing up to 6
to 8 times more of the same complexity cores on a die that in 2005.

88
ECS Report

130
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



6.2.1.3 High Performance Devices

The high performance device sub-table of Figure 6.1 represents the mainstay of modern CMOS
microprocessor technology. The first row gives the intrinsic delay of an N-type device, with the
third representing its reciprocal relative to the 2005 number. Thus a number of 3.48 in 2013, for
example, implies that the same circuit using 2013 devices would be capable of running 3.48 times
faster than in 2005.

The column labeled “ITRS Max Clock” represents clock rate growths projected by ITRS for
a pipeline stage involving 12 invertors in a chain. This number grows somewhat faster than the
second row, due to other circuit effects. The choice of a 12 invertor stage was made for historical
reasons based on microprocessors designed for the maximum possible clock rate (called super-
pipelining), regardless of microarchitectural performance. It is important to understand that such
“short pipe stages” have been found since then to be inefficient when used in modern superscalar
microprocessors, where long pipe lengths exacerbate significant data hazards and bottlenecks that
negatively impact performance. In addition, power and clock rate are proportional, so higher clock
rates also raise power dissipation. Thus, for several years the microprocessor industry has retreated
from super-pipelining in favor or more efficient but lower clock rate microarchitectures. Thus this
row should be taken as an indication of absolutely maximum upper end potential, not expected
practice.

The row labeled “Vdd” represents the main operating voltage projected for use by circuits using
these devices. The row below this gives the ratio between Vdd and the main threshold voltage of
the projected devices. Over the time period of interest, this ratio is about 5.5, meaning that there
is sufficient voltage for multiple devices to be stacked, and still have good operating margins.

Given these numbers, the row labeled “Power density @ Max Clock” represents the relative
change in power dissipated per unit area on a die when the Vdd is as marked, and the clock rate is
the maximum projected by ITRS. The numbers for 2013-2014 indicate that if we simply tiled dies
on that time with multiple copies of a 2005 core, the die would dissipate 7-10X as much power per
unit area - far more than is assumed coolable today.

The row labeled “Power Density @ Circuit Speedup” is a similar calculation but assuming
circuits speed up only as much as the devices do. The growth in power dissipation, however, is still
significant.

The last row in this section reflects the “energy per operation” relative to a 90nm circuit, in
units of pico joules (pJ) where 1 pJ equals 10−12 joules. Since this is “per operation” the clock rate
in Equation 6.1 is irrelevant. Thus a circuit that took X pJ per operation in 2005 will, in 2013-2014
technology, take 1/4 to 1/5 of that.

Also we note again that numerically, if performing some operation takes X pJ of energy, then
computing 1 “exa” (1018) of them in one second consumes X MW of power.

6.2.1.4 Low Operating Voltage Devices

The final section of Figure 6.1 reflects projections for devices designed to be placed into lower power
circuits. The devices are designed to have a higher threshold voltage (less leakage) and run at a
lower Vdd. Thus the circuit families cannot be as complex in terms of stacking devices, there is less
margin, and the circuit is significantly slower than the high performance one, but the power density
and energy per operations are significantly improved, by a factor of two in energy per operation.

89
ECS Report

131
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

C
h

a
n

g
e
 R

e
la

ti
v
e
 t

o
 2

0
0
4

Power Density Capacitance per Device

Device Area Vdd Hi Perf

Vdd Low Power Power Limited Clock - Hi Perf

Power Limited Clock - Low Power

Figure 6.2: Relative change in key power parameters

6.2.1.5 Limitations of Power Density and Its Effect on Operating Frequency

Figures 4.3, 4.7, and 4.8 diagram the density, Vdd, and clock parameters in the power equation
6.7. These includes both historical data (from both single core chips and the newer multi-core
chips), and ITRS extrapolations. Figures 4.9 and 4.10 then graph similarly observed and projected
maximum power dissipated per chip, and the equivalent power density. These graphs yield the
following key takeaways:

• Transistor area (density) continues to drop (increase) as the square of the feature size. This
tends to increase the overall power of a chip because more transistors are present.

• Vdd for the dominant high performance logic families has essentially flattened after a long
period of significant reductions, with minimal projected future decrease. Thus decreasing
power by reducing voltage has just about run its course.

• Capacitance per device continues to decrease approximately linearly with feature size. This
both allows the transistors to run faster, and reduces the power per device.

• After a multi-decade run-up, sometime in the early 2000’s, the clock rate actually implemented
in real chips began to lag behind that which was possible due to the inherent improvement
in the transistors delay characteristics. In fact, a plateauing around 3GHz occurred at the
upper end.

The reason for the last of these observations is clear from Figure 4.9 - the absolute power
dissipated by a typical chip reached a threshold of around 100 watts above which it is uneconomical
to cool. At this point, the only knob available to designers to limit this was operational frequency.
Thus the flattening of clock rate.

90
ECS Report

132
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1

10

100

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

G
H

z

Peak on Chip - Hi Perf Peak on Chip - Low Power

Power Density Limited - Hi Perf Power Density Limited - Low Power

Tech & Power Density Limited - Low Power

Figure 6.3: Power-constrained clock rate

An instructive exercise to explore what might happen in the future is to use these ITRS roadmap
projections to forecast what kind of growth in operating frequency is thus likely to be observed.
To do this we assume that chips of the future will look essentially like today in terms of mix
of transistors. This is in fact more or less will happen if the current ground swell to multi-core
processor chips continues unabated, with future logic chips representing a tiling of copies of what
look like today’s core.

Figure 6.2 does this by referencing the ITRS trends to those values of 2004, the approximate
year when clock rates peaked. The curves include the maximum power density that can be cooled,
the range of Vdd that is still available, the transistor density (the reciprocal of this is graphed to
keep the numbers in the range of the others), and the capacitance per device. Then, using Equation
6.8 we can determine a clock rate that will just support the maximum possible cooling capacity.
Figure 6.3 converts this relative clock curve to an absolute clock. Also included for reference is the
peak clock that is possible based on the transistor delay.

These curves give a somewhat astonishing conclusion: with a design-as-usual mindset, micro-
processors of the future will not only not run faster than today, they will actually decline in clock
rate.

The same sort of analysis can be done if instead of the high performance logic we assume the
low operating power form discussed in Section 6.2.1.4. Figure 6.2 includes a separate curve for the
Vdd in this case, as does Figure 6.3.

The conclusion from this chart is equally enlightening - again the clock rates are way below the
absolute possible based on the transistor performance. However, because of the lowered voltage,
very shortly the maximum clock that is sustainable at the maximum power dissipation actually
becomes higher than that for the supposed high performance logic. This may be an indication that
the low voltage logic is perhaps a better choice for Exascale than conventional logic.

91
ECS Report

133
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



>0.7                                ~1?Delay Scaling

~0.5                                >0.5Energy 

Scaling

Planar                            3G, FinFETTransistors

11111111RC Delay

High                                ExtremeVariability

~3                                   towards 2ILD

256

8

2018

512

6

2020

0.5 to 1 Layer per generation8-9Metal Layers

128

11

2016

10246432168Integration 

Capacity (BT)

416223245Technology 

Node (nm)

20222014201220102008High Volume 

Manufacturing

>0.7                                ~1?Delay Scaling

~0.5                                >0.5Energy 

Scaling

Planar                            3G, FinFETTransistors

11111111RC Delay

High                                ExtremeVariability

~3                                   towards 2ILD

256

8

2018

512

6

2020

0.5 to 1 Layer per generation8-9Metal Layers

128

11

2016

10246432168Integration 

Capacity (BT)

416223245Technology 

Node (nm)

20222014201220102008High Volume 

Manufacturing

>0.7                                ~1?Delay Scaling

~0.5                                >0.5Energy 

Scaling

Planar                            3G, FinFETTransistors

11111111RC Delay

High                                ExtremeVariability

~3                                   towards 2ILD

256

8

2018

512

6

2020

0.5 to 1 Layer per generation8-9Metal Layers

128

11

2016

10246432168Integration 

Capacity (BT)

416223245Technology 

Node (nm)

20222014201220102008High Volume 

Manufacturing

>0.7                                ~1?Delay Scaling

~0.5                                >0.5Energy 

Scaling

Planar                            3G, FinFETTransistors

11111111RC Delay

High                                ExtremeVariability

~3                                   towards 2ILD

256

8

2018

512

6

2020

0.5 to 1 Layer per generation8-9Metal Layers

128

11

2016

10246432168Integration 

Capacity (BT)

416223245Technology 

Node (nm)

20222014201220102008High Volume 

Manufacturing

Figure 6.4: Technology outlook

6.2.2 Silicon Logic Technology

The ITRS data of the prior section focused on general trends; given the challenges involved, it is
instructive to understand the physics behind these trends, and how they affect the kinds of circuits
and performance metrics that make up the trends. The following subsections discuss the underlying
scaling challenges, the potential for new processes such as SOI, and what this means to logic and
associated high speed memory circuits.

6.2.2.1 Technology Scaling Challenges

We begin with the technology outlook presented in Figure 6.4. Transistor integration capacity
is expected to double each generation and there are good reasons to believe that it will be on
track. Logic and circuit delay scaling, however, has already slowed down, and is expected to slow
down even further, approaching a constant. Energy scaling too has slowed down, so transistor
architecture will have to change to something other than todays planar architecture, and thus the
variability in transistors will become even worse that what it is today. In a nutshell, you will get
transistor integration capacity in the future (the first major benefit), but not the same performance,
and the energy/power reduction.

Figure 6.5 is a simplified transport model describing the scaling challenges. Thinner gate dielec-
tric (gate oxide) is better since it results in higher gate capacitance, creating higher charge volume.
But gate oxide scaling has reached a limit due to tunneling, causing excessive gate leakage. High-K
gate dielectric is a solution, but for just a generation or two, since it too has to scale down and will
reach the scaling limit.

Lower threshold voltage (Vt) is desired for higher current, but it causes excessive source to drain
sub-threshold leakage, that is why, we suspect that Vt scaling too has reached the limit. Mobility
engineering, such as straining, to improve the drive current will continue, but with diminishing
return.

To summarize, due to gate dielectric scaling and Vt scaling slowing down, the supply voltage
92

ECS Report

134
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Lower Vt is better

Higher current

But higher SD leakage

Higher mobility

Higher current

(Straining)

Thinner oxide is better

Higher charge

But higher gate leakage

C
ox

* (V
gs

– V
t
) * V

eff

I
dsat

~ Charge * Velocity

Figure 6.5: Simple transport model

0.1

1

0.25u 130nm 65nm 32nm 16nm

S
D

 L
k
g

 P
o

w
e
r 

(%
 o

f 
T

o
ta

l)

~30 - 40%

1

10

100

0.25u 130nm 65nm 32nm 16nm

Io
ff

 (
R

e
l) ?

0.1

1

0.25u 130nm 65nm 32nm 16nm

S
D

 L
k
g

 P
o

w
e
r 

(%
 o

f 
T

o
ta

l)

~30 - 40%

1

10

100

0.25u 130nm 65nm 32nm 16nm

Io
ff

 (
R

e
l) ?

Figure 6.6: Transistor sub-threshold leakage current and leakage power in recent microprocessors

scaling too will slow down, transistor performance increase will slow down, and active energy/power
reduction will slow down.

Figure 6.6 graphs increase in sub-threshold leakage current in successive past technology gener-
ations, and corresponding increases in the leakage power as a percentage of total power. The slope
of the non-flat part of the Ioff curve is often called the sub-threshold slope,, and the flatter the
curve, the less that future generations of technology will have to worry about leakage. Also included
are extensions to the future. Notice that the transistor leakage power increased exponentially to
deliver the necessary performance, but now it is staying constant, and may even decrease to keep
full chip leakage power under control.

Figure 6.7 shows predictions of technology and attributes for the timeframe of Exascale systems
as envisioned here.

In terms of summary projections for future designs in silicon such as in Section 7.3, it is thus
reasonable to assume that leakage power will account for 30% of the total chip power.

6.2.2.2 Silicon on Insulator

There is a common belief in the technical community that something drastic can be done in the
process technology to reduce power further, and the most commonly cited solution is SOI (Silicon
on Insulator) technology, where the transistor is built not on a conductive substrate (as in bulk
silicon), but as a film on an insulating oxide. This technology comes in two flavors: partially
depleted, and fully depleted. In partially depleted SOI, the silicon film is thick and only part

93
ECS Report

135
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0.8X scaling due to 

variability, etc.

0.130.160.2nf/MTLogic Cdyn

( C/Tran)

1.5X, limited by design 

rule complexity and 

interconnects

2.21.51MT/mm2Logic density

Includes tags, ECC, etc

1.6X limited by stability

0.540.340.2MB/mm2Cache (SRAM) 

density

0.8X scaling0.040.060.09nf/MBCache Cdyn

( C/MB)

Estimate7.658.510psFO4 Delay

Delay scaling slowed 

down (estimated)

-10%-15%1Delay Scaling

Vdd scaling slowed down0.90.951VoltsVdd

201420122010High Volume

Comments16nm22nm32nmUnitsTech Node

0.8X scaling due to 

variability, etc.

0.130.160.2nf/MTLogic Cdyn

( C/Tran)

1.5X, limited by design 

rule complexity and 

interconnects

2.21.51MT/mm2Logic density

Includes tags, ECC, etc

1.6X limited by stability

0.540.340.2MB/mm2Cache (SRAM) 

density

0.8X scaling0.040.060.09nf/MBCache Cdyn

( C/MB)

Estimate7.658.510psFO4 Delay

Delay scaling slowed 

down (estimated)

-10%-15%1Delay Scaling

Vdd scaling slowed down0.90.951VoltsVdd

201420122010High Volume

Comments16nm22nm32nmUnitsTech Node

Figure 6.7: Technology outlook and estimates

of the body of the transistor is depleted (empty of free carriers) during inversion, as opposed to
fully depleted SOI where the silicon film is very thin and the region below the whole body of the
transistor is depleted of free carriers.

There are two major reasons for the claims about power savings in SOI, namely reduced source-
drain junction capacitance, and better sub-threshold slope. We will examine each of these sepa-
rately.

It is true that the source-drain junction capacitance is lower in SOI due to shallow junctions,
which do not extend all the way into the substrate as in the case of bulk transistors. But, bulk
transistors, on the other hand, use compensating implants to reduce this capacitance. Moreover,
source-drain junction capacitance contributes relatively little to the overall power consumption.
Therefore, the benefit of lower junction capacitance in SOI has limited or no impact on power in
comparison to modern logic CMOS.

Better sub-threshold slope does permit reducing the threshold voltage of a transistor, providing
higher performance for the same leakage power, or lower leakage power for the same transistor per-
formance. Partially depleted SOI and bulk transistors both have comparable sub-threshold slope,
and thus comparable performance and leakage power. Fully depleted SOI, on the other hand, shows
improved short-channel effects, and much better sub-threshold slope. Research and development
activities are already underway in the industry to exploit this. For example, FINFETs or Tri-
gate transistors are inherently fully depleted, and will exhibit this benefit. The power and energy
benefit is estimated to be in the 10% to 20% range, and does not constitute orders of magnitude
improvement desired for Exascale.

6.2.2.3 Supply Voltage Scaling

This section considers the use of supply voltage scaling to reduce power and energy, with benefits
as well as design challenges. This is perhaps the biggest available lever that is currently available
in conventional silicon technology.

94
ECS Report

136
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0

0.2

0.4

0.6

0.8

1

0.4 0.6 0.8 1Vdd

Frequency

Total Power

Active Power

Sub-threshold Leakge

Power

2%  decrease in Freq

1%  decrease in V
dd

= >

& 3%  decrease in Pow er

`%  decrease in Freq

1%  decrease in V
dd

= >

& 3%  decrease in Pow er

Figure 6.8: Frequency and power scaling with supply voltage

As background consider some circuit that is designed to run at some maximum clock rate when
powered by some nominal Vdd. As discussed in Section 6.2.1.1, the circuit power is proportional to
the square of this voltage, so decreasing it has a significant effect. However, as Vdd is decreased,
neither the RC characteristics nor the threshold voltage of the transistors making up the circuit
change much, meaning that it takes longer for a signal (say from a 0 to a 1) to reach the threshold of
the transistors that it is driving. Thus to maintain correct operation of the circuit, the clock must be
decreased appropriately. While this decreases the performance of the circuit, it also approximately
proportionately decreases the power even further. However, the reduction in performance is lower
than the savings in power and energy.

This benefit is shown quantitatively in Figure 6.8, based on an analytical model. As supply
voltage is reduced, frequency reduces, but so do the active and leakage power. At higher supply
voltage (much above the threshold voltage of a transistor), reduction in frequency is almost linear
with voltage. Thus a 1% drop in Vdd requires a 1% drop in clock (and thus performance), but saves
3% in active power (the power reduction is cubic). As the supply voltage is lowered even further
(close to threshold voltage of the transistor), peak frequency must decrease somewhat faster. Power
savings, however, is still higher than frequency loss. Here a 1% drop in Vdd requires a 2% drop in
clock, but still yields a 3% drop in active power.

Figure 6.9 shows measured power and energy savings in an experimental logic test chip in a
65nm process technology. Nominal supply voltage is 1.2V, and as Vdd is scaled down, operating
frequency and total power consumption reduce as shown in Figure 6.9(a). Figure 6.9(b) shows
energy efficiency as you reduce the supply voltage, where energy efficiency here is defined as the
number of clock cycles (in billions) of useful work per watt (GOPS/Watt). Notice that the energy
efficiency continues to increase with reduction in supply voltage, peaks just above the threshold
voltage of the transistor (at about 320 mV in this case), and then starts declining. When the supply
voltage nears the threshold voltage, reduction in operating frequency is more severe, compared to
reduction in power, and therefore energy efficiency drops.

95
ECS Report

137
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1

10
1

10
3

10
4

10
2

10
-2

10
-1

1

10
1

10
2

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Supply Voltage (V)

M
a
x
im

u
m

 F
re

q
u

e
n

c
y
 (

M
H

z
)

T
o

ta
l 

P
o

w
e
r 

(m
W

)

320mV

65nm CMOS, 50°C

320mV

S
u

b
th

re
s
h

o
ld

R
e
g

io
n

9.6X

65nm CMOS, 50°C

10
-2 

10
-1

1

10
1

0

50

100

150

200

250

300

350

400

450

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Supply Voltage (V)
E

n
e
rg

y
 E

ff
ic

ie
n

c
y
 (

G
O

P
S

/W
a
tt

)

A
c

ti
v
e

 L
e
a
k

a
g

e
 P

o
w

e
r 

(m
W

)

(a) (b)

1

10
1

10
3

10
4

10
2

10
-2

10
-1

1

10
1

10
2

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Supply Voltage (V)

M
a
x
im

u
m

 F
re

q
u

e
n

c
y
 (

M
H

z
)

T
o

ta
l 

P
o

w
e
r 

(m
W

)

320mV

65nm CMOS, 50°C

320mV

S
u

b
th

re
s
h

o
ld

R
e
g

io
n

9.6X

65nm CMOS, 50°C

10
-2 

10
-1

1

10
1

0

50

100

150

200

250

300

350

400

450

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Supply Voltage (V)
E

n
e
rg

y
 E

ff
ic

ie
n

c
y
 (

G
O

P
S

/W
a
tt

)

A
c

ti
v
e

 L
e
a
k

a
g

e
 P

o
w

e
r 

(m
W

)

320mV

S
u

b
th

re
s
h

o
ld

R
e
g

io
n

9.6X

65nm CMOS, 50°C

10
-2 

10
-1

1

10
1

0

50

100

150

200

250

300

350

400

450

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Supply Voltage (V)
E

n
e
rg

y
 E

ff
ic

ie
n

c
y
 (

G
O

P
S

/W
a
tt

)

A
c

ti
v
e

 L
e
a
k

a
g

e
 P

o
w

e
r 

(m
W

)

(a) (b)

Figure 6.9: Sensitivities to changing Vdd.

The downside to this increase in efficiency, at least for Exascale, is that if performance approxi-
mating that achieved by the circuit at nominal Vdd is desired by reduced voltage implementations,
then a significant increase in circuit parallelism is needed. For example, in Figure 6.9, we see that
there is approximately a 100X reduction in clock from 1.2V to 320 mV. This would require at least
100 copies of the same circuit to achieve the same performance, with a 100X area cost, and even
though the overall savings in power is about 10X.

Figure 6.10 shows how supply voltage scaling benefit will continue even with technology scal-
ing. It plots simulated energy efficiency for the above logic test chip in 65nm, 45nm, and 32nm
technologies, with variation in threshold voltage (Vt) of 0 and +/-50mV. Notice that the energy
efficiency continues to improve with supply voltage scaling, peaks around the threshold voltage,
and has weak dependence on threshold voltage and variations.

In summary, supply voltage scaling has potential to reduce power by more than two orders of
magnitude, and increase energy efficiency by an order of magnitude, but at some significant area
penalty.

6.2.2.4 Interaction with Key Circuits

Although aggressive supply voltage scaling benefits energy efficiency and power, it also warrants
different design practices. That is why most past and present designs do not support supply voltage
scaling beyond about 30% lower than nominal. The biggest culprits in terms of circuit types that
are difficult are:

• small signal arrays such as memory, caches, register files,

• dynamic logic such as Domino circuits,

• and large fan-in static gates.
96

ECS Report

138
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0

5

10

15

20

25

0.2 0.4 0.6 0.8 1

G
O

P
S

/W
a
tt

 (
N

o
rm

a
li
z
e
d
)

Vt0

Vt0+50mV

Vt0-50mV

32nm

45nm

65nm

Nominal Vt

Vt+50mV

Vt-50mV

0

5

10

15

20

25

0.2 0.4 0.6 0.8 1

Vdd (Normalized)

G
O

P
S

/W
a
tt

 (
N

o
rm

a
li
z
e

d
)

Vt0

Vt0+50mV

Vt0-50mV

32nm

45nm

65nm

Nominal Vt

Vt+50mV

Vt
-50mV

Figure 6.10: Technology scaling, Vt variations, and energy efficiency.

Static RAM (SRAM) circuits make up the backbone of a logic chip’s need for information
storage at almost all but the main memory level. SRAM cells today become unstable at lower
supply voltage because they are designed with small transistors for higher performance and lower
area. These cells can be designed to work at lower supply voltages by increasing transistor sizes
and for full supply voltage (rail to rail) operation. This sacrifices some performance and area, but
at a lower voltage, the logic operates at lower frequency anyway, hence performance loss is not a
major issue, but the area penalty is, which could be around 10% or so.

Similarly, Register Files can be redesigned to operate over a wide range of voltages by replacing
Jam-Latches by clocked latches. Again the cost is area and performance.

Domino logic is employed in many of today’s chips to increase frequency of operation at the
expense of very high power, and thus should be avoided in future designs. Large fan-in gates tend
to lose disproportionate amount of performance at lower supply voltages due to transistor body
effect. Therefore, designs should avoid using large fan-in gates in the critical paths of the circuits.
Overall, designing for low supply voltage operation will be different from what we do today, but
not difficult.

6.2.3 Hybrid Logic

Although there are several interesting proposals for performing logic operations using quantum
cellular automata (QCA), DNA, diverse types of molecules, optical components, various quantum
systems implementing qubits, and other exotic physical processes, none of these have a possibility
for contributing to an enterprize-scale computing system within the next ten years. However,
there are a few hybrid technologies that involve integrating scaled silicon CMOS with nano-scale

97
ECS Report

139
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Circuit Area Critical Path Delay Dynamic Power
tm2 ns mW

CMOS CMOL FPNI FPNI CMOS FPNI FPNI FPNI FPNI
9 nm 30 nm 9 nm 30 nm 9 nm 30 nm 9 nm

alu4 137700 1004 17513 5026 5.1 6.53 28.7 0.48 0.061
apex2 166050 914 18983 5448 6 7.10 32.5 0.47 0.059
apex4 414619 672 13457 3862 5.5 5.98 27.1 0.44 0.054
clma 623194 9308 78020 22391 13.1 19.70 85.5 0.78 0.103
diffeq 100238 1194 18983 5448 6 6.86 30.6 0.33 0.044
elliptic 213638 4581 43493 12482 8.6 12.48 56.1 0.50 0.066
ex1010 391331 3486 41252 11839 9 10.03 44.4 0.84 0.106
ex5p 100238 829 11050 3171 5.1 5.42 23.8 0.37 0.047
frisc 230850 4199 43493 12482 11.3 14.02 61.8 0.52 0.068

misex3 124538 1004 14750 4233 5.3 5.52 25.7 0.50 0.061
pdc 369056 4979 48153 13819 9.6 12.74 58.0 0.90 0.110
s298 166050 829 20513 5887 10.7 12.74 58.5 0.25 0.032

s38417 462713 9308 84220 24170 7.3 12.94 63.1 0.93 0.114
s38584.1 438413 9872 66329 19036 4.8 7.80 39.4 1.29 0.153

seq 151369 1296 17513 5448 5.4 6.55 28.9 0.51 0.066
spla 326025 2994 43493 12482 7.3 10.92 48.6 0.84 0.108
tseng 78469 1194 17513 5026 6.3 7.10 29.0 0.25 0.037
total 4494491 57663 598728 172250 126.4 164.45 741.6 10.18 1.29

relative 1.0 0.013 0.133 0.038 1.0 1.30 5.87 1.0 0.13
Data under CMOS and CMOL columns from [142] and FPNI columns from [137]

Table 6.1: Some performance comparisons with silicon.

switching components presently under investigation that could provide higher effective logic density,
enhanced performance per power input and/or improved resilience in the time frame of interest.

The first such hybrid technology is to use nonvolatile switches in a nano-scale crossbar array to
act as logic devices or configuration bits and switches for a field-programmable gate array (FPGA),
as pictured in Figure 6.11. Likharev and Strukov[94] originally proposed this type of architecture,
which they named “CMOL” to denote a hybrid integrated system that combines molecular switches
at the junctions of a crossbar to implement wired-OR functions fabricated on top of a fairly standard
CMOS circuit that contains inverters. These researchers executed a series of rigorous simulations
of their architecture for a set of 20 benchmark algorithms, and observed performance enhancements
of approximately two orders of magnitude in area required to implement an algorithm compared to
a standard FPGA architecture that used the same level of CMOS. However, given the aggressive
nature of their assumptions (e.g. 4.5 nm wide nanowires in the crossbar), their approach appears
to be more than 10 years out. By relaxing some of the assumptions (e.g. using 15 nm wires
in the crossbar array, which have already been demonstrated experimentally), designing a more
manufacturable process for connecting the nanowires to the CMOS plane, and using the nonvolatile
nanoswitch junctions only for configuration bits and connections, Snider and Williams[137] provided
a detailed design study for a related architecture they dubbed field-programmable nanowire
interconnect (FPNI). In computer simulations of the same set of benchmarks for their structure,
they observed an order of magnitude increase in performance (e.g. area of a chip required for a
computation) over a CMOS-only FPGA even in the presence of up to 50% defective switches in the

98
ECS Report

140
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



pin
pad

pi

nCMOS

nano

CMOS

nano

FPNI

pi

n

pi

n

pi

n

A

BA+B

A

B

AB

Schematic diagrams of hybrid-logic circuits. The CMOL design by Likharev and Strukov (left column) 

places a nanowire crossbar on top of a sea of CMOS inverters. The crossbar is slightly rotated so that each 

nanowire is electrically connected to one pin extending up from the CMOS layer. Electrically-configured, 

nonlinear antifuses (green, bottom panel) allow wired-OR logic to be implemented, with CMOS supplying 

gain and inversion. This is a very high-density design that would not likely be implementable before 2020. 

FPNI (right column) places a sparser crossbar on top of CMOS gates and buffers. Nanowires are also rotated 

so that each one connects to only one pin, but configured junctions (green, bottom panel) are used only for 

programmable interconnect, with all logic done in CMOS. This version was designed to be implementable

with today’s technology, and is currently in development for space-based applications.

cell cell

CMOL

pad

Figure 6.11: Hybrid logic circuits

99
ECS Report

141
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



crossbar, thus realizing both a significant performance improvement and resiliency in a technology
that is feasible by 2017. Table 6.1 summarizes these projections.

Other studies of this class of nano circuits include [139], [89], [134], [122], [36], [37], [154], [91],
[96], [148], [121], [64], [67], [68], [116], [135], [133], [136], [101], and [49].

A second class of hybrid structures that have been studied are Programmable Logic Arrays
(PLA)[52][53][35][153][164][34]. These structure are basically AND/OR arrays that can implement
any n-input m-output Boolean function by “programming” various points in the arrays.

Although these studies relate specifically to FPGA-type architectures, there are potential ap-
plications of this technology to Exascale computing. At the present time, there is an effort in place
to build a “FPNI” chip for use primarily in space applications where size, flexibility and resilience
are at a premium (especially radiation-damage tolerance). By employing different engineering
trade-offs, the issues of power and speed could be optimized. A multi-core chip could have some
FPGA-like cores to perform specialized functions for the chip, much as many high performance
machines today have FPGAs as components. Another possibility is that the main processors cores
could incorporate some favorable aspects of the FPNI technology to create hybrid architectures
that are more efficient and resilient than today’s processors. Adapting such an approach to build
specialty cores or introduce some of this technology into “regular” processor cores is a research
opportunity for Exascale systems.

6.2.4 Superconducting Logic

Perhaps the most extensively studied non-silicon logic technology uses extremely fast magnetic
flux interactions within super-cooled (around 4 ◦K) superconducting Josephson Junction (JJ)
devices. This technology, in the form of Rapid Single Flux Quantum (RSFQ) devices, was the
starting point for the HTMT[47] petaflops system project in the late 1990s, and has seen a series
of prototype developments since then.

Most recently, a major report written in 2005[3] provided a summary and potential roadmap
for the technology. The primary technology conclusion was that if an investment of between $372M
and $437M had been made, then by 2010 the technology would have matured to the point where a
peta scale design could be initiated. This investment would have targeted a cell library and CAD
tool set for RSFQ circuits, a single MCM 1 million gate equivalent processor running at 50 GHz and
including 128KB of RAM, and a viable fab facility. The major technical issues that were surfaced
in the report included (each discussed in detail below):

• providing memory that is dense and fast enough to support the enhanced logic speeds of the
devices,

• developing architectures that were very latency tolerant,

• and providing very high bandwidth communications into and out of the cryogenic cooler.

Although the logic speeds are impressive, as discussed below the density, system level power, and
difficulty in transferring data in and out of the required cryostat are all limiters to the technology’s
general usefulness in across-the-board Exascale systems, except in specialized applications.

The report also draws a possible roadmap for this logic if the investment had been made in
2006, summarized in Table 6.2. As a reference point, a full 64 bit floating point unit in CMOS may
take upwards of 50K gates, without much in the way of supporting register files or control logic.
Thus the technology marked as “2010” might support 20 such FPUs per 1 cm2 die, for about 1000

100
ECS Report

142
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Time Frame Device Density Clock Rate nanoWatts/GHz/Gate
2005 600K JJs/cm2 20GHz 16
2010 1M JJs/cm2 50 GHz 8

post 2010 90 nm 250M JJs/cm2 250GHz 0.4

Table 6.2: 2005 projection of potential RSFQ logic roadmap.

GFlops potential. The “90 nm” technology, if achieved, might pack 500 FPUs for a potential of
125 Tflops per cm2.

Density and its scaling into future feature sizes is discussed in [23]. The major factor controlling
density in JJs is the current densities in the superconducting wires that generate the magnetic fields
needed for the junction switches – doubling the current density allows matched stripline widths
to narrow by the square root of 2. These wires must now carry current densities of significant
magnitude, which limits how small their cross sections can get, and are subject to the Meissner
effect for proper operation. Together with the lack of multiple levels of interconnect such as found
in silicon, this limits the ultimate sizes to which such devices can be reduced.

6.2.4.1 Logic Power and Density Comparison

The report also summarized several test devices that had been fabricated as of that time. One
was an 8 bit serial microprocessor CORE-1 prototype[102][62] demonstrated at 21 GHz local and
1 GHz system, that dissipated about 2.3 mW in the cryocooler. This is equivalent to between 109
and 2300 nanoWatts per MHz, depending on the actual basis of overall performance.

A second demonstration was of an 8 bit parallel microprocessor FLUX-1[24] designed to run
at 20 GHz, with a power of 9.2mW, and utilizing 63,107 Josephson junctions on a 10.3 mm by
10.6 mm chip in 1 1.75μm junction feature size. This design corresponded to a power of about 460
nanoWatts per MHz.

As a point of comparison, a modern and complete 32 bit core in a 90nm technology1 consumes
about 40μW per MHz, in an area of as little as 0.12mm2 when implemented as a synthesized, not
custom, design. This includes a multiplier array. In a 2010 technology this might translate into an
area of about 0.03mm2 and a power of about 12μW per MHz. In a 2014 28 nm technology, the
design might translate into an area of about 12μm2 and a power of about 3 μW per MHz.

In terms of area, the report predicted that with the proposed effort a 2010 density of perhaps
1 million JJs per mm2 would be achievable, which would reduce the FLUX-1’s 63K JJs to about
6.3mm2. Throwing in a factor of 4 for the 8 bit to 32 bit difference, and another factor of 2 for the
multiplier array, this implies that 2010 silicon might be functionally around 200 times denser, with
2014 era silicon raising this to over 500 times denser. Even assuming that the projected ultimate
potential of 250M JJs per cm2 was achievable, 2014 silicon would still hold a very significant density
lead, and that would improve by another significant factor before silicon runs out.

In terms of power, if we again inflate the power of the FLUX-1 by a factor to allow for a more
fair comparison to a full 32 bit core, then we get a number of about 3.7 μW per MHz - about the
same as that for silicon in 2014. Using the 2X reduction listed in Table 6.2 from [3], and adding
another 2X to approximate the jump from the FLUX-1 technology to the 2005 technology, gives
perhaps a 3-4X advantage to the RSFQ.

1Based on a MIPS core as described at http://www.mips.com/products/cores/32-bit-cores/mips32-m4k

101
ECS Report

143
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



6.2.4.1.1 Cooling Costs The above comparison is for the logic alone, not the communication
with memory, and perhaps more important, the losses in the cooler needed to keep a RSFQ circuit
at 4◦K. The second law of thermodynamics specifies that the minimum power required (Carnot)
to absorb a watt of heat at 4 ◦K if everything is perfect is given by (Th − Tc)/Tc where Th is the
hot (ambient) temperature and Tc is the cold temperature. For 300◦K and 4◦K this Carnot specific
power becomes 74 W/W, meaning that 74 W must be expended to keep a 1 W source at 4◦K.

In real life, the current state of the art is much worse than this, with typical numbers in the
range of 6.5 kW to cool 1.5 W.2 If this scales to the larger powers one might need for a full-blown
Exascale system, it represents a 4300 to 1 multiplier over the logic power.

6.2.4.2 The Memory Challenge

Architecturally, the first major challenge is getting enough memory close enough to such logic to
support such computational rates. As of 2005, densities of RSFQ RAMs had been demonstrated
at about 16kb per cm2. As reference, DRAM of that generation ran about 1.4 gigabits per cm2 -
about 1 million times denser. CMOS SRAM, at about 1/40 of DRAM density, was still 25,000X
denser. The roadmap called for a 1 Mbit per cm2 RSFQ memory chip in the 2010 timeframe -
about 6000X less dense than DRAM at the time, and 125X less dense than SRAM. Alternative
memory technologies, especially MRAM, were also proposed to help out, but required placing them
in a “warmer” (40-70◦K vs 4◦K for the logic). In either case, this still requires a huge amount of
silicon (with non-trivial power demands) to be placed in a cryostat if memory densities comparable
to those discussed in Sections 7.2.1 or 7.3 are needed.

6.2.4.3 The Latency Challenge

A very related challenge is the latency within such systems. RSFQ is a logic that is inherently
pipelined at virtually the device level, meaning that even functional pipelines can grow to the hun-
dreds of cycles, and off chip references even further. Keeping a pipeline with hundreds of stages
requires hundreds of independent sets of data to initiate through them, which in turn requires archi-
tectures that are much more vector-oriented than current generations of microprocessors. Further,
at 250 GHz, a memory chip that is say 100 ns away in the warmer part of the cryo would be
25,000 cycles away from the core. For a typical “byte per flop” of memory data, this would mean
that the processing cores might have to generate and track on the order of up to 3,000 concurrent
memory references per FPU; even the relaxed taper of the strawman of Section 7.3 still translates
into perhaps 500 concurrent memory references. Both of these are far in excess of current practice,
and would require very significant amounts of buffering and comparison logic to track them.

6.2.4.4 The Cross-Cryo Bandwidth Challenge

The final challenge is in getting enough bandwidth in and out of each cryostat. This is particularly
relevant for systems that may want to grow to multiple cryo systems, such as in a data center scale
Exasystem. The problem is in leaving the very cold areas of the cryostat. Doing so with metal
wires represents a huge cooling problem; thus optical techniques were proposed in the report. This,
however, has the problem of going directly from RSFQ to optical at 4◦K. Potential solutions might
involve wire from the 4◦K to the 70◦K region where the memory might live. As is discussed elsewhere
in this report (such as in Section 7.5), however, there are no known interconnect technologies that
would not require massive amounts of power to be dissipated within the cryo.

2See for example the Janis CSW-71D, http://www.janis.com/p-a4k14.html

102
ECS Report

144
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0.01

0.1

1

10

100

1000

1
9
8
2

1
9
8
4

1
9
8
5

1
9
8
7

1
9
8
9

1
9
9
1

1
9
9
3

1
9
9
5

1
9
9
7

1
9
9
9

2
0
0
1

2
0
0
3

2
0
0
5

2
0
0
7

n
a

n
o

s
e

c
o

n
d

s

Memory Access Time CPU Cycle Time Multi Core Effective Cycle Time

Figure 6.12: CPU and memory cycle time trends.

6.3 Main Memory Today

This section discusses technologies appropriate for use for main memory in computing systems.
While the main focus is on today’s SRAM, DRAM, and various forms of flash, also covered are some
emerging technologies where there is enough of basis to project potential significant commercial
offerings in a reasonable time frame.

6.3.1 The Memory/Storage Hierarchy

Today’s computers are characterized by having central processors, connected to a hierarchy of
different memory types. It has been an evolutionary process getting the semiconductor component
industry to this place. Indeed, if one looks at the architecture of the earliest computers the storage
hierarchy was essentially flat, yet the hints of hierarchy were there. The Hollerith card decks sitting
in file racks of the machine room might have been the first mass storage technology.

Today the situation is more complex. This increased complexity is the result of technological
evolution bounded by economics. The technological evolution is brought about by the steady
progression of semiconductor scaling and is often expressed in terms of Moore’s Law, which states
that the density of transistors on a chip doubles every 18 months or so, and these transistors are
inherently faster. Economics govern the application of this density increase. The economics of,
say, a CPU vendor has in the past often driven that vendor to apply those transistors towards
increased performance per cycle, and an increasing clock rate. On the other hand, the economics
of a memory vendor drives that vendor to increase the density of the memory devices produced,
without significant increases in performance. Similarly, economics govern the evolution of rotating
magnetic storage so that once again it is density that is increased, with little improvement in
performance.

The result of this evolution is that gaps in performance grow between the CPU and memory,
and between memory and rotating storage. Figure 6.12 shows how CPU cycle times have diverged
from main memory cycle times over the past 25 years. This difference is now approaching a 1000X,
and is colloquially called the “memory wall.”

103
ECS Report

145
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Cell Size (u2) Tech Node (nm) Cell Size(F2)
IBM/Infineon MRAM

1.42 180 44
Freescale 6T-SRAM

1.15 90 142
0.69 65 163

Intel 65nm process 6T-SRAM
0.57 65 135

Freescale eDRAM
0.12 65 28

Freescale TFS: Nanocrystaline
0.13 90 16

Micron 30-series DRAM
0.054 95 6

Samsung 512Mbit PRAM Device
0.05 95 5.5

Micron 50-series NAND
0.013 53 4.5

Table 6.3: Area comparisons of various memory technologies.

In order to maintain the performance of the CPU in the face of this growing gap, the processor
vendors have evolved increasingly complex level 1 and level 2 caches, using large portions of their
Moore’s Law provided transistors to build larger SRAM caches.

6.3.2 Memory Types

In evaluating the suitability of a memory technology for a given application it is helpful to have
several metrics by which said memories can be compared. For the purposes of this section, the
metrics we will look at are;

1. The speed of the memory;

2. The silicon area required to make the memory;

3. The fault-tolerance of the memory;

4. The power characteristics of the memory.

Because area has been the predominant metric, Table 6.3 lists for relevant technologies and
their relative areas per bit, where the term ”F“ is the semiconductor feature size. Figure 6.13 then
graphs the equivalent numbers as projected by the ITRS roadmap on a relative basis, where 1.0 is
the relative density of DRAM at that time.

6.3.2.1 SRAM Attributes

Static RAM (SRAM) cells are typically constructed from 6 transistors and are most commonly
used for today’s fastest memory circuits. These cells make up the L1 and L2 cache memories of
today’s CPUs and can account for over 65% of the die area of some CPUs. The 6 transistors

104
ECS Report

146
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0.01

0.10

1.00

10.00

2005 2010 2015 2020

D
e
n

s
it

y
 R

e
la

ti
v
e
 t

o
 D

R
A

M

MLC Flash SLC Flash PCRAM(BJT)

PCRAM(NMOS) eDRAM-densest MRAM

eDRAM-fastest FeRAM SRAM

Figure 6.13: ITRS roadmap memory density projections.

105
ECS Report

147
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Contact

Cells

Figure 6.14: DRAM cross section.

and their associated routing makes the SRAM cell one of the largest memory cells. Most SRAM
cells are in the range of 140-150F2. The SRAM cell is a bi-stable latch and requires power to be
maintained in order for the cell contents to remain valid. In addition, SRAM cells are subject to
radiation-induced failures that affect their soft error rate (SER), and must be carefully designed
with additional ECC bits and a layout that ensures that an SER event does not affect multiple bits
in the same data word. SRAM cells may be designed for low power or for high performance. The
memories used in CPU caches obviously take the later approach and are thus substantial consumers
of power. Approaches such as segmenting the power and reducing voltages to the portions of the
array not being addressed to help mitigate SRAM power consumption.

6.3.2.2 DRAM Attributes and Operation

DRAM cells use a capacitor as a storage element and a transistor as an isolation device. In a read
operation, the transistor allows the charge on a cell to be placed onto the bit-line, which is sensed
by the sense amp and converted to a one or zero. The sense amplifier also boosts the bit-line to
a higher voltage, which thus restores the charge on the cell. This read operation is therefore a
destructive operation. In a write operation the cell is either drained of its charge or supplied with
a charge through the access device and bit-line[79].

There are two types of DRAM cell structures used in commodity DRAM devices. The stacked
cell DRAM uses a capacitor built above the silicon. The trench cell DRAM uses a capacitor
built into the silicon. Each has its advantages and its disadvantages, but both face some similar
challenges in the next few years. The size of these DRAM capacitors is in the range of 20-30 femto-
Farads and it is the ratio of this capacitance to the capacitance of the bit-line that determines the
reliability with which these cells can be read. To maintain a reasonable ratio that can be sensed
rapidly and accurately the value of this cell capacitance must be maintained. As DRAM cells are
typically 6F2 or 8F2, there is very little room to build the cell. This is requiring cell aspect ratio to
increase at an accelerating rate. The SEM image in Figure 6.14 shows a typical stacked memory
cell and the high aspect ratio of that cell.

As the aspect ratio increases it becomes more difficult to etch and fill the trench capacitors.
Stacked cell capacitors suffer from toppling and fill difficulties as the aspect ratio increases. Ad-
vances in dielectrics and reductions in bit-line capacitances are needed to continue advanced DRAM

106
ECS Report

148
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Ids

Vcg

“1” “0”

Erased

“1”

Stored

Electrons

Programmed

“0”

I

ds

Floating Gate

Control Gate

Sub-40mm NAND Flash gate

Figure 6.15: Programmed and un-programmed NAND cells.

scaling.
As shown in Figure 6.12, commodity DRAM access times have not kept pace with processors.

This is not to say that fast DRAM cannot be built. Embedded DRAM, Fast Cycle DRAM
and Reduced Latency DRAM all demonstrate fast DRAM devices. However, all of these carry
a substantial die size penalty. In order to achieve the performance, the arrays become less efficient.
Each of these fast DRAMs has enjoyed some success, however, although all three have been available
for years not one computer maker has elected to use one of them as a main memory technology.
Each, however, has merits when used as a cache memory.

6.3.2.3 NAND Attributes and Operation

NAND Flash memory is a non-volatile memory and operates by trapping electrons on a secondary
gate structure of a MOS transistor (see Figure 6.15). This secondary gate is a floating gate and
receives its charge when the gate voltage is elevated enough for electrons to tunnel onto the floating
gate. Here, the charge is trapped and biases the junction when the cell is read.

The gate dielectric and structure have been carefully engineered to retain the trapped electrons
for 10 or more years. Still, NAND systems must be carefully designed so that writing nearby bits
do not affect previously written data and such that reading the cells does not allow trapped charge
to leak from the floating gate[92].

NAND devices have been highly optimized for mass storage applications and are block oriented
devices. A typical 16Gb NAND device will be organized as 4096 4Mbit blocks. Individual cells
cannot be erased or written, but rather, entire blocks must be erased at a time.

In addition to its non-volatility, NAND has the advantage of having small cells. Typical NAND
cells are 4F2 and with today’s Multi-Level-Cell (MLC) technology these cells are capable of
storing two bits per cell. Future roadmaps show 3 bits/cell and even 4 bits/cell as being possible
for certain applications.

NAND memory must be used with error correction. Additional bits are provided within each
memory block for the storage of error correction codes. Typically a BCH or Reed-Solomon code

107
ECS Report

149
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Memory Type Cell Size Endurance
SRAM 142F2 > 1E15
DRAM 6F2 > 1E15
NAND 4F2-2F2* 10K-100K

PCRAM 4F2 100K-1E6
MRAM 40F2 > 1E15

* Multi-Level Cells

Table 6.4: Memory types and characteristics.

will be applied to NAND blocks, allowing several errors to be present without risk of data loss.
NAND Flash memory is not capable of infinite read-write cycles (termed endurance). Most

Single-Level-Cell (SLC) NAND is rated for 100K cycles with ECC. MLC NAND is usually rated
for fewer cycles, even under 10K cycles.

The slow writes, block-oriented erase and programming, and the limited endurance or today’s
designs all make NAND unsuitable as a main memory replacement. As a replacement for, or
alongside rotating magnetic media, NAND has great potential. Challenges do exist in scaling
NAND gate and dielectric structures[113], but the industry is putting significant research efforts
into the problems.

6.3.2.4 Alternative Memory Types

There are many types of memory that are being investigated in an effort to find replacements
for SRAM, DRAM, and NAND Flash memories. The “Holy Grail” of memories would be one
that is faster than SRAM, of unlimited endurance like DRAM, and both dense and non-volatile
like NAND Flash. In addition, the cells should be compatible with existing CMOS logic, with a
low-cost manufacturing process and consume near zero power. Of those memory types that have
demonstrated some degree of commercial viability, few have shown that they are as economical or
robust as today’s memory leaders. Table 6.4 summarizes the cell sizes and endurance of some of
the top memory contenders.

6.3.2.4.1 Phase Change Memory One of the most promising memory types on the near
term horizon is Phase Change Memory (PCRAM. Phase change memories operate by melting
a small region of material through resistive heating, and then cooling under controlled conditions
to either an amorphous or crystalline solid, which then exhibits two resistance states. The material
used in the cell is a chalcogenide glass, and while the thought of melting glass may seem an unlikely
memory technology, it may be viable. One of the factors in favor of phase change memory is that
it actually improves as it gets smaller: As the melted regions are shrunk, the current required to
melt the region is reduced.

Given the characteristics of phase change memories, it is most likely they will find use first as
a NOR Flash replacement then perhaps as a NAND Flash replacement. Their currently projected
endurance characteristics will keep them from main memory applications.

6.3.2.4.2 SONOS Memory Semiconductor Oxide Nitride Oxide Semiconductor (SONOS)
memory cells are generally considered to be a natural extension of Flash memory technology. Rather
than utilize a floating gate for the storage of charge an Oxy-Nitride-Oxide floating trap layer is
used. It is anticipated that SONOS memory cells will be constructed that are equal to floating gate

108
ECS Report

150
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1
6
m

s
e
c

3
2
m

s
e
c

6
4
m

s
e
c

1
2
8
m

s
e
c

2
5
6
m

s
e
c

5
1
2
m

s
e
c

1
s
e
c

2
s
e
c

4
s
e
c

8
s
e
c

1
6
s
e
c

3
2
s
e
c

6
4
s
e
c

Retention Time

#
 o

f 
b

it
s
 (

lo
g

)

To meet

spec

To give

margin

Figure 6.16: DRAM retention time distribution.

(FG) NAND cells. Endurance of SONOS cells has been observed to 107 cycles, which is on par
with FG NAND. One additional feature of SONOS cells is that the programming voltage is lower,
which is a definite advantage as the cells continue to shrink. SONOS cells also exhibit radiation
hardness[156].

One area of research for SONOS and other memory technologies is in 3-dimensional stacking of
memory cells. As scaling in X and Y become more challenging, integration in the Z-direction by
stacking multiple layers of memory cells is showing some promise[70].

6.3.2.4.3 MRAM Magnetic Random Access Memory (MRAM) is based on the use of
magnetic tunnel junctions (MTJs) as memory elements. MRAM is a potentially fast non-
volatile memory technology with very high write endurance. One of the issues with MRAM is that
it requires high currents to switch the MTJ bits. These write currents may be in excess of 5mA
per bit and present a host of design challenges. This reason alone likely limits MRAM to use in
smaller arrays in specific applications, such as rad-hard systems for space applications.

6.3.3 Main Memory Reliability - Good News

The DRAM used in today’s computing devices has proven to be one of the industry’s reliability
success stories. In part, this reliability is due to the on-chip redundancy and how this redundancy
is used to provide each memory chip with a maximum level of operating margin. While DRAM
for computing applications generally specifies a 64msec refresh period, the processes used to build
DRAM generally results in cells that retain a readable charge for several seconds.

Programmable redundancy was first suggested for DRAM as early as 1969; however, it
was only implemented on a production basis with the 64Kbit and 256Kbit density generations
in the mid-1980s. The programmability of these redundancy solutions has taken multiple forms,
and today is split between laser-trimmed fuses and electrical anti-fuses. The most notable

109
ECS Report

151
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Mechanical 

Defect

11%

DRAM Fails

37%

No Problem Found

52%

Figure 6.17: Memory module RMA results.

advantage of the electrical anti-fuse is that the arrays can be repaired late in the manufacturing
process, even after packaging and burn-in.

Currently, DRAM manufacturers are using all available fuses to maximize the margin in the
devices, as illustrated in Figure 6.16. It might be possible in the future to reserve a portion of the
DRAM redundancy elements for use within an operational system such that field failures could be
repaired in a live system. Clearly this would not be possible with laser-trimmed fuses. For electrical
anti-fuses there are still challenges. No standards exist for accessing these fuses and even how these
fuses interact with the memory array. Even within one manufacturers product portfolio there
are often significant differences in fuse configurations between parts. “Super-voltages” need to be
applied to appropriate interface pins which may not be compatible with other elements connected
to those pins. Some engineering could resolve these issues although it is unlikely such a system
would find its way into mass-market commodity DRAM.

6.3.3.1 Trends in FIT Rates

A FIT is defined as the failure rate for one billion operational hours. Existing mature DRAM
products have shown tremendous improvements in FIT rates, even into single digits (less than 10
failures per billion hours). However, the sheer volume of memory, and number of potential memory
devices, in at least the largest of Exascale machines will ensure that memory failure is an issue
that must be dealt with. For example, if the memory FIT rate is 5 per memory device, and an
Exascale machine has 0.1 Exabyte of memory made from 1 Gigabyte memory devices, the system
could experience a memory failure every two hours. Clearly the Exascale machine must be designed
with some resiliency for failures in the memory subsystem.

One common source of failures today is not accounted for in these FIT numbers - the memory
DIMM sockets. The data in Figure 6.17 from a major manufacturer of memory devices shows the

110
ECS Report

152
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



distribution of RMA (Reliability, Maintainability, and Availability) results on analysis on
reported failures in that company’s memory modules. Of the 52% which indicate “No Problem
Found” it must be assumed that issues with module sockets are responsible for a large portion of
the returns.

While RMA data is typically indicative of early field failures, the memory socket problem may
also have a long term aspect. Anecdotal evidence from a large support organization indicates that
simply removing and re-inserting the memory modules cures nearly all memory-related problems.

6.3.3.2 Immunity to SER

Memory soft errors due to ionizing radiation are a common part of the collective experiences of
most large system designers. As recently as 2003 at least one supercomputer was built without
regard for soft error rates, and demonstrated its usefulness as a cosmic ray detector rather than as a
computer. This system was subsequently dismantled and re-built with support for Error Correcting
Code (ECC) memory with much better success.

While soft error rate (SER) is a bad memory (pun intended) for the industry, the good news
is that, for properly designed devices and systems, SER for DRAM is but a memory and DRAM
memory is largely without SER.

What makes DRAM SER resilient? Ionizing radiation may be viewed as discrete events at the
silicon level. Such radiation has finite energy. DRAM cells, word lines, and bit lines are all highly
capacitive. These forms of ionizing radiation simply lack the energy needed to affect the cell. Even
when a cell would strike one of these nodes, the timing of the strike would need to be at just
the right time to even be noticed. Furthermore, DRAM cells are so small that they individually
represent a small target, but collectively represent a large capacitance in a unit area. If ionizing
radiation strikes the silicon, there is a lot of capacitance in the area to absorb the effect. Certain
nodes in the DRAM device could still remain sensitive to ionizing radiation, however the industry
has been careful to avoid layouts that are such. This is particularly true of the sense amp area.

SRAM cells are not so fortunate. In order to allow increased operating speeds with reasonable
power the SRAM cell uses very low capacitance nodes. As SRAM cells are quite large, 140F2, they
present a very large target for ionizing radiation. To keep SER at reasonable levels SRAM arrays
must employ careful layouts - such as ensuring that neighboring cells are addressed in different
words - and must employ external error correction.

6.3.3.3 Possible Issue: Variable Retention Time

There is a seldom-discussed characteristic of DRAM that must be addressed due to the impact it
could have on an Exascale system. This issue is the Variable Retention Time, or VRT, bit.
Sometimes called “flying bits” the VRT bit is one that was first publicly acknowledged in 1987
by AT&T Bell Labs[16], and was confirmed by IBM[6], to exist in all known DRAM technologies
and process nodes. The VRT bit is a memory bit that shows changes in its retention behavior,
typically flipping its retention time between two values due to some external influence. This external
influence might be temperature (packaging processes, reflow), stress (mechanical and electrical),
x-rays (from inspection), or other influences.

6.3.3.3.1 Causes The causes of VRT bits are uncertain. It is likely that the mechanism has
actually changed with different process generations. Today the most likely cause of VRT bits is the
possible existence of a trap in or near the gate of the access transistor. The activation of the trap

111
ECS Report

153
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1
6
m

s
e
c

3
2
m

s
e
c

6
4
m

s
e
c

1
2
8
m

s
e
c

2
5
6
m

s
e
c

5
1
2
m

s
e
c

1
s
e
c

2
s
e
c

4
s
e
c

8
s
e
c

1
6
s
e
c

3
2
s
e
c

6
4
s
e
c

Retention Time

#
 o

f 
b

it
s
 (

lo
g

)

To meet

spec

To give

margin

Cell C

Cell A

Cell B

Figure 6.18: Variable retention time as it affects refresh distribution.

possibly affects the leakage of the access device, moving retention from long to short or from short
to long.

6.3.3.3.2 Effects Consider the distribution of retention time for the billion-plus bits on a
DRAM device. As previously discussed, redundancy in the array and fuses are used to remove
short retention time cells from the array of cells seen by the system. Additional redundancy and
fuses are used to provide a margin between the specified refresh time for the device and the refresh
distribution of cells in the array. Now suppose the DRAM device is subjected to one or more of the
VRT trigger events. It might be the DRAM being reflow soldered to a module PCB. It could be
the injection molding package operation. It could be PCB inspection. If a cell is affected by this
event and experiences a shift in its retention time to a time shorter than the refresh period seem
by the device in the system that bit may appear to be bad. Of course another trigger event may
cause the cell to return to its long retention time.

In Figure 6.18 a VRT shift in the retention time of Cell A or Cell B does not cause a noticeable
change in memory behavior: all bits still look good. However Cell C shifts it’s retention time
between an acceptable time and a time that is shorter than the system specified 64 msec. This cell
will show up bad if it is in the short retention time state, and good in the long retention time state.

6.3.3.3.3 Mitigation Fortunately the frequency of VRT cells is low, and it is statistically
unlikely that multiple VRT bits would show up in a single DRAM word. At the system level the
addition of ECC is sufficient to remove the risks of VRT cells. As process technologies evolve,
the industry continues to search for ways of limiting and reducing the prevalence of VRT cells in
devices. VRT should remain as a concern however, as circuits continue to scale and as innovative
packaging solutions are incorporated into Exascale systems.

112
ECS Report

154
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2002 A 2003 A 2004 A 2005 A 2006 A 2007 E 2008 E 2009 E 2010E 2011E

2Gb

1Gb

512Mb

256Mb

128Mb

64Mb

4M/16Mb

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2000 2001 2002 A 2003 A 2004 A 2005 A 2006 A 2007 E 2008 E 2009E 2010E 2011E

>DDR3

DDR2

DDR

SDRAM

Figure 6.19: Industry memory projections.

6.3.4 The Main Memory Scaling Challenges

As shown in other sections of this report, the Exascale system demands unprecedented volumes of
memory and that the memory must have both extremely high bandwidth and low latency. The
sheer volume of memory constrains the power of individual memory devices. To achieve desired
latency and bandwidth requires new architectures and interfaces between CPU and memory.

While commercial systems would greatly benefit from the types of architectures and interfaces
discussed in this document, evolution of commercial memory is driven by committee (JEDEC)
and may not serve the needs of such Exascale systems.

6.3.4.1 The Performance Challenge

Memory performance may be broken into two components: bandwidth and latency. Commercial
DRAM evolution continues to improve interface bandwidth, while sacrificing memory latency. As
the industry has moved from DDR to DDR2 and now to DDR3, the interface speeds have increased
while the latency has also increased. The reason for this is straightforward. As the interface speed
increases the memory chips must incorporate deeper and more complex pipelining logic due to the
near constant access time for the array. Unfortunately the additional logic consumes more silicon
area and more power. The challenge for the Exascale system will be to deliver the performance
while simultaneously decreasing die size and power.

Commodity DRAM is forecast to continue density scaling with modest improvements in interface
speed. The iSupply data[73] in Figure 6.19 show the projected trends for commodity DRAM. The
Y axis in both cases is the percent of chips shipped.

6.3.4.1.1 Bandwidth and Latency DRAM can deliver higher bandwidth and lower latency.
Figure 6.20 shows a die photograph of a reduced latency DRAM (RLDRAM) device. This device
uses architectural changes to the sub-arrays to achieve faster array access times. There is a sig-
nificant 40-80% die area penalty in making this type of change to the array. Additionally, this
part supports a 36-bit wide interface, which has some additional die-size impact (more interface
logic in the middle). If an Exascale system is to take advantage of lower DRAM latency and high
bandwidth, a new architectural approach must be taken.

6.3.4.1.2 Tradeoffs There are some tradeoffs that can be made between bandwidth and la-
tency. One tradeoff demonstrated in commodity DRAM is the use of additional I/O pipelining

113
ECS Report

155
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



(a) A Conventional DRAM (a) A Reduced Latency DRAM

Figure 6.20: Reduced latency DRAM.

Figure 6.21: Center-bonded DRAM package.

to give bandwidth, at the expense of latency. Some non-standard DRAM architectures have even
gone beyond commodity DRAM in this regard. This tradeoff has made sense for DRAM manu-
facturers as the peripheral transistor performance has been lagging behind that of logic processes.
The additional pipeline stages become necessary to achieve the high bandwidth specifications. As
in CPU architectures, the logic between pipeline stages is also reduced as the frequency climbs. Of
course, an unintended tradeoff made when following this course is that the logic power and logic
area of the DRAM increase.

One interesting study could be made of the possible power and performance results of an
architecture which minimizes I/O pipelining logic, utilizing wide I/O buses, and instead utilizes
some silicon area for improving latency and power through array segmentation.

6.3.4.1.3 Per-pin Limitations DRAM processes have been optimized for low leakage (in-
creased data retention time) and high manufacturability. Low leakage transistors are not on par
with high performance logic transistor performance. In addition, DRAM devices are generally
optimized towards low pin counts for low cost packaging and low cost test.

Commodity DRAM has traditionally favored full-swing, single-ended signaling, although next
generation DRAM may have low-voltage differential signaling. While differential signaling will
likely double the signal bandwidth, it takes twice as many pins to deliver the data. Power will
likely climb again.

6.3.4.2 The Packaging Challenge

Commodity memory packaging is driven largely by cost. A standard lead frame technology remains
the preferred low-cost package for most applications. However, this is changing. In certain markets,

114
ECS Report

156
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



the need for increased density or improved signal integrity justifies additional packaging expense.
The micro-FBGA packaging utilized in some server memory modules is one such example. Most
commodity DRAM solutions rely on memory die with centrally-located I/O pads. I/O is limited
to one or two rows of contacts that run down the center of the die. Figure 6.21 illustrates a cross
section of a commodity micro-FBGA solution.

If the Exascale system requires memory with wider I/O, it is unlikely that existing packaging
technologies will provide a viable cost-effective solution. Pin count, memory density and signal
integrity likely drive the solution towards some sort of 3D die-stacking technology. There are many
such technologies, but many are not suitable for DRAM. Wire-bonded solutions allow limited
stacking as they typically require die periphery connections.

Existing commodity DRAM is already a highly 3D device. Cell capacitors, whether trench or
stacked technology, are high aspect-ratio devices either constructed atop the silicon or etched into
it. Capacitor surfaces are intentionally roughened to increase surface area. Access transistors are
highly-engineered 3D structures optimized with unique channel profiles to reduce leakage.

In order to achieve densities required in certain applications, DRAM devices have been stacked
at the package level for years. Only recently have stacked die-level DRAM devices been in high-
volume production. Innovative packaging technology has enabled these solutions, but the industry
is advancing towards more integrated stacking solutions that can be achieved at the wafer scale
using semiconductor processing techniques.

Through silicon vias compatible with DRAMs are under development at most DRAM manu-
facturers. Interest in stacking DRAMs also comes from outside the DRAM industry as others look
to integrate more power-efficient or high performance multiprocessor solutions.[16][80]

Some of the challenges with efficient stacking of DRAM are related to the existing 3D structure
of the cells. To efficiently stack die requires die that are sufficiently thinned so that the through-
wafer via etch may be done economically. However, the 3D structure of the cell limits the degree to
which the die may be thinned. As previously noted, thinning of the die may also affect the refresh
performance of the DRAM cells. Additional research is needed to overcome these challenges to
develop a 3D stacking process that is high-yield and economical.

6.3.4.3 The Power Challenge

The Exascale system will face major challenges in the area of memory power consumption. Power in
DRAMs come from two major sources: accessing the memory arrays, and providing bits off-chip.
Commodity memory devices have only recently begun to address power concerns as low power
DRAM devices have become standard for applications in mobile phones and portable electronics.
Most often these DRAM devices have achieved power savings through modest process enhancements
and architectural advances. In many cases the architectural advances have been towards improving
the standby current, with a goal of improving battery life for portable consumer electronics systems.
The Exascale system will demand a more aggressive approach to power management. Once again,
this is due in large part to the sheer scale of the system. However, one point must be clearly
understood: the DRAM cells themselves are very efficient. It is not the cells, but rather the
interface to those cells that is the major consumer of memory power.

6.3.4.3.1 Module Power Efficiency Figure 6.22 illustrates the historical trend for power in
commodity memory modules as a function of off-bit bandwidth. Each such memory module has
multiple DRAM die that are driven together, and together provide system bandwidth. As can be
seen, the power efficiency of memory, measured in mW/GB/s is improving at only a modest rate.

115
ECS Report

157
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1

10

100

SDRAM PC133 Module DDR-400 Module DDRII-800 Module DDR3-1333 Module

B
a
n

d
w

id
th

 (
G

B
/s

)

1

10

100

1000

10000

P
o

w
e
r 

E
ff

ic
ie

n
c
y
 (

m
W

/G
B

/s
)

Bandwidth GB/s mW/GB/s

Figure 6.22: Commodity DRAM module power efficiency as a function of bandwidth.

6.3.4.3.2 Cell Power Memory power at the cell level is fairly easy to understand. A DRAM
cell may simply be viewed as a capacitor which must either charge a bitline or be charged by that
bitline. The DRAM capacitor is currently in the range of 25 femto Farads for most commodity
applications. The bitline capacitance is considerably higher, typically several times that of the cell
capacitance. If one assumes a total capacitance of 100 fF and a cell voltage of 1.8V then the energy
to write or read a cell may be approximated as:

Energy = Capacitance ∗ V oltage2 = 100fF ∗ 1.8V 2 = 81femtoJoules (6.9)

This level of energy efficiency is never seen at the periphery of the memory device. A memory
cannot exist without the row and column decoders required to access the desired cells. Steering
logic is required to direct data from sense amps to I/O. All of these consume additional energy
regardless of the type of memory cell technology employed.

Voltage scaling is slowing for DRAM as it is for logic. Figure 6.23 shows the trend in DRAM
operating voltage, which is not expected to scale far beyond 1 volt. The possibility of reduced cell
capacitance, device variability in the sense amplifiers and noise margin are all contributors to a
slowing of voltage scaling.

An area of research worthy of study would be development of the technologies required to scale
DRAM cells and periphery circuitry to lower voltage operation. Operation at 0.5V is, in theory,
possible, but remains out of reach with current developmental paths. Such research could bear
significant commercial dividends as well. By some estimates[87], data centers consume 14% of the
country’s power production growth. The same study estimates memory power consumption to be
27% of the data center’s power load.

6.3.4.4 Major Elements of DRAM Power Consumption

As shown in the previous section, DRAM cells are actually quite efficient by themselves. However,
there remains room for improvements to the cell. Voltage scaling must be extended and is not
supported by current roadmaps and research. Voltage scaling must be extended to the periphery
of the DRAM array as well, a task that also remains out of the reach of current roadmaps and

116
ECS Report

158
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0

1

2

3

4

5

6

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

V
o

lt
a
g

e
Mainstream

Enthusiast

Figure 6.23: Commodity DRAM voltage scaling.

DDR2-400 IDD Specifications
Operation Symbol Current

Idle IDD2P 7ma
Refresh (Burst) IDD5 280ma

Precharge IDD2Q 65ma
Activate IDD1 110ma

Read IDD4R 190ma
RWrite IDD4W 185ma

Table 6.5: Commodity DRAM operating current.

research. In order to understand the impact of DRAM periphery in the overall memory power
picture it is helpful to study current devices and trends.

6.3.4.4.1 DRAM Operating Modes DRAM operation may be broken into six operations:
Idle, Refresh, Precharge, Activate, Read, and Write. For the purposes of this discussion on
Exascale systems we may ignore the power down modes that are often used in notebook and desktop
computers in their Standby operation. For a state of the art DDR2-400 memory device, typical
operating current for each of these operations is shown in Table 6.5, along with their common
notation.

As Idle is of little interest, and Refresh is a small percentage of overall operation we will focus
our attention on the Precharge, Activate, Read and Write operations.

Before a DRAM cell can be read, the bitlines associated with that row must be brought to a
V/2 level, where V is the operating voltage of the DRAM array. This is the Precharge operation
and is really just a preparation for a Read or Refresh operation.

The Activate operation is the opening of a memory row for a read or write operation. During
the Activate operation the row decoders select the appropriate wordline and drive that wordline to

117
ECS Report

159
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Figure 6.24: Block diagram of 1Gbit, X8 DDR2 device.

a higher pumped voltage, typically approximately twice Vdd. As the cells charge the digit lines the
sense amplifiers are activated. As far as the array is concerned this is the highest power operation
the array experiences.

Steering the data from the sense amplifiers, through registers and pipelines to the output and
driving the data from the part accounts for the Read operation power.

Similarly, a write operation begins with a Precharge and Activate. As with the Read operation,
the row decoders must decode and drive the appropriate wordline with the pumped voltage. The
written data is driven into the array by the sense amplifiers. The bits in the row that are not being
written are refreshed in this same operation.

6.3.4.4.2 DRAM Architecture The block diagram of a commodity DDR2 DRAM device of
Figure 6.24 is representative of the architecture of any modern DDR2 or DDR3 DRAM. However,
there are several elements not shown in Figure 6.24 that are of import as one considers power and
performance of the memory array.

First, the block diagram does not show the charge pumps necessary to drive the wordlines. The
optimized low-leakage transistors which comprise the access devices in the memory array require
this pumped voltage to enable low RDSon .

Second, the block diagram does not show the actual construction of the memory banks. Each
of these 8 banks is further broken down into multiple sub-banks, which are further broken down
into multiple mats, each of which is further divided into multiple sub-arrays. While the diagram
indicates a single 14 bit to 16,384 row decoder per bank, in reality there are many decoders that
drive the individual sub-banks, mats, and sub-arrays.

Finally, the “I/O Gating and DM Mask Logic” block is greatly simplified. Helper flip-flops
store the output of the sense amplifiers. A critical speed path in the architecture on most designs
is the gathering and steering of data to and from the multitude of sub-arrays. It is a complex logic
element that incorporates most of the fastest (and therefore most power-hungry) transistors in the

118
ECS Report

160
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0

50

100

150

200

250

300

IDD0 IDD1 IDD4R IDD4W

C
u

rr
e
n

t 
(m

a
)

Ioff

DLL

Command/Address

Total Core

Core Data Path

Figure 6.25: DDR3 current breakdown for Idle, Active, Read and Write.

device. Also included in this logic are structures for device testing.
Figure 6.25 tallies the current drawn in each of the major sections of a commodity DDR3 DRAM

device as a function of operation mode. Multiplying this by Vdd and by the percent of time that
the chip is performing that type of operation yields power. The numbers presented are similar to
those from a DDR2 device as shown in Figure 6.24.

This figure illustrates what has been said before: The total core power is dwarfed by the power
of the surrounding circuitry when the device is operating.

6.3.4.4.3 Power Consumption Calculations An accurate memory power calculator is be-
yond the scope of this report. Such technology does exist for today’s commodity DRAM devices
and the reader is invited to experience one[106]. Tools for analyzing SRAM power and allowing
architecture optimization have existed for many years. One such tool, CACTI, shows some po-
tential and could be enhanced to support DRAM architecture analysis and the advanced ITRS
roadmap[158][98][145].

For the purposes of this report the needs of the Exascale machine must be considered, especially
a data center-sized system. It is safe to say that the commodity DRAM roadmap does not fulfill
the needs of the Exascale machine. Power consumption is simply too great for the type of memory
footprints under consideration. For example, given that a DDR3 chip today consumes just over 600
mW/GB/sec, the power budget for an Exascale data center machine requiring 1 EB/sec of main
memory bandwidth would be just over 600 megawatts, which is simply not viable.

But step back for a minute and consider the memory at the cell level. As previously stated,
DRAM cells are not inefficient, with cells requiring only about 80 femto Joules for switching. If one
considers just a memory array delivering 1 EB/sec bandwidth, these DRAM cells consume only
about 200 Kilowatts of power! (based on a future 1 volt, 25fF cell cap). When bitline capacitance
is added, the number becomes 800 Kilowatts, based on a cell to bitline cap ratio of 1:3[79].

In current DRAMs, one must consider the power consumed across the entire row. In typical
119

ECS Report

161
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



commodity DRAM, 8K bits are accessed for any read or write operation. If the system is able
to use additional data from the 8K row then the row may be left “open” for sequential accesses.
However, in practice there is usually little locality in memory references, and it is most efficient to
“close the row” to prepare for another random access to the device. What is the power penalty paid
here? For a commodity 8-bit wide DRAM device that bursts 4 bytes to fill a cache line, and with
an 8K bit row, the power consumption jumps to over 51 Megawatts for 1 EB/sec. (Note that the
row access rate is now reduced to 1/4th of the previous due to the 4-byte burst at the interface.)
Clearly, over-fetching of unused data by opening an entire DRAM row is the most significant power
problem with scaling commodity DRAM architectures to the Exascale machine.

Driving the wordline/indexwordline can also consume substantial power. Here, the voltage is
pumped, and the line is long, resulting in significant driving energy. If we assume the wordline
capacitance is 3pF for the entire 8K row, and that a word line must be driven to 2 ∗ Vdd at a rate
1/4th that of the data date (burst transfer length of 4), the power consumption of the aggregate
Exascale memory wordline is about 1.8 Megawatts for the same future 1V memory cell. Of course,
this does not include any of the pumps, level translators or row decoder power.

It should be clear that the DRAM memory cell power is not the limiting factor for the power
consumption of the Exascale memory subsystem. Other technologies may be proposed for the
memory cell, but these will result in the same power-hungry memory subsystem if the periphery of
the array is required to perform the same types of operations.

Future research directions to enable the Exascale memory subsystem must include analysis of
techniques to reduce power consumption around the memory array.

6.3.5 Emerging Memory Technology

There is currently a significant effort world wide to develop new non-volatile random access
memory (NVRAM) that can complement or replace existing memory and storage technologies.
While many different NVRAM contenders are rising to this challenge; at this stage, it does not
look like any will replace an existing technology outright. However, there may be applicability
with new system architectures that place a layer of NVRAM between DRAM and magnetic disk
storage to buffer the latency and bandwidth gaps between present memory and storage technology
options. Driving this bandwidth gap wider (and thus making such architectures more valuable) are
two trends: (i) off-chip access requires more and more clock cycles and (ii) significant nonvolatile
storage is demanded by an increasing number of applications.

Today the highest density emerging memory technologies will meet this need by combining a
dense crosspoint memory array with a fast, nonvolatile crosspoint device. A crosspoint memory
offers the highest possible 4F2 cell density in a single layer, and most variations offer the possibility
of significantly improving over this by being able to stack many layers of crossbars on top of a
single addressing and control layer. Several device technologies may offer the needed combination
of high bandwidth and low-latency nonvolatile electrical switching. These technologies include
phase-change PCRAM, ferro-electric Fe-RAM, magnetic MRAM, and resistive RRAM[29][51][14].

Of these, FeRAM and MRAM devices are currently the most mature, with 1-4 Mb chips avail-
able for niche applications now, but expansion into large-scale computing environments has been
hampered by poor device scaling (these technologies are limited in size by super para-electricity
and super para-magnetism, respectively, which are made worse by the inevitable high temperature
operating environments of an Exascale system), complex device structures and large fluctuations
in corresponding behavior, and high power demands.

Phase change RAM are also power hungry, and show mechanical device instability over time.
Resistive RAM devices based on various metal sulfides or oxides, although less mature at present,

120
ECS Report

162
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Addressing nanoscale bits in a particular memory segment with four CMOS decoders in ‘CMOL’ memory. 

The figure shows only one (selected) column of the segments, the crosspoint nanodevices connected to one 

(selected) segment, and the top level nanowires connected to these nanodevices. The nanowires of both 

layers fill the entire array plane, with nanodevices at each crosspoint.  The inset shows a simple schematic 

of the CMOS cell structure for this memory. 

data        A
col1

select

select

A
row1

A
row2a

select

A
row2b

data (r2 lines)

barrel shifter
A

col2

data     

A
row2

A
row1

A
col1

CMOS UNIT CELL

Figure 6.26: Nanoscale memory addressing.

offer a compelling combination of relatively high speed/low latency (tens of nanoseconds), non-
volatility (months to years) and low energy (2 pJ per bit in present unoptimized devices) switch-
ing, which could meet checkpoint demands and might even shift the requirements for DRAM for
Exascale computing systems. At present, the metal oxide systems are receiving the most attention,
since they are closely related to materials already found in today’s integrated circuit fabrication
facilities (especially hafnium dioxide) and thus the amount of process work needed to incorporate
them onto chips and the worries of incompatibility with existing fabs is minimal.

One of the primary problems with crosspoint NVRAM is the multiplexer/demultiplexer
(mux/demux) needed to read and write information into the memory[28][56]. There have been
several schemes introduced to enable the transition from scaled CMOS to nanoscale crossbars,
including the use of coding theory to design defect-and fault-tolerant demuxes. The most ingenious
scheme was proposed by Strukov and Likharev[94], who showed that it is possible to layer an
extremely high density crossbar memory on top of a lower density mux/demux and still achieve
complete addressability with defect- and fault-tolerance (see Figure 6.26). They simulated the
bandwidth for such systems and determined that 1TB/s for a 10 ns read time with ECC decoding
was achievable as long as the array is large enough that all overheads are negligible. The major
challenge in this case would be to transmit the data off of or into an NVRAM package at the
data rate that it can handle - this may actually require photonic interconnect or close proximity to
DRAM to achieve.

To date, the highest density NVRAM structure that has been demonstrated is a 100 Gbit/cm2

crossbar that was fabricated using imprint lithography, Figure 6.27[76][77]. Since this structure is
made from two layers of metal nanowires that sandwich a layer of switchable dielectric material,
this technology is well suited to stacking multiple crossbars on top of each other. Since the storage

121
ECS Report

163
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



An Atomic Force Microscope (AFM) topograph of a defect-free 

region in a 17 nm half-pitch nanowire crossbar fabricated by 

imprint lithography. This corresponds to a local memory density of 

~100 Gbit/cm2.  Using the CMOL memory demultiplexing scheme 

of Strukov and Likharev, this crossbar could be placed over a two-

dimensional CMOS array for reading and writing. Multiple 

crossbars could be stacked on top of each other to achieve even 

higher bit densities.

Figure 6.27: Nanoscale memory via imprint lithography

Year Class Capacity (GB) RPM B/W (Gb/s) Idle Power(W) Active Power (W)
2007 Consumer 1000 7200 1.03 9.30 9.40
2010 Consumer 3000 7200 1.80 9.30 9.40
2014 Consumer 12000 7200 4.00 9.30 9.40
2007 Enterprise 300 15000 1.20 13.70 18.80
2010 Enterprise 1200 15000 2.00 13.70 18.80
2014 Enterprise 5000 15000 4.00 13.70 18.80
2007 Handheld 60 3600 0.19 0.50 1.00
2010 Handheld 200 4200 0.38 0.70 1.20
2014 Handheld 800 8400 0.88 1.20 1.70

Table 6.6: Projected disk characteristics.

is non-volatile, there is no static power needed to hold or refresh the memory, and thus the thermal
issues of stacking multiple memories are also minimized.

Defect tolerance in such devices is a major concern, with a growing effort to define fault tolerance
mechanisms and project potential characteristics[9][33][95][141][142][143][163].

6.4 Storage Memory Today

This section discusses the technologies from which mass store memory used to implement scratch,
file, and archival systems. Clearly, the major technology today is spinning disk, although there are
several others emerging.

6.4.1 Disk Technology

Rotating magnetic disks have been the major technology for scratch and secondary storage for
decades, so it was deemed important in this study to understand whether or not it can continue in
that role into the Exascale regime, and discussions were held with leading disk firms, along with
compilations of relevant historical data[2].

Disks have several major properties that need to be tracked: capacity, transfer rate, seek time,
and power. Table 6.6 lists projections of these properties for three classes of disk drives:

Consumer: high volume disks where capacity and cost is paramount.
122

ECS Report

164
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1

10

100

1,000

10,000

100,000

1995 2000 2005 2010 2015

S
in

g
le

 D
ri

v
e
 C

a
p

a
c
it

y
 (

G
B

)

0.01

0.10

1.00

10.00

100.00

1,000.00

#
D

ri
v
e
s
 p

e
r 

E
x
a
b

y
te

 (
M

il
li

o
n

s
)

Historical Consumer Enterprise Handheld

Historical: #/EB Consumer: #/EB Enterprise: #/EB Handheld: #/EB

Figure 6.28: Disk capacity properties.

Enterprise: disks where seek and transfer time is paramount.

Handheld: disks where power and small size for embedded applications are paramount.

6.4.1.1 Capacity

To put these projections in perspective, Figure 6.28 graphs both historical and projected capacity.
As can be seen, 10X growth over about 6 year periods seems to have been the standard for decades.
Assuming that the basic unit of secondary storage for data center class systems is an exabyte, then
depending on the type of drive, between 83 thousand and 1.3 million drives of 2014 vintage are
needed per exabyte. Consumer drive technology, with its emphasis on capacity, requires the fewest
drives, and handhelds the largest.

Any additional drives for ECC or RAID are not counted here, so these numbers are optimistically
low.

Also not studied here is the actual physical volume needed for such drives.

6.4.1.2 Power

Another major parameter is power. Figure 6.29 projects the active power in MW for an exabyte
of disks of each class. In 2013-2014, the range is between 0.8 and 3.8 MW, with enterprise class
taking the most power (bigger drive motors to run drives faster).

We note that the power numbers here are for the drives only; any electronics associated with
drive controllers needs to be counted separately.

Again ECC or RAID is not considered, so real numbers would be higher.
123

ECS Report

165
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0.1

1.0

10.0

100.0

2007 2008 2009 2010 2011 2012 2013 2014 2015

M
W

 p
e
r 

E
B

 (
A

c
ti

v
e
)

Consumer Enterprise Handheld

Figure 6.29: Disk power per Exabyte.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

2007 2008 2009 2010 2011 2012 2013 2014 2015

D
a
ta

 T
ra

n
s
fe

r 
R

a
te

 (
G

b
p

s
)

0

5

10

15

20

25

30

T
im

e
 t

o
 M

o
v
e
 1

 P
B

 (
s
e
c
)

Consumer Data Rate Enterprise Data Rate Handheld Data Rate

Consumer Time to PB Enterprise Time to PB Handheld Time to PB

Figure 6.30: Disk transfer rate properties.

124
ECS Report

166
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1980 1985 1990 1995 2000 2005 2010 2015

$
 p

e
r 

G
B

Figure 6.31: Disk price per GB.

6.4.1.3 Transfer Rate and Seek Time

The transfer rate of a drive provides one part of the overall bandwidth capabilities of a single drive.
This transfer rate is defined as the maximum data rate that data can be streamed from a drive,
given little or no head seeks. Achieving such rates requires data to be transferred in large (multi-
MB) segments, and to be physically recorded in optimal places on a drive so that when one block
is read, the next block to hold the next relevant chunk of data is directly under the disk heads.

For each of the three classes of drives, Figure 6.30 provides projections of the maximum transfer
rate under the above conditions.

Of course, in real systems the number of seeks and the average seek time become a dominating
consideration, especially for file systems with many small files. In general, the average seek time is
proportional to the rotational rate. Unfortunately, as shown in Table 6.6 this rate seems essentially
flat for all classes of machines, meaning that future drives of any class will not respond to seek
requests any faster than they do today. This will become a huge problem, especially for searching
directories and accessing many small files.

6.4.1.4 Time to Move a Petabyte

Also included on Figure 6.30 is an estimate of how much time it would be required to move one
PB of data, assuming that we were able to perfectly stripe the data across the number of drives
needed to contain an exabyte (from Figure 6.28), and that each such drive transferred data at the
maximum possible rate. This transfer time increases even as the transfer rate of an individual
drive increases because the number of drives over which the assumed exabyte of data is striped
is decreasing. This is a very relevant number in discussions related to scratch disks and time to
checkpoint data from memory to disk.

This is also again an optimistic minimal number, with no consideration for problems with drives
out of sync, skew between the data arrival from the individual drives, or seek times.

Also again ECC or RAID is not considered, so one would expect that additional time would be
needed to read out and perform any needed error detection or correction.

125
ECS Report

167
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



6.4.1.5 Cost

Although not a direct metric for this study, cost is still a consideration. Figure 6.31 gives some
historical data on price per GB of capacity. To get to an exabyte, we would change $1 from this
figure to $1 billion. The reduction rate in something in excess of 10X per 5 years, leading to a
predication of a few $10 millions for an exabyte in 2015.

Again neither RAID, controllers, nor interconnect cables are included in these estimates.

6.4.2 Holographic Memory Technology

Holographic memory refers to the use of optical holograms to store multiple “pages” of informa-
tion within some storage medium. Recording is done by splitting a light source into two coherent
beams, passing one through an image, and then recombining them on some photosensitive storage
material, typically a photopolymer of some sort[39]. The recombination causes interference pat-
terns, and if the intensity of the light source is high enough, the interference pattern is stored in
the material. Readout is achieved by shining just the original reference light source through the
material, and then detecting the resultant image.

For many materials, changing the angle of the light beams permits multiple holograms to be
stored in the same material.

Given that the original data is an “image,” such holographic storage systems are “page”-oriented
memories - reading and writing are in units of “images.” If an image is a “bit-pattern,” then in
terms of a digital storage medium, a holographic memory is said to be a page-oriented memory.
Typical sizes of such pages seem to be around 1 Mbit of data.

Two forms of such memories have been demonstrated to date: one based on 3D cubes of
storage material, and one based on disks. In 1999, a breadboard of a 10 GB non-volatile cube
was demonstrated which when combined with the required optical bench required 154in3[27]. More
recently, a commercial product3 has demonstrated a drive with removable optical disks with 300
GB capacity with an overall form factor of about 700in3, a seek time of 250 ms, a transfer rate of
20 MB/s, 1.48Mb pages, and page write times of about 1 ms. The storage material in the latter
demonstrated 500 Gb per in2[10], which is perhaps 10X the current density of hard disks, and
about 60 times the density of today’s DVDs. This density is what makes the technology of interest,
especially for archival storage.

In comparison, current DRAM chip density is around 84 Gb per in2, and flash is about 2-4X
that. Of course, this is density and not dollars per Gbyte, which today favors the spinning medium
by a significant factor.

If bits per cubic (not square) inch are the metric, then disk drive technology seems to hold
a significant advantage – a current commercial drive4 fits 1 TB in about 24in3, or about 100X
denser. Even silicon has an advantage, especially as we find better 3D chip packing. The current
holographic memories take a real hit on the volume needed for the optics, and unless techniques
that reduce this by several factors (perhaps by sharing lasers), this is unlikely to change.

In terms of seek times (a key parameter when doing random reads), current disks are in the
8-9 ms range, significantly faster than the early commercial offering. Again, this is an first-of
technology, and significant advances are probable, but there is still significant ground to make up.

3InPhase Tapestry 300r; http://www.inphase-technologies.com/downloads/2007-11PopSciAward.pdf
4Seagate Barracuda ES.2 http://www.seagate.com/docs/pdf/datasheet/disc/ds barracuda es 2.pdf

126
ECS Report

168
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



6.4.3 Archival Storage Technology

As discussed in Section 5.6.3.3, archival storage is experiencing both huge capacities, rapid growth,
and problems with metadata for huge numbers of files. Today, storage silos and tape farms of various
sorts are keeping up with the 1.7-1.9 CAGR of current installations, but it is unclear whether they
will be able to make the jump to Exascale, especially for the data center class of systems which is
liable to start off with 1000X of Petascale.

Besides the capacity issue, the metrics raised in [55], especially for “scanning” an archive as
part of advanced data mining applications, focus attention on the need for dense enough and fast
enough storage to hold not the data but the metadata that defines and controls the actual data
files, especially when the potential for millions of concurrent accesses is present. Such data is
read-mostly, at high speed and low power. It may be that some of the emerging solid-state storage
mechanisms, such as a rearchitected flash, may very well become an important player in designing
such systems.

6.5 Interconnect Technologies

The term interconnect revolves around the implementation of a path through which either energy
or information may flow from one part of a circuit to another. Metrics involve both those that
represent “performance” and are to be maximized, as in:

• current flow: as in when implementing power and ground delivery systems.

• signalling rate: as in the maximum rate that changes at the input of an interconnect can
be made, and still be detected at the other side.

• peak and sustainable data bandwidth: as when digital information is to be transferred
reliably via signalling.

and metrics that are to be minimized, as in

• energy loss: either during the transport process (resistive loss in the interconnect), or in the
conversion of a bit stream at the input into a signal over the interconnect and the conversion
back to a bit stream at the other end.

• time loss: where there is a latency involved between the launch of the information (or energy)
at one end and its reception and conversion back into a useable for at the other end.

The challenges for Exascale systems lie almost wholly on those metrics associated with infor-
mation transfer, namely latency, data bandwidth, and energy loss, and our emphasis here will be
on the metrics of data bandwidth (measured in gigabits per second) and on energy loss (measured
in pico Joules per data bit transferred).

Further, these challenges exist at multiple levels:

• on chip: over a distance of a few mm,

• chip-to-chip: where the chips are in very close coupling as in a stack,

• chip-to-chip: where the chips are further separated on some sort of substrate such as a PC
board.

• board-to-board within a single rack,

• and rack-to-rack.

127
ECS Report

169
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



16 – 32 x 1 GB DRAM

5 TF core

• 750 4-way cores

• 3000 FPUs

• 15 GBps system IO

core

L1

route 20 GBps?8 GBps

L2

1 GBps

L3

0.5 GBps

1/8 GBps

44 - 320 GBps per memory chip

Core

Node

Routers
… 12 x (4-16) x 30 Gbps

12 nodes

52 x 4 x 30 Gbps…

Module

…

32 modules

31 x 4 x 30 Gbps

21 x 4 x 30 Gbps

Cabinet

16 – 32 x 1 GB DRAM

5 TF core

• 750 4-way cores

• 3000 FPUs

• 15 GBps system IO

core

L1

route 20 GBps?8 GBps

L2

1 GBps

L3

0.5 GBps

1/8 GBps

44 - 320 GBps per memory chip

Core

Node

Routers
… 12 x (4-16) x 30 Gbps

12 nodes

52 x 4 x 30 Gbps…

Module

…

32 modules

31 x 4 x 30 Gbps

21 x 4 x 30 Gbps

Cabinet

Figure 6.32: Interconnect bandwidth requirements for an Exascale system.

6.5.1 Strawman Interconnect

The first three types of interconnect are clearly relevant to all three classes of Exascale systems,
“board-to-board” is relevant primarily to departmental and data center classes, and “rack-to-rack”
primarily to data center scales. For discussion, Figure 6.32 summarizes possible interconnect band-
width requirements for an Exascale data center system, as taken from the aggressive strawman
presented in Chapter 7.3. The following paragraphs then discuss what was assumed for the ag-
gressive strawman design in each of the above categories of interconnect, and set the stage for the
discussion of alternatives in the following sections:

6.5.1.1 Local Core-level On-chip Interconnect

These include intra-core and local memory access. These lines are at most a few mm long and
are point to point buses. At full swing with today’s technologies, these consume 110 fJ/bit/mm,
and at reduced swing, 18 fJ/bit/mm. Reduced swing circuits have the disadvantage of requiring
a amplifier receiver so the signal can be returned to full swing. A lower power receiver solution is
to use a clocked receiver, for example a sense amp style circuit, but this adds latency depending
on the clock phase used. Using low-swing signaling, L1-L3 memory bandwidth only consumes 3 W
and has negligible area impact.

6.5.1.2 Switched Long-range On-chip Interconnect

The strawman does not discuss on-chip routing. However, it is plausible that an Exascale computing
chip would benefit from a low-latency on-chip router. For example, the Intel Teraflop research

128
ECS Report

170
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



vehicle emphasizes on-chip routing [150]. Alternatives including using shared memory, and/or
supplementing routed interconnect with switched interconnect. The implications of switchable
routing will be discussed below.

6.5.1.3 Supporting DRAM and CPU Bandwidth

Large amounts of DRAM bandwidth are required. The suggested sustained bandwidth of 320
GBps per GB chip is about two orders of magnitude more than DRAMs provide today. At 30
Gbps per wire pair, 170 data pins per memory would be required. At 10 Gbps, 512 pins would
be required. While the lower line rate would reduce the complexity of the SerDes, it would, in
contrast, increase the packaging requirements. Assuming 16 GB of total memory and 30 Gbps
per pair, the CPU would require 2,720 memory data IO pins. Assuming a 32-bit address space,
64 differentially connected address pins would be needed per memory. Add in 16 pins for control,
gives a total of 250 pins per memory chip, or 4,000 pins for the CPU. Add in 4-16 pairs (12-40 pins
including control) for the assumed data IO, and 2,000 power and ground pins for power delivery
and integrity, gives a total of 6,000 pins on the surface.

6.5.1.4 Intramodule Bandwidth

In the strawman, each module is assumed to contain 12 nodes and 12 router chips (drawn here as
one router). At 12-40 pins per node, the router has to handle up to 480 I/O connections to the
nodes. It also has to handle ∼500 I/Os to the board.

6.5.1.5 Intermodule Bandwidth

The equivalent of the system backplane or midplane has to be able to manage 32 blades, each with
∼500 30 Gbps I/O in a point-to-point configuration.

6.5.1.6 Rack to Rack Bandwidth

In the strawman of Section 7.3, each rack is connected to every other rack by an unswitched 4x30
Gbps bundle (e.g. 8 wires carrying differential traffic or perhaps optical fiber). The strawman has
a router at each module level so that there are no more than two router chips between any two
CPU chips (neglecting any on-chip routing). Packet routing is assumed, with packet sizes starting
at 64 bits.

In general it is accepted that fully routable packet-style routing is needed for a large scale
computer that will be suitable for a wide range of applications. However, several large scale
applications do display regular inter-process interconnect patterns. Thus, it is possible, but not
verified, that additional performance (i.e. more efficient use of bandwidth) might be gained from
the addition of a circuit switch function. For example, some applications map well onto a grid
architecture, while others map well onto an architecture that reflects how operations are mainly
formed on the main diagonal(s) of a matrix. However, given the limited total power budget, adding
a circuit switch function could only be done by reducing CPU or memory, which would be an overall
win only if the remaining resources are more efficiently used with circuit-switched communication.
A performance analysis would have to be done across a broad range of applications before this
could be deemed worthwhile.

129
ECS Report

171
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



6.5.2 Signaling on Wire

Classically, virtually all signalling within computing systems has been done by current transfer
through wires. Within this category, there are two major circuit variants: point-to-point and
switched. Each is discussed in a separate section below.

Note that busses, where there are multiple sources and sinks electrically tied to the same wire
at the same time, are not addressed here - the aggregate capacitance of such interconnect makes
them rather power inefficient, at least for longer range signalling.

6.5.2.1 Point-to-Point Links

Point-to-point interconnect occurs when there is a well-defined source transmitter for the data and
a well-defined receiver, and the two circuits do not switch roles. Within this category, there are
three variants relevant to Exascale: on-chip, off-chip, and switched. Each is discussed below.

6.5.2.1.1 On-Chip Wired Interconnect At the 32 nm node, we estimate a line capacitance
of 300 fF/mm. With a 0.6 V power supply, full swing signaling gives a signaling energy of
110 fJ/bit-mm. Many schemes have been proposed to reduce interconnect power through voltage
scaling. These schemes require an amplifier at the receiver to amplify the swing back, with some
additional power needed. Alternatively a clocked sense can be used for a lower power receiver, with
the implication that the latency includes a crossing of a clock phase boundary.

When using lower swing interconnect, two benefits arise. The first is reduced power con-
sumption. A swing of 0.1 V reduces the power down to 18 fJ/bit-mm. A number of schemes have
been demonstrated, and it is not necessary to distribute a 0.1 V supply. The second benefit is
increased range without repeaters. Simple equalization schemes can be used instead. Repeater-less
ranges of excess of 10 mm have been demonstrated in 0.18μm technology [162], and it is reasonable
that even an interconnect to L3 cache might be possible with minimal or no repeater requirements.

It is important to remember that longer range interconnect are routed in the relatively coarse
wiring near the top of the chip, and that adding layers of this scale of wiring is not very expensive.
Thus given, the relatively modest amounts of on-chip interconnect anticipated in Figure 6.32 we do
not see providing this wiring, at reasonable equalized RC delays, to present any problems within
the scope of anticipated technologies.

6.5.2.1.2 Off-chip Wired Interconnect We will discuss two types of off-chip interconnect -
extensions of current wired schemes and chip-to-chip schemes assuming some style of 3D intercon-
nect.

Point-to-point electrical links are limited by the frequency-dependent attenuation of traveling
waves by skin-effect resistance and dielectric absorption. As these properties of wires do not change
as semiconductor technology scales, we do not expect substantial changes in the performance of
off-chip electrical links over time.

Today, relatively little attention is given to the power consumed in chip-to-chip communications
and thus there is tremendous potential for scaling. For example, a commercial standard 3 Gbps
SerDes link consumes approximately 100 mW, and can communicate up to 100 cm in distance.
This works out to 30 pJ per bit. There are multiple reasons for this high power consumption.
First, the link itself is operating at around 400 mV swings using “always-on” current-mode drivers
and receivers. Second, the overhead is significant - for clock and data recovery using a Phased
Locked Loop (PLL) or Delay Locked Loop (DLL) and for the muxes, demuxes, and flip-flops
require to interface the slow on-chip data rates to this boosted rate. Overall, today’s commercially

130
ECS Report

172
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



PowerTechnology Pitch

Through

Silicon Vias

Capacitive

face-to-face

Inductive

face-up

< 5 μm

36 μm

30 μm

1 -11 fJ/bit

2 pJ/bit

0.14 pJ/bit

Figure 6.33: Comparison of 3D chip stacking communications schemes.

deployed links have been designed with little attention to power consumption; the power can be
reduced by an order of magnitude or more.

The key to power reduced is to work out how power can be saved while giving a reliable link.
A key constraint is the signal to noise ratio (SNR) at the receiver. Achieving a Bit Error Rate
(BER) of 10−18 requires a signal to noise ratio of better than 9. (With today’s error correction
schemes it is generally accepted that power is better spent on increasing signal swing, to reduce
error rate, rather than on error correction.) Thus if the noise at the receiver is well controlled,
then the driver signal swing can be reduced, even down to 40 mV. Combined with voltage mode
circuits and careful management of overhead, a power level as low as 14 mW at 6 Gbps can be
demonstrated, or 2 pJ per bit [117]. Note that the bulk of this energy is used, not to transmit or
receive the bit, but rather on clock generation and recovery — to generate a transmit clock and
recover a receive clock. By 2010 we expect this signaling energy to be reduced to 0.5pJ per bit
as more efficient clocking circuits are developed and the entire link is operated from lower supply
voltages.

Signaling rates will continue to increase, but as these rates increase, maximum signaling dis-
tances will drop. Links operating at 6-10Gb/s are commonplace today. By 2015 we expect that
links operating at 30-40Gb/s will be available. These links will operate at reasonable bit error rates
up to about 30dB of attenuation. At 30Gb/s this corresponds to about 10m of 24AWG cable or
about 1m of PCB stripguide.

6.5.2.1.3 Direct Chip-Chip Interconnect This study anticipates that some form of 3D as-
sembly will be beneficial in an Exascale system. This leads to the possibility of large-scale de-
ployment of direct chip to chip interconnect schemes. A summary of direct chip-chip interconnect
schemes, and their state of the art, are summarized in Figure 6.33. Through-silicon-vias (TSV)
can be used to vertically stack and interconnect wafers and chips. At the time of writing, the state
of the art is a 3 wafer stack with less than a 5μm via pitch. The extra power of communicating

131
ECS Report

173
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



through a vertical via is about that of communicating through the same length of wire. Assuming
a 100μm via, that works out to 2 - 11 fJ, depending on the signal swing. However, in bulk CMOS
the TSV must be passivated, giving an effective dielectric thickness to ground much less than that
in the SOI case. Today, the state of the art is a 1 μm passivation, giving a capacitance for a 100
μm via of around 44 fJ (equivalent to about 150 μm of wiring). By 2015 this parasitic should be
two to three times better.

By 2015, 3D chip stacking with TSV’s will be far enough advanced that the limitations on
chip stacks, and via size will be controlled by thermal, power delivery and cost considerations,
not basic technology. Sub-micron TSVs have been demonstrated in the laboratory. However, the
requirements to get current in and power out will limit practical chip stacks to 4-6 die in any
application requiring high performance, high current, logic. 3D technology will be discussed more
in Section 6.6.

However, through-silicon via assembly requires extensive integration in one fab facility. A
simpler way to vertically integrate chips is to fabricate them separately and communicate through
matched capacitors or inductors, forming a series capacitor or transformer respectively. The size
must be large enough to get sufficient signal swing at the receiver - roughly 30μm is the minimum
feasible pitch. The power is higher as the signal swing at the receiver is reduced ( 100 mV) and
a bias network is needed to compensate for the lack of DC information. Power can be reduced
by using coding so that no receiver bias network is needed and by using clocked sense-amp style
receivers. The power numbers given in Figure 6.33 are all from published sources [107] [69]. There
are some limitations to these technologies not often discussed. In particular, the parasitics must
be well controlled, and dense grids can not be placed beneath these structures in a metal stack.

6.5.2.2 Switches and Routers

The pin bandwidth of routers for interconnection networks has been increasing at Moore’s law
rates [81]. We expect this exponential scaling to continue until routers become power limited. The
YARC router used in the Cray BlackWidow, for example, has a bidirectional pin bandwidth of
1.2Tb/s. If this router used efficient signaling circuitry with a signaling energy of 2pJ/bit, the
power used by the I/O bandwidth of the chip would be just 2.4W. Clearly we are a long way from
being power limited in our router designs. By 2015 we expect pin bandwidth to by scale another
order of magnitude. In our straw man we assume a modest 7.7Tb/s.

As the pin bandwidth of switches and routers increases, it is more efficient to use this increase
by making the radix or degree of the routers higher than simply to make the channels higher
bandwidth. In the 2015 time frame, routers with a radix of 128 to 256 channels each with a
bandwidth of 60-120Gb/s will be feasible. Such high-radix routers lead to networks with very low
diameter and hence low latency and cost[81]. High-radix networks can use a Clos topology or the
more efficient flattened butterfly or dragonfly topologies. The latter two topologies require globally
adaptive load balancing to achieve good performance on challenging traffic patterns.

While circuit switching consumes less power than packet switching, it provides less utility as
discussed above. However, it is commonly used on the local scale. For example, the Sun Niagara
includes a 200 GB/s crossbar in its eight-core 90 nm chip, at a power cost of 3.7 W (6% of a
total power of 63 W), or 2.35 pJ/bit. Here the crossbar was used to enable sharing of L2 cache.
The energy/bit should scale below 1 pJ/bit by 2015. The energy/bit consumed in a crossbar is
dominated by interconnect energy.

132
ECS Report

174
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Parallel Data In

(Electrical)

Encoder Serializer Modulator

Decoder Deserializer Receiver

Photon

Source

Parallel Data Out

(Electrical)

Optical

Channel

May be reversed

Optical

Router
Temperature Controller

Figure 6.34: Entire optical communication path.

6.5.3 Optical Interconnects

Optical interconnect uses photons instead of electrons for signalling. As such, all communication
is point to point, although in recent years optical routing that does not require conversion back to
electrical has been introduced experimentally. Both are discussed below.

Also, in these discussions it is important to make fair comparisons with wire-based signalling,
especially when considering power. In particular, this means accounting for all possible sources of
energy loss in a system, including at least the following (see Figure 6.34):

• The serializers typically needed to go from bit parallel data at the electrical end to very high
rate serial electrical bit streams.

• The encoders needed to add whatever error correcting information is needed to permit reliable
communication.

• The convertors needed to convert from the high rate serial electrical streams to photonic
streams.

– If photons are generated directly from the electrical signal, as with a laser diode, the
conversion inefficiency of the process must be included.

– When modulators are assumed for the conversion process, the power needed for the
original photon source needs to be included, and amortized over all channels it sources.

• If some form of optical routing is needed, the power that needs to expended to general the
routing signal to the router.

• The detection at the receiving end of the photons and conversion back into an electrical form.
This usually includes not only the conversion back into electrical form, but also clock recovery.

133
ECS Report

175
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



• The deserialization of the received high speed electrical output from the receiver into a data
parallel form (this usually also requires clock recovery).

• Decoders to process the bit stream and correct for errors.

• In addition, many of the emerging electro-optical and optical-optical devices are very tem-
perature sensitive, and heaters or coolers, along with temperature sensors and a feedback
controller, may be needed to maintain a constant temperature that permits a stable wave-
length.

6.5.3.1 Optical Point to Point Communications

Today, optical links are regularly used for longer range (> 10 m) rack to rack communications. The
existence of low loss fiber, means that less energy and volume is used to communicate over these
distances using optics, rather than electronics. The open question is to what extent optical com-
munications can displace electrical communications, including at the rack, board, and chip levels?
It is commonly agreed that optics offers certain fundamental advantages for interconnect, including
low loss, scaling without adding energy, and potential for high wiring density. However, practical
issues have always prevented its employment in these shorter range applications. Prime amongst
these is power consumption. Electro-optical and optical-electrical conversion has traditionally con-
sumed more power than that gained by the low link loss. Another limiter is the lack of a packet
routing technology. While all optical circuit switching is possible, no technology has yet shown real
promise of enabling packet routing. Other issues include the lack of highly integrated sub-systems,
the relatively low reliability of the III-V devices required (when compared with CMOS), and (often)
the need for tight temperature control.

Though there is an active community exploring these issues, and possible directions have been
identified, significant R&D investment is required to make short range optical interconnect more
useful. The potential for power reduction is being explored, as is the technology for integration.
These are being explored in anticipation of bringing optics into mainstream computing. Unfor-
tunately, the current markets for optical components are relatively small, so there is a bit of a
“chicken and egg” problem in justifying large-scale commercial investment.

Today, a typical short-range optical link consists of a vertical-cavity surface-emitting laser
(VCSEL) connected by a multi-mode fiber to an optical receiver. The advantages of this approach
include the low-cost VCSEL, and the ease of coupling to a (low-cost) multi-mode plastic fiber.
IBM has demonstrated a similar architecture for board-level optical interconnect, replacing the
multi-mode fiber with a multi-mode embedded optical waveguide. They have demonstrated this
capability at 5 pJ/bit NOT including serial/deserializing multiplexing (SerDes) and Clock and
Data Recovery (CDR), at a data rate of 10 Gbps. 250μm× 350μm pitch. Several other groups
have demonstrated similar capabilities, at least in part.

However, with the recent emergence of integration into an SOI substrate, a potentially better
link architecture is to follow the approach shown in Fig. 6.35. Instead of using a directly modulated
laser, a DC laser is used, and a digital modulator employed to provide a signal. A DC laser is more
reliable than a directly modulated laser, and less temperature control is needed. Modulation is then
done by modulating a fraction of this laser energy. Interference-based Mach-Zender or ring modu-
lators can be used. The receiver can be highly integrated by using a silicon process modified with a
Germanium step. As well as improved reliability, this approach offers great potential for improved
integration and power consumption. Everything beside the InP laser can be built in silicon. SOI
waveguides can be built using a 0.5μm± wide trace on top of glass. However, to function correctly,
the modulators must be connected using single mode waveguides. The modulators rely on subtly

134
ECS Report

176
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Laser

Source

Modulators Receivers + TIAs

Digital data stream #1

Digital data stream #n

Digital data stream #1

Digital data stream #n

Figure 6.35: Modulator approach to integrated optics.

changing the delay of one light path so as to enable constructive and destructive interference. Thus
they only work at one wavelength. The disadvantage of requiring single mode waveguides is that
the any external connection, via a single mode fiber, requires sub-micron alignment for acceptable
coupling losses (in contrast a multi-mode connection can withstand a multi-micron misalignment).
Though pick-and-place machines can be modified to align single fibers, no technology is currently
available to align multiple optical waveguides in parallel. Any modified printed circuit board style
process would not have the required large-scale registration. Large PCB panels that are available
today typically provide 10μm registration at best. Sub-micron registration is required to simulta-
neous align multiple single mode fibers. Step-and repeat lithographic processes provide the required
alignment but not over a large area. Nanopositioners could be modified to provide the required
precision but this has been little explored.

For example, Luxterra has demonstrated this approach with a 40 Gbps link, connected via
single fibers, with a total energetics of 55 pJ/bit, not including SerDes and CDR. However, this
speed is not going to be energy efficient, and, at slower rates, it is generally agreed that the energy
could be significantly better.

A potential power budget for a near future implementation, based in part on [78] is shown in
Table 6.7. The near term column could be considered part of a technology roadmap. Achieving
the numbers given in the long term column would require significant investment, and should not be
considered as part of the roadmap. Consider the “near term” column first. At 2 Gbps, the receive
power needs to be better than 0.2 mW to achieve a BER of better than 10−15. Assuming minimal
modulator and connector losses, a source of 0.3 mW is (aggressively) possible. However, this is the
DC power consumption. A typical interconnect only sends useful bits for around 10% of the time.
This activity factor has to be included in any calculation for energy per bit, based on DC powers,
and is accounted for in the Table. A modulator would have an input capacitance of around 100 fF,
giving 0.1 pJ/bit at 1 V supply.

The commercial state of the art for optical receivers is 10 mW at 10 Gbps, or 1-10 pJ/bit
depending on the assumed activity factor [58]. However, there is potential for scaling. A low
capacitance MODFET (modulated-doping field effect transistor) optical receiver has potential for
operating at 1 mW total power consumption at 2 Gbps, at acceptable BERs, giving the receive
energies listed in Table 6.7. Again, these amplifiers consume DC power. The total link power of a

135
ECS Report

177
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Component Near Term Long Term
Laser 0.3 mW per channel

@ 2 Gbps 0.15 pJ/bit same?
10% activity factor (AF) 1.5 pJ/bit same

Modulator 0.1 pJ/bit 0.01 pJ/bit
RX + TIA 0.5 pJ/bit 0.05 pJ/bit?

10% activity factor 5 pJ/bit 0.05 pJ/bit?
Sub-total 100% AF 0.75 pF/bit 0.21 pJ/bit

10% AF 7.5 pJ/bit 1.5 pJ/bit
Temperature Control ? ?

Table 6.7: Energy budget for optical modulator.

short-term scaled link is thus 0.75 pJ/bit for 100% activity factor and 7.5 pJ/bit for a 10% activity
factor. While the power achieved is not low enough to replace chip to chip links at the board
and backplane level, this level of power consumption has potential to favor optical interconnect at
distances over 50 - 100 cm.

The right hand column in Table 6.7 assumes aggressive long term scaling of the key technolo-
gies. These technologies should not really be considered part of the “roadmap” as considerable
R&D investment would be required to achieve the listed potential. Quantum Well Modulators
have potential to scale to 10 fF input capacitance, or smaller, permitting a ten-fold reduction in
modulator power consumption [30]. New classes of optical MOSFETs have the potential to allow
optical receivers to operate in voltage, rather than current, mode and reduce the power down to
levels comparable with a large CMOS gate [114]. These have potential to operate at power levels
of 0.05 pJ/bit and even lower.

One power consumption that is not included in Table 6.7 is that required for cooling. Optical
modulators require tight temperature control for correct operation, typically to ±10◦C. Typically,
active temperature control is used, often Thermal Electric Coolers (TEC). The additional
power that would be consumed operating an active cooler will depend on the total heat load at the
spot being cooled. Thus it would be a required overhead but difficult to estimate at this stage.

6.5.3.2 Optical Routed Communications

By adding additional modulators, the approach outlined in Figure 6.35 can be extended to build
an all-optical circuit switched architecture. Since each additional modulator consumes only 0.1
pJ/bit, the additional power over that shown in Table 6.7, would be minimal. Of course the
(probably) electrical network that must route the switching commands to the modulators must
also be taken into account. Thus, if modulator based optical interconnects were employed in an
Exascale computer, interesting circuit-switched functions might be added for minimal extra power
and cost. For example, Bergman proposes a low-latency crossbar architecture for future multi-core
computers[127].

However, optics still lacks the capability to enable the switching function most useful to the
interconnect network of an Exascale computer - a packet router. Packet routing requires that
routing header information accompany the data, so that the path taken by the packet can be set
up and taken down as the packet passes through the switch. This reflects the usually unpredictable
nature of intra-computer communications. To date, optical switches require a separate electrical
network for circuit set-up and re-route. This introduces an overhead of 10s’ of ns every time the
circuit is reconfigured. Thus they are best suited for computational tasks that benefit from node-

136
ECS Report

178
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



to-node bandwidth that changes substantially with each task, or for tasks that benefit from very
large bursts of data being routed between CPUs. At this stage, there is little evidence that the
potential throughout benefit of such switching would justify reducing another resource in order to
account for the required power, except for those links where optics is already justified over electrical
interconnect, i.e. longer inter-node links.

6.5.4 Other Interconnect

Other possible interconnect technologies that could impact HPC in the future include the following:

• Carbon Nanotubes (CNT). Due to their excellent conductivity, carbon nanotubes have
potential to permit an increase in wire density while also improving latency and power con-
sumption [59]. They can be routed tightly at low resistance, with a pitch better than 0.8μm.
Cho et.al. [59] predict a power consumption of 50 fJ/bit/mm at full swing. Thus a power
consumption of 6 fJ/bit/mm at reduced swing would be reasonable. However, given the
currently limited state of demonstration and the open technical issues involving patterning,
contacts, etc., it is unlikely that CNTs will be mature enough to be part of a 2105 Exascale
computer chip.

• Nano-enabled Programmable Crosspoints. The emerging resistive memories discussed
earlier in Section 6.3.5 also have potential to serve as the base technology for high-density
switch-boxes. These could reduce the area and power impact of SRAM-based programmable
switch boxes by almost an order of magnitude, enabling new ideas in configurable computing
to be investigated. So far, this concept has been mainly explored in specific applications,
so its potential impact on HPC is largely unknown. At the least, it would outperform the
crossbar switches discussed above, in at least power per operation. Given that a roadmap
exists for such memories to be commercially deployed next decade, their incorporation into
logic CMOS devices is plausible and should be considered.

6.5.5 Implications

The summary roadmap for interconnect is presented in Table 6.8. The three metrics evaluated
are wire density, power/bit and technology readiness. The energy/bit numbers come from the
discussion above. Wire density is for a single layer of routing only. On-chip long-distance wires are
assumed to have 2μm width and space. Chip-to-chip routing is assumed to have 1 mil (25μm) width
and 4 mil space (to control crosstalk). Note these numbers are per-wire. Differential routing halves
these numbers. PCB-embedded multi-mode wires have been demonstrated at 100μm width and
1000μm pitch. Single-mode waveguides can be much narrower but (as yet) can not be fabricated
on a large panels.

Overall, it is fairly clear that copper interconnect is here to stay, at least for the time frame
of an Exascale computer. Today the cross-over point between optics and electronics, in terms of
energy/bit and $/Gbps is at long distances - several meters. However, optical interconnect is highly
unoptimized. Unfortunately, this is largely due to the lack of a volume market for optimized optical
interconnect. With new, better optimized devices and circuits, together with greater integration,
the cross-over point is likely to shrink to something better than 100 cm, perhaps 50, perhaps shorter.

One significant advantage of optics is that, if desired, circuit switching can be added to point-to-
point optical interconnect with relatively little overhead. However, these new technologies assume
single-mode fiber, requiring sub-micron alignment. While the technology for single fiber alignment

137
ECS Report

179
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Technology Density
(wires/mm)

Power (pJ/bit) Technology Readiness

Long-range on-chip
copper

250 18 fJ/bit-mm Demonstrated

Chip-to-chip copper 8 2 pJ/bit. Includes
CDR

Demonstrated. Poten-
tial for scaling to 1
pJ/bit

Routed interconnect n/a 2 pJ/bit roughly the same for
packet

router or non-blocking
circuit switch

in 2015 1 pJ/bit
Optical State of Art
(multi-mode)

10 9 pJ/bit. NOT includ-
ing CDR

Demonstrated.

Optical (Single mode)
in 2010

300 7.5 pJ/bit Assumes lithographed

SOI waveguides
PCB-embedded
waveguide
does not exist

Optical (Single mode)
in 2015

300 1.5 pJ/bit At early research stage

Optical Routing Add 0.1 pJ/bit (2010)
for each switch

Optical - temperature
control

TEC cooler demon-
strated

CNT bundles 1250 6 fJ/bit-mm Undemonstrated

Table 6.8: Summary interconnect technology roadmap.

138
ECS Report

180
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Early demonstration only.  

Air cooled to < 117 W 

total.

2500 pairs @ 30 Gbps 75

Tbps / sq.cm

Vertical connections @ 100 um 

pitch 10,000 / sq.cm

Stacked Silicon Carriers

Limited by thermal and 

coplanarity issues.

62500 pairs @ 30 Gbps

1900 Tbps / sq.cm

Vertical connections @ 20 um 

pitch 250,000 / sq.cm

Stacked Silicon Carriers

Not very applicable to 

high performance 

systems

25 pairs total @ 10 Gbps

250 Gbps

1/mm on peripheryStacked 

Packages

Chip stack limited to 4-8 

chips, depending on 

thermal and other issues

In excess of 100,000 

Tbps/sq.cm. Really determined 

by floorplan issues

In excess of 10,000 vias per 

sq.mm. 

3D IC with 

Through Silicon 

Vias

Limited interconnect 

performance

Total: 100 – 200 pair @ 10 

Gbps 0.5 - 2 Tbps

(assumes memory) 

~10-40 wires/mm vertically 

around edge

3DIC Stack

2 signal layers is 

practical limit.

12 pair/mm @ 30 Gbps

= 360 – 720 Gbps/mm (1-2 

signal layers)

50 wires/mm/layer (2 signal 

layers)

Has to be packaged for I/O

Silicon 

Carrier

1 mil line/trace presents 

practical limit.

1 mm BGA ball pitch

6 pairs/mm @ 30 Gbps

= 180 – 720 Gbps/mm (1-4 

signal layers)

Package I/O: 500 pairs = 15 

Tbps

20 wires/mm/layer (2-4 signal 

layers)

~2,000 max total pin count

Laminate

(Ball Grid

Array)

CommentsBandwidth/mmWires/mm or sq.cmApproach

Early demonstration only.  

Air cooled to < 117 W 

total.

2500 pairs @ 30 Gbps 75

Tbps / sq.cm

Vertical connections @ 100 um 

pitch 10,000 / sq.cm

Stacked Silicon Carriers

Limited by thermal and 

coplanarity issues.

62500 pairs @ 30 Gbps

1900 Tbps / sq.cm

Vertical connections @ 20 um 

pitch 250,000 / sq.cm

Stacked Silicon Carriers

Not very applicable to 

high performance 

systems

25 pairs total @ 10 Gbps

250 Gbps

1/mm on peripheryStacked 

Packages

Chip stack limited to 4-8 

chips, depending on 

thermal and other issues

In excess of 100,000 

Tbps/sq.cm. Really determined 

by floorplan issues

In excess of 10,000 vias per 

sq.mm. 

3D IC with 

Through Silicon 

Vias

Limited interconnect 

performance

Total: 100 – 200 pair @ 10 

Gbps 0.5 - 2 Tbps

(assumes memory) 

~10-40 wires/mm vertically 

around edge

3DIC Stack

2 signal layers is 

practical limit.

12 pair/mm @ 30 Gbps

= 360 – 720 Gbps/mm (1-2 

signal layers)

50 wires/mm/layer (2 signal 

layers)

Has to be packaged for I/O

Silicon 

Carrier

1 mil line/trace presents 

practical limit.

1 mm BGA ball pitch

6 pairs/mm @ 30 Gbps

= 180 – 720 Gbps/mm (1-4 

signal layers)

Package I/O: 500 pairs = 15 

Tbps

20 wires/mm/layer (2-4 signal 

layers)

~2,000 max total pin count

Laminate

(Ball Grid

Array)

CommentsBandwidth/mmWires/mm or sq.cmApproach

1 mm

e.g. 2 wires/mm

Routable signal pairs per mm

per layer * # layers * bit-rate

per signal pair

Figure 6.36: Representative current and future high-end level 1 packaging.

is mature, there is no equivalent of the Printed Circuit Board in large scale single mode interconnect.
A significant investment would be needed for this technology to be available.

6.6 Packaging and Cooling

6.6.1 Packaging

For convenience, packaging is generally considered within the scope of a hierarchy, as follows:

• Level 1 Packaging connects, contains, and cools one or more silicon die and passives, such
as capacitors and resistors. A typical level 1 package would be an organic (plastic) surface
mount.

• Level 2 Packaging connects a set of level 1 packaged components on a common substrate,
such as a printed circuit board (PCB).

• Level 3 Packaging interconnects a set of level 2 packages. A typical structure would be a
backplane or midplane, into which a number of PCBs are plugged using separable connectors.
Commonly called a “rack,”a level 3 package might span a meter or more in distance and
connect several tens of PCBs.

139
ECS Report

181
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



In an Exascale computer, Level 3 packaging and rack to rack interconnectivity is not trivial,
but is not driven as much by technology as the other two, and is thus not discussed further. The
one key issue of connectivity is typically provided today by cables, electrical for shorter ranges and
optical for longer ranges.

6.6.1.1 Level 1 Packaging

An extrapolation of future capabilities based on current level 1 packaging technologies is given
in Figure 6.36. The most ubiquitous package technology today is based on organic (i.e. plastic)
Ball Grid Arrays (BGA) onto which chips are flip-bumped. The leading edge state of the art
is typified by the Endicott Interconnect Technology HyperBGA product [71]. This BGA supports
1 mil features and uses laser drilled vias to achieve high densities. Nonetheless, it is limited to a
maximum pin-out of around 2,000 pins, on a 0.5 - 1 mm grid. It represents the current limit for
manufacturing for laminate technologies. Exceeding these limits would require a level of precision
beyond that of today’s equipment, i.e. would require a sizeable R&D investment. Assuming half
the pins are used for power distribution, a 2,000 pin package can only support 500 signal pairs.
Assuming a future 30 Gbps capability on these pairs, that amounts to 15 Tbps, or 2 TBps total
in and out of the package. A previous section suggested a CPU I/O requirement of 0.7 - 10 TBps.
A HyperBGA package could support the low-end, but not the high-end of this range. Even at
the low-end, breakout to the next level of packaging with good noise control (see below) might be
difficult.

One way to increase the wire density beyond current laminate technologies would be to use
lithography instead of screen-printing. Lithography can be used on a silicon carrier to create very
high wire densities, down to 10μm line and space, though coarser features are often used so as to
improve yield. However, most current silicon carrier technologies are limited to 4 layers - power,
ground and 2 signal. Thus, the total wire density per unit of cross-section, for the entire wire stack,
ends up being about the same as that for a high-end laminate, due to the latter’s higher signal layer
count! This is due to planarity limitations introduced by the requirements for thick dielectrics so
that transmission line structures can be built. New concepts would be needed to make high layer
count silicon carriers. Note that the silicon carrier itself must be packaged, for example, on top of
a laminate.

The next row in Figure 6.36 shows commercial state-of-the-art 3D chip stacks, built using wire-
bonds or some form of stacking and edge processing [1]. These are often used for memories, so
as to improve their form factor and physical density. However, their I/O is relatively limited and
won’t support a stack of high bandwidth DRAMs as anticipated in this study. (Note, 10 Gbps I/O
rate is used here, rather than the more aggressive 30 Gbps to reflect the reduced capability of logic
built in a DRAM process.)

Through-Silicon Vias (TSV) can enable a 3D chip stack with very high internal connectivity.
This is a technology that is likely to be mature by 2015, partly because of current DARPA funded
efforts. The available vertical bandwidth is very high, and is limited by practical considerations such
as silicon area tradeoffs, etc. Several vendors are designing 3D integratable memories. However, it
is difficult to envision a vertical chip stack consisting of more than four to eight chips. There are
many practical reasons for this. First current has to be brought in and heat removed. Doing either
through a large number of chips is highly impractical except for very low-power circuits. Improving
power delivery or heat removal capability requires that more silicon vias be added to all layers, as
more chips are stacked. Second, test and yield issues works against high layer counts. Each chip
in the stack must either be pretested before integration, or methods to cope with the accumulated
yield loss introduced. Unfortunately, even an eight-chip stack (which is unlikely to have acceptable

140
ECS Report

182
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



heat removal) does not integrate sufficient memories with a CPU to meet the anticipated memory
needs.

Two other currently emerging technologies use silicon carriers to create 3D packages. One
approach involves adding additional interconnect layers and chips to a single carrier. Yet to be
demonstrated, there would be concerns about maintaining planarity and cooling. Since the chips
are essentially encased in polymer, heat removal would be as difficult as for the 3D case.

Another approach, currently being demonstrated by Irvine Sensors, involve stacking separate
silicon carriers using interconnect studs. Stress issues limit the width of the structure to two to
three cm. However, one significant advantage of this approach over the previous discussed one is
the ability to include heat spreaders in the 3D package. Irvine plans to demonstrate an air cooled
package, capable of dissipating a total of 117 W. With additional innovation, greater thermal
capacities would be possible.

6.6.1.2 Level 2 Packaging

Level 2 packaging almost invariably consists of a Printed Circuit Board (PCB). The state of
the art supports high capacity in one of two ways. The first way is to use fine line technologies
(1 mil traces) and laser drilled vias. However, the layer count is limited in this approach. The
second is to go to high layer counts and use conventional line widths: e.g. use a 0.2” thick PCB,
and support 4 mil ( 100mum) wide traces. Such a board might support 10 X-direction routed
signal layers, 10 Y-direction routed, and 20 power/ground layers. Using normal routing rules for
differential pairs would give a density of one pair every 28 mil (crosstalk forces the pairs apart).
The maximum cross-section bandwidth would be 28 pairs per signal layer per cm, or 280 pairs per
cm (10 layers), or 2800 Gbps (at 10 Gbps per pair for memory). This translates into a potential
cross-section bandwidth of 350 GBps per cm at 10 Gbps or 1.05 TBps at 30 Gbps.

A combination of a high end Single Chip Package (SCP) with a high end, thick, PCB would
enable such a packaged CPU to have a total bandwidth of 2 TBps with 30 Gbps signaling, and 666
GBps with 10 Gbps signaling. The limit is set by the package technology, not the board technology.
Today, there are no investments going on to improve the capacity of conventional packaging. This
would work if the required memory bandwidth was at the low end of the scale (16 memories × 44
GBps = 704 GBps) but not if larger memories or memory bandwidths were required.

Moving to a silicon carrier, single tier or stacked, does not immediately alleviate the situation.
A 1 sq. cm die could provide a total peripheral off-chip bandwidth of 600 GBps at 10 Gbps and 1.8
TBps at 30 Gbps. However, with careful yield management (using finer lines for short distances)
and planning, the I/O density could be increased locally just at the chip edge, to support possibly
two to three times this bandwidth. An example is given in [103]. However, this solution would still
not support the higher end of the possible bandwidth and capacity requirements.

Possible 3D solutions to providing sufficient memory bandwidth and memory capacity are dis-
cussed in Chapter 7.

6.6.2 Cooling

An Exascale computer presents a number of novel thermal design challenges, including the following:

• At the module level, any potential 3D chip assembly must be cooled sufficiently to ensure
reliable operation, to limit leakage power, ensure timing budgets are predictably met, and
to guarantee DRAM refresh times are accurate. Heat fluxes of up to 200 W/sq.cm. are
anticipated.

141
ECS Report

183
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Approach Thermal Performance Comments
Copper Heat Spreader Thermal conductivity = 400

W/(m.K)
Diamond Thermal conductivity = 1000

- 2000 W/(m.K)
Expensive

Heat Pipe Effective conductivity = 1400
W/(m.K)

Very effective

Thermal Grease Thermal conductivity = 0.7 -
3 W/(m.K)

Thermal vias with 10% fill fac-
tor

Effective Conductivity = 17
W/(m.K)

Thermal Electric Coolers Limited to less than 10 W/cm2

and Consumes Power
Carbon Nanotubes Excellent Early work only

Table 6.9: Internal heat removal approaches.

• At the rack level, the total thermal load is likely to be in the range of 10-200 KW. A solution
is required that supports this level of cooling while maintaining required temperatures and
permitting provisioning of high levels of system interconnect.

• At the system level, the total thermal load of an Exascale computer is anticipated to be 10s
of MWs, and this heat load must be properly managed.

6.6.2.1 Module Level Cooling

The main objective of module level cooling is to control the chip junction temperature in order to
minimize potential failure mechanisms such as electro-migration, and to minimize leakage currents
in memories and logic transistors. Typical objectives are in the 85 C to 100 C range. Generally,
chip level cooling is evaluated in terms of a thermal resistance:

Rθ = ΔT/Q (6.10)

where ΔT is the temperature drop and Q the total heat being transferred. For convenience,
thermal resistance is typically broken into two components, internal and external resistance. The
internal resistance is determined by the conductivity of the materials and structures between the
chip junction and the circulating coolant. The external resistance is determined by the ability of
the circulating coolant to remove this heat away from the chip vicinity.

Some of the available structures that are used for the internal portion of the heat flow are
summarized in Table 6.9. The last entry in this table is for an array of tungsten thermal vias that
might be used in a 3D chip stack. Assuming that 10% of the chip area is given over to thermal
vias, then the effective thermal conductivity is 17 W/(m.K). This calculation is only included to
illustrate the relative difficult of cooling chips internal to a 3DIC. Thermal Electric Cooling
(TEC) is included as a reference. TECs can remove heat without any temperature drop. However,
the supportable heat flux is limited and they consume almost as much electrical power as they
conduct heat power. Thus they are unlikely to be used in an Exascale computer except for points
requiring critical temperature control, such as optoelectronic modulators.

Available external cooling mechanisms are summarized in Table 6.10. The most common cooling
mechanism is forced air cooling using fans and heat sinks. There have been several demonstrations

142
ECS Report

184
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Approach Thermal Performance Comments
Air R = 0.6 − 1.0K/W Individual Heat Sink & Fan
(Finned for 12 mm die
Heat Sink) Can dissipate up to 100 W for

60 K rise
Water R = 0.3 − 0.6K/W Individual Heat Sink & Fan
(Channel for 12 mm die
Heat Sink) Can dissipate up to 170 W for

60 K rise
Requires 0.1 bar pump

Immersion R = 0.4K/W

Microchannel and Cooling ca-
pacity of 300 − 800W/cm2

pump 0.3 - 8 bar

Two-phase R = 0.1K/W

Spray Cooling and Cooling ca-
pacity of 300 + W/cm2

Refrigeration and R =
0.05K/W

Consumes more power than
heat removed

Table 6.10: External cooling mechanisms.

in which 100 W have been air cooled satisfactorily [161]. Air cooling capacity can be increased a
little by using larger heatsinks and louder fans.

Water cooling using a microchannel cooling plate built as part of the package can handle up
to 170 W based on existing technology [161]. The water is pumped through the cooler and then
circulated to an external air cooler. With cooling channels of around 1 mm width, a pump pressure
of around 0.1 bar is needed. Narrower channels improve thermal performance at the cost of bigger
pumps. Another concern with water cooling are the prevention and management of leaks.

Direct immersion in a non-water coolant, such as a FC-72, can be used to simplify the overall
cooling design. However, since these coolants do not offer the thermal performance of water, the
overall cooling solution tends to provide the same as direct water cooling. For example, [82] recently
a demonstrated a cooling performance equivalent to 0.4 K/W.

Other techniques have been long investigated but have never been implemented. Reducing
the channel size and integrating the channels into the silicon chip has been demonstrated many
times, and can improve thermal performance further. However, these introduce further mechanical
complexity, increase the potential for leaks and require stronger and more power hungry pumps.
Two-phase cooling (i.e. boiling) improves heat removal capacity (e.g. [74]) but at the expense
of complexity and the need to carefully manage the boiling interface. In this work, using 100μm
channels, 2W of pump power was needed to dissipate 3W from the chip, illustrating the power cost
of the pumps required for microchannel cooling. Spray cooling can support heat fluxes in excess
of 300W/cm2 with a better than 60 C temperature drop, but, again, at the expense of complexity.
Through refrigeration can be very effective it is unlikely to be used here due to the added power
consumption it implies. Cooling to liquid nitrogen temperatures takes twice as much work as the
heat being removed. Even cooling from an ambient of (say) 40◦C to 10◦C, takes 11% more work
than the heat being rejected.

Another issue that often rises in cooling design is the complexity introduced by the requirement
to get the same power, electrically, that is being extracted thermally. With a DC limitation of

143
ECS Report

185
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1 .E+ 03

1 .E+ 04

1 .E+ 05

1 .E+ 06

1 .E+ 07

1 .E+ 08

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

DRAM  Chip Count

Socket Count

ASCI Red I

ASCI Red II

ASCI W hite

Colum bia

ASCI Q

Earth Sim ulator

BlueGene/L

Ranger

Red Storm

ExaScale

ExaScale

C
A

G
R

=
1
.2

8

C
A

G
R

=
1.2

2

Figure 6.37: Estimated chip counts in recent HPC systems.

about 1 A per solder bump, 200 bumps are required just to distribute DC to CPU chip. Since
bumps will have to be added to reduce power/ground inductance so as to control simultaneous
switching noise, over 1,000 bumps might be needed unless alternative power delivery technologies
arise. Unfortunately, the bumped side of the chip is not terribly effective at removing heat.

A typical solution is to use the front side of the chip to get DC power in, and the backside to get
heat out. This approach is almost universally used. However, it complicates potential 3D designs.
This will be discussed further in Chapter 7.

6.6.2.2 Cooling at Higher Levels

No matter whether air or water cooling is used at the module level, it is very likely that the machine
as a whole will rely on air cooling above the module level, particularly as we go into either the
departmental and especially the data center class Exascale systems. This will require careful design
of the plenums etc., so as to efficiently manage air flow without excess noise.

For a data center system as a whole, at very best the target 20 MW of power has to be dissipated,
even if simply vented externally. If the external ambient is higher than desired, then air conditioned
cooling is required at least on the incoming air. To bound the problem, assume that 20 MW of
cooling is required. That is equivalent to around 70 M BTU/hour. An air conditioner with a
(future) SEER rating of 20 would consume 350 KW to provide this amount of cooling. Overall up
to 5% of the power budget is consumed in system cooling.

6.7 System Resiliency

While the failure rate of any particular component may be relatively small, the resiliency of a com-
puting system depends strongly on the number of components that it contains. This is particularly
true of the data center class systems, and as such is the focus of this section.

144
ECS Report

186
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Hardware Software Network Environment Human Unknown
% Breakdowns 62% 18% 2% 1% 1% 16%
% Downtime 60% 19% 1% 2% 0% 18%

Table 6.11: Root causes of failures in Terascale systems.

As shown in Figure 6.37 the number of components in recent supercomputing systems is in-
creasing exponentially, the compound annual growth rate of memory (at 1.28X per year) exceeding
slightly that of sockets (at 1.22X per year). Assuming continuation of past system growth, a 2015
system will consist of more than 100,000 processor chips (“sockets”) and more than 10 million
DRAM chips. While an Exascale system may require more aggressive system scaling, even past
scaling trends will present substantial resiliency challenges.

6.7.1 Resiliency in Large Scale Systems

The supercomputing community has gained experience with resiliency through Terascale and emerg-
ing Petascale machines. Terascale systems were typically designed from standard commercial com-
ponents without particular resiliency features beyond replication of components such as power
supplies. Schroeder and Gibson [124] and Gibson[50] analyzed failure logs for these machines and
reported that Terascale systems with thousands of sockets experienced failures every 8–12 hours,
corresponding to 125–83 million FIT (failures in time, which is failures per 109 hours). The study
also showed that the greatest indicator of failure rate was socket count; across all of the systems they
examined, the average failure rate was 0.1–0.5 fails per year per socket (11–57 KFIT per socket).
Schroeder and Gibson also analyzed the root causes of failures, with the averages summarized in
Table 6.11. Their results show that hardware is the most dominant source of failures, including
both intermittent and hard failures.

More recent systems, such as IBM’s BlueGene Supercomputer, a 64K socket system with a
Top500 performance of 280 TFlops, achieve better resiliency than reported by Schroeder [5]. The
BlueGene chips and systems were designed with a resiliency (FIT) budget that is much more
aggressive than the capabilities of Terascale systems. The FIT budget summarized in Table 6.12
shows that power supplies are most prone to failure and that while expected failures per DRAM
chip is small, the sheer number of chips make DRAM the largest contributing factor to failures.
Nonetheless, the overall FIT budget for the entire system is only 5 million (76 FIT per socket or
0.001 failures per year per socket), corresponding to a hardware failure rate of once every 7.9 days.
Assuming that hardware accounts for only half of the failures, the aggregate mean time to interrupt
(MTTI) is 3.9 days. The source of improved failure rates stems from more robust packaging and
enhanced hardware error detection and correction.

Additional studies have measured failure rates due to specific causes in the system. Schroeder
and Gibson examined disk drive reliability and report that disk drives are the most frequently
replaced components in large scale systems [125]. However, disk drives have not traditionally
dominated the cause of node outages because they are often replaced pro-actively when they begin
to show early warning signs of failure.

In a different study, Michalak et al. examined the susceptibility of high performance systems
to uncorrectable soft errors by monitoring a particular memory structure protected only by parity
[104]. They report one uncorrectable single event upset every 6 hours (167 million FIT), reinforcing
the need to design for Single Event Upset (SEU) tolerance.

Figure 6.38 shows the expected error rates as a function of socket count and three different per-
socket failure rates ranging from 0.1 (representing the best observed failure rate from Schroeder)

145
ECS Report

187
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



FIT per Components per FIT per
Component Component 64K System System
DRAM 5 608,256 3,041K
Compute + I/O ASIC 20 66,560 1,331K
ETH Complex 160 3,024 484K
Non-redundant power supply 500 384 384K
Link ASIC 25 3,072 77K
Clock chip 6.5 1,200 8K
Total FITs 5,315K

Table 6.12: BlueGene FIT budget.

0

1

10

100

1000

10000

1997 1999 2001 2002 2003 2004 2005 2006 2007 2015

M
e
a

n
 
T

i
m

e
 
t
o

 
I
n

t
e
r
r
u

p
t
 
(
h

o
u

r
s
)

0.001 0.01 0.1

Failures per socket per year

Figure 6.38: Scaling trends for environmental factors that affect resiliency.

146
ECS Report

188
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



to 0.001 (representing a system with aggressive resiliency). The number of sockets is assumed to
increase at 25%/year to match a performance demand of 2x system performance per year and
2x socket performance every 18 months, reaching 220K sockets in 2015. Schroeder’s per-socket
resiliency assumptions results in a MTTI of 24 minutes, while a factor of 10 improvement in
resiliency results in a failure every 4 hours.

6.7.2 Device Resiliency Scaling

While the above analysis assumed constant device failure rates, in fact technology scaling will make
sustaining chip-level reliability substantially more difficult, with three major causes:

• Hard Failures: Shrinking feature size is a root cause of increased susceptibility to hard
failures and device wearout. The ITRS identifies more than 20 difficult short-term semicon-
ductor reliability challenges, including dielectric breakdown, thermal stresses, and electro-
migration[13]. Because device dimensions will continue to shrink while the power supply
voltage will level out, electric fields will increase and contribute to several different break-
down modes. Temperature is also a substantial contributor to device failure rates, increasing
the importance of thermal management in future systems. The ITRS sets as a goal 10-100
FITs per chip in the coming generations but recognizes that there are no known solutions for
32nm and beyond.

• Single-Event Upsets: Single event upsets (SEU) are influenced primarily by node capaci-
tance in integrated circuits. DRAM cells are becoming less susceptible to SEUs as bit size is
shrinking, providing a smaller profile to impinging charged particles, while node capacitance
is nearly constant across technology generations. Logic devices, latches, and SRAMs are all
becoming more susceptible due to the drop in node capacitance need to scale to higher circuit
speeds and lower power [128]. Researchers predict an 8% increase in SEU rate per bit in
each technology generation [63]. The ITRS roadmap sets as a goal a steady 1000 FIT per
chip due to SEUs and indicates that potential solutions may exist [13]. However, enhanced
microarchitectural techniques will be required to mask a large fraction of the chip-level FITs
and achieve a satisfactory level of resiliency.

• Variability: As transistors and wires shrink, the spatial and temporal variation of their
electrical characteristics will increase, leading to an increase in speed-related intermittent or
permanent faults in which a critical path unexpectedly fails to meet timing. Researchers
predict that the threshold voltage for transistors on the same die could easily vary by 30%
[19]. Managing variability will be a major challenge for process, device, circuit and system
designers.

Figure 6.39 summarizes several of these effects as a function of time, with a projection into the
Exascale time frame.

6.7.3 Resiliency Techniques

As resiliency has become more important in the high-performance commercial marketplace, mi-
croprocessor designers have invested more heavily into means of detecting and correcting errors in
hardware. These techniques typically fall into the following categories:

• Encoding: Parity and SECDED codes are commonly used to detect or correct errors in
memory structures and in busses. Encoding provides low-overhead protection and on-line

147
ECS Report

189
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Figure 6.39: Increase in vulnerability as a function of per-socket failure rates.

correction of corrupted bits and can be used to protect against intermittent single upset
events as some forms of permanent hard failures. Encoding overheads are typically in the
5-10% range for those structures to which encoding can be applied.

• Scrubbing: Memory scrubbing involves frequently reading, correcting, and immediately
rewriting regions of memory, and eliminates latent errors in stored data before it is used
by flushing unused data items from the storage and fixing any correctable data elements.
Scrubbing can be applied to memory structures, caches, and register files and is typically
a means of reducing the likelihood that a single-event upset will cause a program failure.
Scrubbing typically incurs very little area and time overhead.

• Property Checking: Many operations in a processor or system can be verified by checking
properties during execution. While a simple example is a bus protocol in which no two clients
should be granted the bus at the same time, this technique can be widely applied to different
parts of a processor and system. Property checking can be implemented with relatively little
overhead.

• Sparing: Hard component failures can be tolerated, often without system failure, by provid-
ing a spare component that can be swapped in. This technique can be applied at the chip
level (spare processing elements or rows/columns in a DRAM) or at the system level in the
form of spare power supplies or disk drives. Sparing relies upon some other mechanism for
detecting errors. Sparing is typically considered as 1 of N in which a spare can be swapped
in for one of several components. A larger value of N results in less overhead.

• Replication: Replication can be used for both detection and correction. Detection typi-
148

ECS Report

190
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1 .0

1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

A
p

p
li

c
a

t
io

n
 U

t
il

iz
a

t
io

n
 (

%
)

0.001

0.01

0.1

Failures per socket per year

Figure 6.40: Projected application utilization when accounting for checkpoint overheads.

cally requires two parallel versions of the component to operate simultaneously and compare
outputs. An error is detected when the comparisons mismatch, and requires some alternate
form of recovery. Triple modular redundancy (TMR) provides three copies of the com-
ponent and votes among the three with the majority providing the defined correct output.
Replication is much more expensive, requiring 100-200% overhead.

The IBM Power6 microprocessor incorporates encoding, scrubbing, property checking, and spar-
ing as a means to increase resiliency and reduce the FIT rate [120]. Processors such as the IBM G5
replicate significant pieces of the pipeline in a self checking mode [138]. Highly available systems,
such as the Compaq Nonstop Himalaya, employed TMR to minimize the down-time in mission
critical systems. Modern supercomputers supply fail-over spare power supplies within a chassis
(tens of nodes) as well as spare power circuits in the power distribution network.

6.7.4 Checkpoint/Rollback

At the system level, recovery is often implemented using a checkpoint-rollback scheme, where a
checkpoint is the copying of enough of application memory to an alternative storage medium
in a fashion that allows for the application to be stopped and then at some arbitrary time to be
restarted by moving the copied data back from this medium (rollback). Today, most such schemes
are “application-agnostic,” that is do not try to minimize the amount of data copied by selection.
Thus, for sizing purposes, a checkpoint operation requires copying essentially all of data memory.

Typically, the application’s execution must be suspended during this checkpointing period so
that the data being checkpointed is consistent. This dead time represents an overhead that reduces
system utilization, and thus effective system application-level performance.

The cost of a checkpointing scheme depends on the time to take a checkpoint, the checkpointing
interval, time to recover, and the rate at which recoveries are necessary (typically correlated with the
MTTI). As an example, BlueGene/L aims for a single-checkpoint cost of 12 minutes for application-

149
ECS Report

191
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



initiated checkpointing rollback/recovery, and employs a several techniques to reduce the overhead,
including incremental checkpointing and memory hashing [115]. At this cost, a checkpointing
interval of 2.5 hours will result in an overall 8% overhead when faults do not occur (8 minutes/150
minutes), meaning that the system can execute user applications at most 92% of the time (if no
faults occur requiring rollback).

Knowing the time to perform the checkpoint (t), the period between checkpoints (p), and the
mean time between interrupts (MTTI) allows this utilization to be computed as[50]:

(1 − AppUtilization) = (t/p) + p/(2 ∗ MTTI) (6.11)

with a minimal overhead found when:

p = sqrt(2 ∗ t ∗ MTTI) (6.12)

This actual utilization percentage must then be applied to the performance of the system as
a whole to come up with a “sustained performance.” Figure 6.40 shows the projected application
utilization rates of large scale systems as a function of machine size and MTTI resulting from 0.1–
0.001 failures per socket per year. The time to take a checkpoint is held constant at 12 minutes,
and the checkpointing is assumed to occur at optimal intervals. Rollback/recovery overhead quickly
dominates the application, rendering the machine useless using observed Terascale failure rates.

Extrapolating this to Exascale systems, if the checkpoint time is similar, but the equivalent
failure rate per socket does not improve from its current 0.1 value, then MTTI will remain in
the few hours time scale. Also, if we assume that Exascale memory will be orders of magnitude
greater than the Terascale machines used for this study, it is highly likely that, unless extraordinary
increases in bandwidth the checkpointing memory is made, that this 12 minute checkpoint time
must itself escalate to the point where the machine is useless. Figure 6.30 in Section 6.4.1.3 gives
an absolute minimum time per petabyte of about 15 seconds for a system in 2015 with 1 Exabyte
in about 150,000 drives running at 100% of max bandwidth. For a 10 PB disk system running
at perhaps 30% of peak bandwidth and supporting the low-memory 3.6PB configuration of the
aggressive strawman of Section 7.3, this time might balloon out to nearly 5 hours - clearly a
ridiculous number! Thus, in the absence of significantly new storage technologies, per socket and
machine MTTI must be driven down in order for applications to make good use of large scale
machines.

6.8 Evolution of Operating Environments

Operating environments represent the collection of system software that manage the totality of
computing resources and apply them to the stream of user tasks. As described in section 4.2, con-
ventional operating environments comprise node operating systems, core compilers, programming
languages and libraries, and middleware for system level resource allocation and scheduling. It also
supports external interfaces to wide area networks and persistent mass storage but these are dealt
with elsewhere in this report.

Near term evolution of operating environments is required to address the challenges confronting
high performance computing due to rapid technology trends described earlier in this report. Among
these are the reliance on multi-core processor components to sustain continued growth in device
performance, the increasing application of heterogeneous structures such as GP GPUs for accel-
eration, the increase in total system scale measured in terms of number of concurrent threads,
and the emergence of a new generation of pGAS (Partitioned Global Address Space) programming
languages.

150
ECS Report

192
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



A major effort is underway through a number of industry and academic projects to develop
extensions to Unix and Linux operating systems to manage the multi-core resources of the next
generation systems. The initial starting point is a kernel on every core. This requires cross oper-
ating system transactions through the I/O name space for even the simplest of parallel processing.
Operating system kernels that can manage all the cores on a single socket or even multiple sockets
are being developed. This is similar to earlier work on SMPs and enterprize servers of previous
generations. But they must now become ubiquitous as essentially all computing systems down
to the single user laptop is or will shortly become of this form. One of the key challenges is the
implementation of light weight threads. Conventional Unix P-threads are relatively heavy weight
providing strong protection between threads but requiring a lot of overhead work to create and
manage them. User multi-threaded applications will require threads with a minimum of overhead
for maximum scalability.

A second evolutionary trend is in node or core virtualization. As a wider range of microar-
chitecture structures and instruction sets are being applied with systems taking on a diversity of
organizations as different mixes of processor types and accelerators are being structured. Virtual-
ization provides a convenient and standardized interface for portability with the assumption that
the virtualization layer is built to optimally employ the underlaying system hardware. Where this
is not feasible, separate interface libraries are being developed to make such resources at least
accessible to users should they choose to take advantage of them.

The community as a whole is converging in a set of functionalities at the middleware level.
These are derived from a number of usually separately developed software packages that have been
integrated by more than one team in to distributions that are ever more widely used, especially
across the cluster community. However, the individual pieces are also being improved for greater
performance, scalability, and reliability, as well as advanced services. This is particularly true in
the area of schedulers at the system level and microarchitecture level.

6.9 Programming Models and Languages

To support the extreme parallelism that this report predicts will be required to achieve Exascale
computing, it is necessary to consider the use of programming models beyond those in current use
today as described in section 4.3. The road map for programming models and languages is driven
by two primary factors: the adoption rate in the application community of application developers
and the investment available to develop and deploy the underlying compiler and run times required
by new languages and models. Both pose significant challenges which must be overcome. Although
the uncertainties posed by these factors makes a precise road map difficult, we describe the most
likely path in this section.

6.9.1 The Evolution of Languages and Models

In the past decades, there have been numerous attempts to introduce new and improved program-
ming languages and compilers targeted both at mainstream and high-end computing. While several
of these attempts have succeeded, most have failed. To understand what leads to the success and
failure of new approaches in general, it is instructive to examine their lifespan.

Programming languages and models are generally initiated by one of two paths: innovation
and standardization. In the innovation path, there is generally a single organization which is
proposing some new concept, produces a tool chain, attempts to attract users (usually themselves
first), and aims to get a significant user base. This is important because the costs of implementing
infrastructure are high and must be justified over a large (at least potential) user community.

151
ECS Report

193
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



The standardization path is quite different. It involves a group of organizations coming together
either to combine related language and programming model concepts or amend existing standards.
Here, the innovation introduced is far less than the other approach, but the community of users is
almost guaranteed and often a commitment exists to the required tools at the outset.

Regardless of the path taken, these efforts have many common elements: they start with a
period of rapid change in which experimentation is performed but in which the user community is
small; then there is a crucial period where the rate of change slows and the user community is either
attracted to the ideas and a critical mass is established, or the project fades away; and finally, for
successful projects, there is a life-cycle support in which only very minor changes are made due to
pressure from the user community.

In addition to these factors, a number of others influence success or failure. For example, the
ideas represented in Java had been proposed numerous times before, but until they were popularized
in C++ object-oriented programming, these new ideas did not achieve critical mass. Finally it
should be noted that the path from innovation to adoption is quite long, usually about a decade.

6.9.2 Road map

Here we list and describe the path that specific language and model efforts will most likely take in
the next 5-7 years without a significant uptick in funded research and development efforts.

The major incumbent models and languages in the high-end world will continue to remain the
dominant mechanism for high-end computing. MPI will continue to dominate the message passing
models and will certainly be widely deployed. It will most likely evolve to include some new
features and optimizations. For a class of applications and users, this will be viewed as sufficient.
In the various non-message passing realms, the dominant influence on language will be the arrival
of significant multi-core microprocessor architectures. It is clear that the non-high-end community
needs to develop models here if the architecture is to be successful. It appears somewhat likely
that some current language efforts which involve either threaded approaches (Cilk, pthreads etc.)
or pGAS (Chapel, Co-Array Fortran, Titanium, UPC, X10) will influence the course.

There is also a trend towards better language and model support for accelerator hardware.
For example, Cuda (NVidia) and BTBB (Intel) are competing to support the graphics processor
accelerators. SIMD extensions remain popular. And support for memory consistency models,
atomic memory operations and transactional memory systems are being investigated to support
better shared memory program synchronization. We also see a trend to hybridization of many
of the above approaches. While some of these are laudable for either local node performance or
synchronization, in their current form most of these mechanisms seem too specialized for widespread
adoption.

152
ECS Report

194
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Chapter 7

Strawmen: Where Evolution Is and Is
Not Enough

This chapter attempts to take the best of known currently available technologies, and project ahead
what such technologies would get us in the 2013-2014 time-frame, where technology decisions would
be made for 2015 Exascale systems. The results of these projections will provide the basis for the
challenges that await such developments.

7.1 Subsystem Projections

To set the stage in terms of general feasibility and potential challenges, a series of short projections
were made of different aspects of Exascale systems, and are documented in the following sections.
While in most cases the focus was on the data center class of Exascale systems, the results are for
the most part directly translatable to the other two classes.

The order of presentation of these results are more or less in a “bottom-up” correspondence to
parts of the generic architectures presented in Chapter 4.

Since the goal of this study was not to design Exascale systems, many of these brief studies
do not focus on point designs but on generic numbers that can be scaled as appropriate to match
desired application needs. Thus memory capacity is discussed in terms of “per petabyte,” and
power dissipation expressed in terms of system energy expended per some unit of performance and
some baseline implementation.

7.1.1 Measurement Units

Much of the baseline numerics below were chosen to be reasonable but rounded a bit to make calcu-
lations easy to follow. Thus for example, we use as a baseline of performance an exa instruction
processed to completion (1 EIP), that corresponds to executing and retiring 1018 more or less
conventional instructions. When we wish to denote the completion of 1 EIP in 1 second, we will use
(in analogy to MIPs) the term “EIPs” (Exa Instructions Processed per second) Again, the term
EFlops refers to the completion of 1018 floating point operations in a second, and is a different
measure than EIPs.

In most typical programs perhaps 40% of such instructions reference memory; we will round
that up to 50%. Thus for each EIP executed per second, perhaps 0.5*1018 distinct references to
memory are made from the core itself into the memory hierarchy.

153
ECS Report

195
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0

10

20

30

40

50

60

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

p
J
/f

lo
p

 o
r 

M
W

/E
x
a
fl

o
p

s

0

50

100

150

200

250

300

350

400

450

M
il

li
o

n
s
 o

f 
F

P
U

s
 p

e
r 

E
x
a
fl

o
p

s

pJ/Flop - Hi Perf Si pJ/Flop - Lo Pwr Si

Min # million FPUs/Exaflop - Hi Perf Si Min # million FPUs/Exaflop - Lo Pwr Si

Figure 7.1: Projections to reach an Exaflop per second.

Further, since in most cached hierarchies only some percentage of such memory references
actually go off to real memory, and this percentage varies both on the size of the caches and the
application, we will baseline a unit of cache miss at 2%. Thus for each EIP executed per second,
and each 2% of miss that the application actually experiences, there are about 0.5*1018 * 0.02 =
1016 distinct references that must reach main memory.

Finally, assuming a classical computer ISA where individual floating point instructions trigger
one floating point operation, and that the percentage of such instructions in a program is on the
order of 10% (again to make the math simple to follow), then achieving a sustained 1 EFLOP/s
(1018 flops) requires 10 EIP/s, which in turn requires 1017 real memory accesses for each 2% of
overall cache miss exhibited by the application. Thus a 20% miss rate for a sustained 1 EFLOP/s
application with a 10% floating point mix would see on the order of 1018 distinct memory accesses
per second (or 1 exa accesses per second).

For reference Murphy[109] analyzes a range of high end applications where floating point mixes
range from 6 to 40%, and miss rates out of even very large caches can exceed 60%.

In terms of the relationship between energy and power, we note that numerically, if computing
some operation takes X pJ of energy, then computing 1018 of them in one second consumes X MW
of power.

7.1.2 FPU Power Alone

While this study does not equate exaflops to Exascale computing, understanding whether or not,
and when, conventional silicon can provide an exaflop per second within the desired power limits is
a useful exercise to bound the rest of the discussion. Using the ITRS data from Section 6.2.1, Figure
7.1 projects the energy expended for a single flop as a function of time for both high performance

154
ECS Report

196
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



L1:I+D Clock Native 90nm 90nm

Core (KB) FPU Power Tech Area Vdd (GHz) pJ/Cycle pJ/Cycle Area

Niagara-I 24 No 2.06 90 11.9 1.2 1.2 1719 1444 11.9

Niagara-II 24 yes 3.31 65 12.4 1.1 1.4 2364 3274 23.9

MIPS64 40 No 0.45 130 1.2 0.6 750 436 0.0

Figure 7.2: Energy per cycle for several cores.

silicon and low power variants. The baseline for this estimate is a 100 pJ per flop FPU built in 90
nm technology, as discussed in [43] .

As noted before, numerically an X pJ per operation is the same as X MW for an exa operation of
the same type per second. Thus, it isn’t until 2014 that the power for flops alone drops below 20MW
for conventional high performance CMOS. If fact, it isn’t until 2020 that the power is low enough
to even conceive of enough margin to account for other factors such as memory or interconnect.

The story for low power CMOS is better. In the 2013-2014 timeframe FPUs alone would
dissipate in the order of 6-7 MW, enough to at least leave some space for the other functions.

A second key observation to make from this data is the number of FPUs that are needed at a
minimum to reach the exaflop per second limit. The dotted two curves in Figure 7.1 give an estimate
of this for both types of logic, assuming that the implementations are run at the maximum possible
clock rate (where power density becomes a significant chip problem). High power silicon needs only
about 50 million copies to get to an exaflop per second, but this is assuming a 20+GHz clock and
a power dissipation per unit area of almost an order of magnitude greater than today. The low
power silicon’s maximum rate is only in the 5-6GHz range, but now requires at a minimum 200
million copies, and still has a power dissipation density exceeding today.

The clear conclusion is that if we are to rely on silicon for floating point functions in 2013-1014,
then it has to be using the low power form, and even then there are problems with power density
(requiring lowering the clock) and in the huge concurrency that results (which gets even either
worse at lower clock rates). The complete strawmen discussed later in this chapter assume both.

7.1.3 Core Energy

Clearly FPU energy alone is not the only processing-related logic that will probably be present in
an Exascale system. To get a handle on how large such energies might be, Figure 7.2 takes some
data on existing 64 bit cores[93][159][110], and computes an energy per clock cycle, both for the real
base technology and normalized to 90 nm (the 2005 base in the prior charts). The results reveal
both a large variation in energy per cycle, and a significant multiple over what the FPU assumed
above would be.

The Niagara rows are especially revealing. Both are multi-threaded, which implies that there is a
bigger register file, and thus a larger energy component for reading registers, than for classical single-
threaded cores. Whether or not this accounts for the approximately 3X difference from Niagara I
to the MIPS64 line is unclear, especially considering the MIPS64 is a dual issue microarchitecture,
while that for the Niagara is only single issue.

In addition, the Niagara I does not have any integrated FPU, while that for the Niagara II
has not only an FPU but a whole separate graphics pipeline. When normalized, the difference in
energy of about 1300 pJ is significantly more than that for our assumed FPU, even if we subtract
out about 30% of the measured power to account for static leakage.

The bottom line from this discussion is that it is not just the FPUs that need to be considered,
155

ECS Report

197
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0

1

10

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

DRAM Chip Capacity (GB) Chips per Petabyte (Millions)

Chips per Petabyte per Rack (thousands)

Figure 7.3: DRAM as main memory for data center class systems.

even for flop-intensive applications, and that if we are to minimize overall energy, it is essential
to devise microarchitectures where the overhead energy for fetching instructions, decoding them,
fetching operands, and managing their retirement is both as low as possible, and spread out over
as many flops as possible.

7.1.4 Main Memory from DRAM

The needed capacity of the “main memory” level of the memory hierarchy of Chapter 4 has proven
to be one of the most volatile requirements of Exascale applications, with “proof of concept”
systems possible with just a few petabytes of storage, but more demanding and perhaps significant
applications (that is those that would justify such a machine) needing in the hundreds of petabytes.
The following sections walk through various aspects of implementing such main memory using
today’s DRAM technology as it is projected to mature through time.

7.1.4.1 Number of Chips

Figure 7.3 includes a projection for the capacity of high volume commodity DRAM memory chips
through time. In the 2013-2014 time frame this is about 1 GB per chip.

The second line in this figure is the number of chips needed to reach a petabyte. In 2013-2014
this is about a million chips per PB. Thus, if the actual application requirement is for 100PB of
main memory, this would take 100 million commodity DRAM chips. This implies a real need for a
denser packaging of DRAM than what is used today.

The third line on the graph is the number of chips per rack, assuming 500 racks in the system.
Again, this is per PB, so if the actual need was for 100PB, then in 2013-2014 we would need on
the order of 200,000 commodity DRAM chips to be packaged in each rack. For reference, today’s
supercomputers may house at most a few thousand such chips per rack.

156
ECS Report

198
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Assuming a FIT rate of 10 per billion hours per chip, such volumes of chips quickly translate
into a mean time between memory chip failures of between 1 and 100 hours, depending on the
overall memory capacity.

Note that no ECC or other redundancy in included in these numbers, so some growth in chip
count for a realistic system should be expected (perhaps 12% for a standard SECDED code on each
64 bit word). While increasing the overall system FIT rate from a component perspective, such
density increase would improve the MTBF of the memory part of the system.

7.1.4.2 Off-chip Bandwidth

As discussed in Section 7.1.1, a total number of distinct accesses to main memory of between
1016 (10 peta accesses) and 1018 (1 exa access) per second as an application-driven goal is not
unreasonable. Assuming a conventional DRAM-like interface to these chips, each access results in
the transfer of between 8 and 32 bytes of data (a word to a cache line) across some set of chip
boundaries - not counting ECC. Rounding up a bit, this translates into an aggregate transfer rate
off of the memory chips of between 0.1 and 32 exabytes per second.

We note that these aggregate rates are independent of the memory capacity. Thus on average
the data rate per chip is this number divided by the number of chips. For 1 PB (a million chips),
this translates to 100 to 32,000 GB/s - per chip! These numbers are far in excess of any projected
commodity memory chip signalling protocol. For 100 PB (100 million chips), this reduces to a mere
1 to 320 GB/s per chip.

We also note that today’s memory parts are typically perhaps a byte wide, and to access larger
entities, multiple chips are ganged and accessed in parallel. This means that the address and
control bits that must be transferred per access must be repeated per chip. If this address and
control information averages 32 bits per access, then if it must be broadcast identically to 8-10
chips in parallel, there are upwards of 300+ extra bits that must be transferred per access across
chip boundaries. This has the potential to almost double the overall bit transfer rate to and from
a main memory made of DRAM.

Finally, we note that going to a denser memory technology makes the off-chip bandwidth re-
quirements even worse, since there are fewer chips for any particular memory capacity.

7.1.4.3 On-chip Concurrency

For this section an independent memory bank is that part of a memory circuit that can respond
to an address and deliver a row of data as a result. This includes row decoders, memory mats, and
sense amplifiers, but need not include anything else. Thus an active bank is one that is responding
to a separate memory request by activating a memory mat, and reading out the data.

For reference, today’s memory chip architectures support at best about 8 such independent
banks.

Understanding how many such banks need to be capable of independent access on a typical
memory chip is thus important to determine how much “overhead logic” is needed to manage the
multiple banks, and how much power is dissipated in the memory mats where the data actually
resides.

An average for the number of accesses per second that must be handled per chip can be estimated
by taking the total number of independent memory references per second that must be handled, and
dividing by the number of memory chips. The first is a property of the application and the caching
hierarchy of the processing logic; the second is related directly to the capacity of the memory
system. Figure 7.4(a) lists this for a variety of memory reference rates (where 1016 to 1018 is what

157
ECS Report

199
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1 10 100 1000

1.E+15 1 0.10 0.01 0.001

1.E+16 10 1 0.10 0.01

1.E+17 100 10 1.00 0.10

1.E+18 1000 100 10 1

1.E+19 10000 1000 100 10

1 10 100 1000

1.E+15 10 1 0.1 0.01

1.E+16 100 10 1 0.1

1.E+17 1000 100 10 1

1.E+18 10000 1000 100 10

1.E+19 100000 10000 1000 100

(b) Active Banks per chip

Main Memory Capacity (in PB)

A
c
c
e
s
s
e
s
/s

e
c

Main Memory Capacity (in PB)

A
c
c
e
s
s
e
s
/s

e
c

(a) References per chip (in billions)

Figure 7.4: Memory access rates in DRAM main memory.

was discussed previously) and the spectrum of main memory capacities discussed for applications
of interest.

To convert this into a number of independent banks requires estimating the throughput of
a single bank, that is, the maximum rate that a single bank can respond to memory requests
per second. For this estimate, we assume a bank can handle a new request every 10 ns, for a
throughput of 108 references per second per chip. (This is a bit of an optimistic number, given
current technology, but not too far off.) Figure 7.4(b) then uses this number to compute the number
of active banks for each of the prior configurations. As can be seen, if main memory access rates
exceed 1016 per second (on the low side of what was discussed above), then it isn’t until memory
capacities exceed 100 PB (100 million chips) that the average number of active banks drops down
to what is close to today.

7.1.5 Packaging and Cooling

The degree of difficulty posed by the packaging challenge depends on the memory bandwidth
requirements of the eventual system. In this section we use as a basis the strawman machine as
discussed in Section 7.3. The lower end of the requirement, 44 GBps from the CPU to each of
16 DRAM die can most likely be satisfied with conventional high-end packaging. The high-end
requirement of 320 GBps to each of 32 DRAMs is well beyond the means of any currently available
packaging technology. Some embedded applications were investigated to obtain another perspective
on the possible size requirement. As discussed elsewhere in this document, the usual requirement of
1 Byte per second and 1 Byte of memory for every FLOPS, would require larger scales of memory
system but would have significant power issues. A system anywhere near this scale would require
significant advances in interconnect and packaging. In particular, advances in 3D system geometries
would be required.

An advance in 3D packaging also presents an opportunity to use geometry to reduce power
consumption. With a conventional packaging approach, aggressive scaling of interconnect power

158
ECS Report

200
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



would permit memory-CPU communications at an energy cost of around 2 pJ/bit. On the other
hand, some 3D integration technologies, would permit power levels to approach 1-20 fJ/bit, de-
pending on the length of run of on-chip interconnect required. Even at the low end bandwidth of
16 x 44 GBps, this represents a power savings of around 10 W per module, which could be more
productively used for FPUs or additional memory capacity.

As well as provisioning interconnect, packaging also plays roles in power and ground current
distribution, noise control (through embedded capacitors), heat removal and mechanical support,
so as to ensure high reliability. The simultaneous roles of current delivery and heat removal create
a geometric conundrum as the high power areas of the chip need lots of both at the same time.
This requirement leads to the usual solution in single-chip packaging of using the front-side of the
chip for current delivery and the backside for cooling. Such arrangements are not easily scaled to
3D integration as one side of the chip has to be used for the 3D mating. As a result, the typical
state of the art expected for circa 2015 would be a 3D chip stack mating a small number (3-4) of
memory die to the face side of a CPU. While the back-side of the CPU chip is used for cooling,
extra through-silicon vias are built into the memory stack in order to deliver current to the CPU.
Stacks beyond 4-5 die are not expected, due to the combined problem of sufficiently cooling the
interior die (through the hot CPU), and providing current delivery through the memory die stack.

Some options that could be pursued are summarized in Figures 7.5 to 7.7. The first suggestion
(distributed 3D stacks) simply avoids this problem by portioning the CPU amongst a number of
smaller memory stacks, and integrating these 3DICs using a silicon carrier. However, the cost
of this is a dramatic reduction in inter-core bandwidth, once they cross chip boundaries. This is
unlikely to be acceptable in many applications.

The second suggested option is referred to as an “advanced 3D IC,” that is a 3D IC with package
layers incorporated into it, in the 3D stack. These package layers are used for current distribution
and heat removal from die within the stack. The result would be a heterogeneous chip stack, tens
of units high. Considerable challenges exist in this option. The technology to build such a stack
with high yields does not exist today.

A variant of the “advanced 3D IC” solution is a more package-centric solution that allows 3D
integration of multiple chip stacks. This could be done using a combination of chip-on-wafer and
wafer-on-wafer technologies. However, it would still require considerable technology investment.

A variant of Sun’s proximity connection could also be adapted to solve this problem. However,
a combination of technologies could be used for interconnect, rather than just relying on capacitive
coupling. As discussed in Section 6.6, Sun’s original scheme implicitly requires current distribution
and heat removal through both sides of the 3D package, which of course is difficult. However,
supplementing their approach with through-silicon-vias could relieve this situation and provide an
interesting solution.

Another approach would be to use something like Notre Dame’s “quilt packaging”[15] to provide
high density edge connections, on a tight sub-20μm pitch. In their solution, all the chips are face-up,
so the two-sided power delivery and removal problem is easily solved. However, one challenge with
both of these solutions resolves around the fact that they are both edge I/O approaches. Numerous,
long power-hungry on-chip wires would be required to join peripheral memories to interior cores.

Several groups have investigated edge-mounting of die on the planar surface of another die.
This leads to a memory edge mounting solution, such as shown in Figure 7.7. There are several
complications with this solution. It does not directly solve the two-side power delivery/removal
problem. Also, the memories would require long, power-hungry on-chip traces.

Finally, it should be realized that advances in areas outside of packaging could simplify the cre-
ation of an Exascale 3D solution. In particular, if efficient voltage conversion could be incorporated
within the chip stack, then the “two-sided problem” is greatly simplified. Delivering 100 A at 1 V

159
ECS Report

201
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Incorporate interposers into a single 

17-33 chip stack to help in 

power/ground distribution and heat 

removal.

Assumes Through Silicon Vias for 

signal I/O throughout chip stack

Advanced 3DIC

Distribute CPU across multiple 

memory stacks

Assumes sufficient inter-stack 

bandwidth can br provided in 

substrate

Likely to detract from performance, 

depending on degree of memory 

scatter

Distributed 3D stacks

CommentsApproach

Incorporate interposers into a single 

17-33 chip stack to help in 

power/ground distribution and heat 

removal.

Assumes Through Silicon Vias for 

signal I/O throughout chip stack

Advanced 3DIC

Distribute CPU across multiple 

memory stacks

Assumes sufficient inter-stack 

bandwidth can br provided in 

substrate

Likely to detract from performance, 

depending on degree of memory 

scatter

Distributed 3D stacks

CommentsApproach

CPU: 200 Cores

(1/4 of total)

4 DRAM die

Interconnect Substrate

Direction of Heat Extraction

CPU: 200 Cores

(1/4 of total)

4 DRAM die

Interconnect Substrate

Direction of Heat Extraction

CPU: 750 Cores

16-32 DRAM die,

in groups

Interposers

Vias

Substrate

CPU: 750 Cores

16-32 DRAM die,

in groups

Interposers

Vias

Substrate

Figure 7.5: Potential directions for 3D packaging (A).

160
ECS Report

202
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Use proximity connection or Through Silicon 

Vias to create memory bandwidth through 

overlapping surfaces.

OR

Tile with high bandwidth edge interfaces, using 

quilt packaging or a an added top metal 

process.  (Note, impact on latency and I/O 

power).

Tiled Die

To avoid complexity of a 33-chip stack, this 

approach, users the interposers for high density 

signal redistrubtion, as well as assisting in 

power/ground distrubtion and heat removal.

Requires a planar routing density greater than 

currently provided in thin film carriers.

Advanced 3D Package

CommentsApproach

Use proximity connection or Through Silicon 

Vias to create memory bandwidth through 

overlapping surfaces.

OR

Tile with high bandwidth edge interfaces, using 

quilt packaging or a an added top metal 

process.  (Note, impact on latency and I/O 

power).

Tiled Die

To avoid complexity of a 33-chip stack, this 

approach, users the interposers for high density 

signal redistrubtion, as well as assisting in 

power/ground distrubtion and heat removal.

Requires a planar routing density greater than 

currently provided in thin film carriers.

Advanced 3D Package

CommentsApproach

CPU: 750 Cores

16-32 DRAM die,

in groups

Interposers         Substrate        Dense Via Field

CPU

CPU MEM

MEM

CPU

CPU MEM

MEM

Figure 7.6: Potential directions for 3D packaging (B).

Stack memory die on top of CPU using a 3D 

quilt process or functional equivalent.

Requires considerable technological 

innovation

Edge Mounting

CommentsApproach

Stack memory die on top of CPU using a 3D 

quilt process or functional equivalent.

Requires considerable technological 

innovation

Edge Mounting

CommentsApproach

CPU

Orthogonal Solutions

On-die or in-stack voltage conversion

Embedded liquid cooling

mm-thick high capacity heat pipes

These solutions provide ways

to alleviate some of the difficulties

in the solutions above.

Figure 7.7: Potential directions for 3D packaging (C).

161
ECS Report

203
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



PB of Main Memory
0.006 0.5 3.6 50 300

Scratch Storage
Capacity (EB) 1.2E-04 0.01 0.15 2 18
Drive Count 1.0E+01 8.3E+02 1.3E+04 1.7E+05 1.5E+06
Power (KW) 9.4E-02 7.8E+00 1.2E+02 1.6E+03 1.4E+04

Checkpoint Time (sec) 1.2E+03 1.2E+03 5.8E+02 6.0E+02 4.0E+02
Checkpoint BW (TB/s) 5.0E-03 4.2E-01 6.3E+00 8.3E+01 7.5E+02

Archival Storage
Capacity (EB) 0.0012 0.1 7.2 100 600
Drive Count 1.0E+02 8.3E+03 6.0E+05 8.3E+06 5.0E+07
Power (KW) 9.4E-01 7.8E+01 5.6E+03 7.8E+04 4.7E+05

Table 7.1: Non-memory storage projections for Exascale systems.

is a lot harder than delivering 1 A at 100 V. Similarly, releasing one side from a cooling function
provides a similar improvement. For example, incorporating silicon micro-channel cooling into the
chip stack removes the need for using one side for heat removal.

On the topic of cooling, it was presumed for this study that at the system level, the computing
stack would be air-cooled. Large scale deployment of water chillers and circulating coolants does
not lend itself to embedded solutions in war fighting craft and vehicles. However, this global issues
does not prevent the local solution from using liquid phase solutions locally. As long as the liquid
does not require replenishment, then such local solutions might be reasonable. There are severe
challenges in such solutions though. Leaks are still a problem in liquid cooling, and a leak-free
technology would be a worthwhile investment. Also, techniques to circulate and pump the coolant
are needed on the physical scale of a small 3D package. Similarly, local heat exchangers would
be needed if local liquid cooling solutions are to be used. Heat pipes provide an excellent way to
use liquid phase cooling locally without mechanical complexity. Advances in the capacity of thin
heat-pipe like solutions would be welcome in an Exascale computer.

7.1.6 Non-Main Memory Storage

Using the numbers from Section 5.6.3, especially as articulated in Table 5.1, and the projections
from Section 6.4.1, Table 7.1 summarizes numbers for scratch and archival storage systems using
disk technology from 2014. Consumer-grade disks are assumed because of the need for sheer density.
As before, these numbers do not include either additional space for RAID or for controllers and
interconnect, and as such represent a lower bound.

The Checkpointing time and bandwidth assume that all of the drives in the Scratch system are
accepting data concurrently, and at their maximum projected data rates. This is not reasonable,
especially for the larger systems.

The numbers given here are given as a function of main memory. As such, the options were
chosen to match different sizes of systems:

• The 6TB column corresponds to the main memory capacity of a single rack of the aggressive
strawman of Section 7.3.

• The 0.5PB column corresponds to the “sweet spot” for a departmental system as suggested
in Table 5.1.

162
ECS Report

204
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



• The 3.6PB column corresponds to the main memory capacity of the complete exaflops ag-
gressive strawman of Section 7.3.

• The 50PB column corresponds to the “sweet spot” for a data center class system as suggested
in Table 5.1.

• The 300PB column corresponds to a data center class system that has the same memory to
flops ratio as today’s supercomputers.

As can be seen, the scratch disk counts for both classes of systems are not unreasonable until
the main memory capacities approach ratios typical of today, such as 1.4M drives and 14 MW for
a 0.3 to 1 byte to flop ratio at the data center scale.

Checkpointing time across all systems is in the realm of 10 to 20 minutes (under the optimistic
assumptions of all drives storing at max rate). When stretched to more realistic times, this implies
that checkpointing times may be in the region of the MTBF of the system. As discussed in Section
6.7.4, this may render the data center class systems effectively useless, indicating that there may
be a real need in finding a memory technology with higher bandwidth potential (especially write
rates) than disk. Variations on Flash memory may offer such a capability at competitive densities
and power.

The archival numbers of course are higher, and probably reach the limits of rational design at
3.6PB main memory for the data center class strawman of Section 7.3, where 600,000 drive at close
to 6 MW are needed.

7.1.7 Summary Observations

The above short projections lead inescapably to the following conclusions:

1. If floating point is key to a system’s performance, and if CMOS silicon is to be used to
construct the FPUs, then, for the data center class, to have any hope of fitting within a 20
MW window, the low operating power variant must be chosen over today’s high performance
design. This is also true of the other two classes, as the use of high performance logic results
in power densities that exceed their form factor limits.

2. Energy for the processor core must be very carefully watched, lest power exceed that for the
basic operations by a large factor. This implies that microarchitectures must be designed and
selected for low energy per issued operation.

3. Unless at best a very few PB of main memory is all that is needed, then DRAM technology
by itself is inadequate in both power and capacity.

4. To reduce the bit rates and associated energy of transfer to manage the address and control
functions of an access, each DRAM chip needs to be rearchitected with a wide data path on
and off chip, low energy per bit interfaces, and many potentially active banks.

5. Unless memory capacity gets very large, then using DRAM for main memory requires that
the architecture of the DRAM provide for far more concurrently active mat access (regardless
of word widths) than present today.

163
ECS Report

205
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Figure 7.8: A typical heavy node reference board.

7.2 Evolutionary Data Center Class Strawmen

To baseline where “business-as-usual” might take us, this section develops two strawmen projections
of what evolution of today’s leading edge HPC data center class systems might lead to. This will
stand in contrast to both the trend lines from Section 4.5 (that assumes technology will advance
uniformly at the rate that it has for the last 20 years, but with the same architectural and packaging
approach) and from the aggressive strawman of Section 7.3 (that assumes we can choose the best
of current technologies in a relatively “clean-sheet” approach).

The architectures used as the two departure points for this study are “heavy node” Red Storm-
class machines that use commodity leading edge microprocessors at their maximum clock (and
power) limits, and “light node” Blue Gene/L class machines where special processor chips are
run at less than max power considerations so that very high physical packaging densities can be
achieved.

7.2.1 Heavy Node Strawmen

Machines such as the Red Storm and its commercial follow-ons in the Cray XT series assume
relatively large boards such as pictured in Figure 7.8[90]. A few dozen of these boards go into an
air-cooled rack, and some number of racks make up a system.

7.2.1.1 A Baseline

A “baseline” board today contains

• multiple (4) leading edge microprocessors such as from Intel or AMD, each of which is the
heart of a “node.” A substantial heat sink is needed for each microprocessor.

• for each node a set of relatively commodity daughter memory cards holding commodity
DRAM chips (FB-DIMMs as a baseline).

• multiple specialized router chips that provide interconnection between the on-board nodes
and other boards in the same and other racks.

164
ECS Report

206
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Silicon Area Distribution

Memory

86%

Processors

3%

Routers

3%

Random

8%

Power Distribution

Memory

9%

Processors

56%

Routers

33%

Random

2%

Board Space Distribution

Memory

10%

Processors

24%

Routers

8%
Random

8%

White Space

50%

Figure 7.9: Characteristics of a typical board today.

• an assortment of support circuitry.

Very often the chip set associated with each node is referred to as a socket, since the single
biggest physical entity on such a board is the microprocessor and its heatsink as pinned in its
socket.

Figure 7.9 then summarizes the approximate characteristics of such a board as to where the
silicon is used, which chips dissipate what part of the power, and how the board space is occupied.

In terms of a system baseline, we assume 4 sockets per board and nominally 24 boards per rack.
A 2.5 MW system consisting of 155 racks would contain 12960 sockets for compute and 640 sockets
for system, or one system socket for approximately every 20 compute sockets.

At 40 TB of storage and an Rpeak of 127 Tflops, the baseline has a ratio of about 0.31 bytes
per peak flop.

7.2.1.2 Scaling Assumptions

Extrapolating the same architecture forward into the future, what kind of parts are on such a
physical board would not change much: a relatively constant amount of real estate is needed for
each of the major subassemblies, especially the heat-sinked parts. To a first order what might
change is the number of nodes/sockets on a board (fill the white space), the complexity of the
microprocessor chips (succeeding generations would include more cores), the density of memory
chips on the memory daughter cards will increase, and perhaps the number of memory cards (if
performance per node increases faster than memory density increases). Thus our assumptions
about future versions of such a system are as follows:

• The die size for the microprocessor chip will remain approximately constant, meaning that
the number of cores on each microprocessor chip may grow roughly as the transistor density
grows, as pictured in Figure 4.3. We do not account for relatively larger L3 caches to reduce
pressure on off-chip contacts.

• Vdd for these microprocessors will flatten (Figure 4.7 and 6.2), as will maximum possible
power dissipation (Figure 4.10), which means that the maximum clock rate for these chips
will approximately flatten as discussed in Section 6.2.1.5.

• On a per core basis, the microarchitecture will improve from a peak of 2 flops per cycle per
core in 2004 to a peak of 4 flops per cycle in 2008, and perhaps 8 flops per cycle in 2015.

165
ECS Report

207
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



• The system will want to maintain the same ratio of bytes of main memory to peak flops
as today, and to do this we will use whatever natural increase in density comes about from
commodity DRAM, but coupled with additional memory cards or stacks of memory chips as
necessary if that intrinsic growth is insufficient.

• The maximum number of sockets (i.e. nodes) per board may double a few times. This is
assumed possible because of a possible move to liquid cooling, for example, where more power
can be dissipated and allowing the white space to be used and/or the size of the heat sinks to
be reduced. For this projection we will assume this may happen at roughly five year intervals.

• The maximum number of boards per rack may increase by perhaps 33% again because of
assumed improvements in physical packaging and cooling, and reduction in volume for support
systems. For this projection we will assume this may happen once in 2010.

• The maximum power per rack may increase by at best a power of 16, to somewhere around
200-300KW. We assume this is a doubling every 3 years.

• We ignore for now any secondary storage (or growth in that storage) for either scratch, file,
or archival purposes, although that must also undergo significant increases.

7.2.1.3 Power Models

We assume two power models for these extrapolations. The Simplistic Power Scaled Model
assumes that the power per microprocessor chip grows as the ITRS roadmap has predicted, and
that the power for the memory associated with each socket grows only linearly with the number
of memory chips needed (i.e. the power per memory chip is “constant”). We also assume that the
power associated with both the routers and the common logic remains constant.

This is clearly optimistic, since increasing the flops rate of the microprocessor most probably
requires a higher number of references to memory and a higher traffic through the routers. In a
real sense, we are assuming here that both memory access energy and the energy cost of moving a
bit, either across a chip boundary or between racks, will improve at least as fast as the increase in
flops.

In contrast, for the Fully Scaled Power Model we assume the microprocessor power grows as
before (as the ITRS roadmap), but that both the memory and router power scale linearly with the
peak flops potential of the multi-core microprocessors. This naively assumes that the total energy
expended in these two subsystems is used in accessing and moving data, and that the energy to
handle one bit (at whatever the rate) is constant through time (i.e. no improvement in I/O energy
protocol). This is clearly an over-estimate.

Neither model takes into account the effect of only a finite number of signal I/Os available from
a microprocessor die, and the power effects of trying to run the available pins at a rate consistent
with the I/O demands of the multiple cores on the die.

7.2.1.4 Projections

There are a variety of ways that a future system projection could be done. First is to assume that
power is totally unconstrained, but that it will take time to be able to afford a 600 rack system. The
second is that we assume that we cannot exceed 20 MW. (In either case, however, we do assume a
peak power per rack as discussed earlier).

166
ECS Report

208
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Relative Max Power per Microprocessor 1.00 1.05 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

Cores per  Microprocesor 2.00 2.52 4.00 5.04 6.36 8.01 10.09 12.71 16.02 20.18 25.43 32.04 40.37 50.85 64.07

Flops per cycle per Core 2.00 2.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 8.00 8.00 8.00 8.00 8.00 8.00

Flops per cycle per Microprocessor 4.00 5.05 16.00 20.17 25.44 32.04 40.37 50.85 64.07 161.43 203.40 256.29 322.92 406.81 512.57

Power Constrained Clock Rate 1.00 0.94 1.10 0.99 0.90 0.81 0.88 0.79 0.71 0.80 0.72 0.83 0.73 0.65 0.59

Relative Rpeak per Microprocessor 1.00 1.19 4.39 4.98 5.76 6.48 8.88 9.99 11.42 32.38 36.79 52.86 58.73 66.08 75.51

Actual Rpeak per Microprocessor 9.60 11.44 42.15 47.82 55.26 62.16 85.27 95.93 109.64 310.82 353.20 507.46 563.85 634.33 724.94

ITRS Commodity Memory Capacity Growth 1.00 1.00 1.00 2.00 2.00 2.00 4.00 4.00 4.00 8.00 8.00 8.00 16.00 16.00 16.00

Required Memory Chip Count Growth 1.00 1.19 4.39 2.49 2.88 3.24 2.22 2.50 2.86 4.05 4.60 6.61 3.67 4.13 4.72

Relative Growth in BW per Memory Chip 1.00 1.00 1.00 2.00 2.00 2.00 4.00 4.00 4.00 8.00 8.00 8.00 16.00 16.00 16.00

BW Scaled Relative Memory System Power 1.00 1.19 4.39 4.98 5.76 6.48 8.88 9.99 11.42 32.38 36.79 52.86 58.73 66.08 75.51

BW Scaled Relative per Socket Router Power 1.00 1.19 4.39 4.98 5.76 6.48 8.88 9.99 11.42 32.38 36.79 52.86 58.73 66.08 75.51

Simplistically Scaled per Socket Power 1.00 1.05 1.34 1.18 1.21 1.24 1.16 1.18 1.21 1.31 1.35 1.52 1.28 1.31 1.36

Fully Scaled Relative per Socket Power 1.00 1.12 3.53 3.15 3.71 4.28 4.88 5.63 6.67 20.77 25.15 44.44 35.32 42.11 51.64

Simplistically Scaled Relative Rpeak/Watt 1.00 1.14 3.29 4.21 4.74 5.21 7.66 8.45 9.43 24.75 27.20 34.88 45.98 50.26 55.42

Fully Scaled Relative Rpeak/Watt 1.00 1.06 1.24 1.58 1.55 1.51 1.82 1.77 1.71 1.56 1.46 1.19 1.66 1.57 1.46

Simplistically Scaled Rpeak/Watt 0.04 0.05 0.13 0.17 0.19 0.21 0.31 0.34 0.38 1.00 1.10 1.41 1.86 2.04 2.25

Fully Scaled Rpeak/Watt 0.04 0.04 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.06 0.06 0.05 0.07 0.06 0.06

Maximum Sockets per Board 4 4 4 4 8 8 8 8 8 16 16 16 16 16 16

Maximum Boards per Rack 24 24 24 24 32 32 32 32 32 32 32 32 32 32 32

Maximum Sockets per Rack 96 96 96 96 256 256 256 256 256 512 512 512 512 512 512

Maximum Cores per Board 8 10 16 20 51 64 81 102 128 323 407 513 646 814 1025

Maximum Cores per Rack 192 242 384 484 1628 2050 2584 3254 4101 10331 13018 16402 20667 26036 32804

Maximum Flops per cycle per Board 16 20 64 81 204 256 323 407 513 2583 3254 4101 5167 6509 8201

Maximum Flops per cycle per Rack 384 484 1536 1936 6513 8201 10336 13018 16402 82650 104142 131218 165336 208285 262436

Max Relative Power per Rack 1 1 1 2 2 2 4 4 4 8 8 8 16 16 16

Simplistic Power-Limited Sockets/Rack 96 92 72 96 158 155 256 256 256 512 512 507 512 512 512

Fully Scaled Power-Limited Sockets/Rack 96 86 27 61 52 45 79 68 58 37 31 17 43 36 30

Simplistically Scaled Relative Rpeak per Rack 96 109 316 478 911 1001 2274 2558 2924 16577 18838 26788 30072 33831 38664

Fully Scaled Relative Rpeak per Rack 96 102 119 304 298 291 699 681 658 1197 1123 914 2554 2410 2246

Max Affordable Racks per System 155 200 250 300 350 400 450 500 550 600 600 600 600 600 600

Max Cores per System 29760 48441 9.6E+04 1.5E+05 5.7E+05 8.2E+05 1.2E+06 1.6E+06 2.3E+06 6.2E+06 7.8E+06 9.8E+06 1.2E+07 1.6E+07 2.0E+07

Max Flops per cycle per System 59520 96882 3.8E+05 5.8E+05 2.3E+06 3.3E+06 4.7E+06 6.5E+06 9.0E+06 5.0E+07 6.2E+07 7.9E+07 9.9E+07 1.2E+08 1.6E+08

Simplistically Scaled System Rpeak (GF) 1.0E+05 1.5E+05 5.4E+05 9.8E+05 2.2E+06 2.7E+06 7.0E+06 8.7E+06 1.1E+07 6.8E+07 7.7E+07 1.1E+08 1.2E+08 1.4E+08 1.6E+08

Fully Scaled System Rpeak (GF) 1.0E+05 1.4E+05 2.0E+05 6.2E+05 7.1E+05 7.9E+05 2.1E+06 2.3E+06 2.5E+06 4.9E+06 4.6E+06 3.7E+06 1.0E+07 9.9E+06 9.2E+06

System Power (MW) 2.5 3.2 4.0 9.7 11.3 12.9 29.0 32.3 35.5 77.4 77.4 77.4 154.8 154.8 154.8

Maximum Racks 155 200 250 300 350 400 310 310 310 155 155 155 78 78 78

Simplistically Scaled System Rpeak (GF) 1.E+05 1.E+05 5.E+05 1.E+06 2.E+06 3.E+06 5.E+06 5.E+06 6.E+06 2.E+07 2.E+07 3.E+07 2.E+07 2.E+07 2.E+07

Fully Scaled System Rpeak (GF) 1.E+05 1.E+05 2.E+05 6.E+05 7.E+05 8.E+05 1.E+06 1.E+06 1.E+06 1.E+06 1.E+06 1.E+06 1.E+06 1.E+06 1.E+06

System Predictions: Power Unconstrained, Gradual Increase in Affordable Racks to Max of 600

System Predictions: Power Constrained to 20 MW

Chip Level Predictions

Socket Level Predictions ("Socket" = Processor + Memory + Router)

Board and Rack Level Concurrency Predictions

Board and Rack Level Power Predictions

Figure 7.10: Heavy node strawman projections.

167
ECS Report

209
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1/1/72 1/1/76 1/1/80 1/1/84 1/1/88 1/1/92 1/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

G
F

lo
p

s

Historical Rmax

Rmax

Rmax Leading Edge

Rpeak Leading Edge

Petascale

Exascale Goal

Evolutionary Heavy Fully Scaled Power Constrained

Evolutionary Heavy Simplistically Scaled Power Constrained

Evolutionary Heavy Fully Scaled Power Unconstrained

Evolutionary Heavy Simplistically Scaled Power Unconstrained

Figure 7.11: Heavy node performance projections.

168
ECS Report

210
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1/1/72 1/1/76 1/1/80 1/1/84 1/1/88 1/1/92 1/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

R
p

e
a
k
 G

fl
o

p
s
 p

e
r 

W
a
tt

Historical Top 10

Exascale Goal Top System Trend Line

Heavy Node - Fully Scaled Heavy Node - Simplistic

Aggressive Strawman Design

Figure 7.12: Heavy node GFlops per Watt.

169
ECS Report

211
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Figure 7.10 summarizes some projections based on the above assumptions, all based on numbers
relative to 2006, with a graphical representation of peak Linpack in Figure 7.11. In this figure, the
lines marked “Power Constrained” represent a capping of power at the 20MW limit.

Figure 7.12 then also converts these numbers into gigaflops per watt, which is directly relevant
to all three classes of Exascale systems.

Some specific observations include:

• Because this model used year-to-year numbers on each component, and real systems are not
updated every year, there is some year-to-year “noise.”

• The clock limitations due to the power limits are significant, and greatly hamper the potential
performance growth per microprocessor chip.

• The “gigaflops per watt” graph indicates that whereas the “simplistic” model seems to fol-
low a trend line, the “fully scaled” model becomes flat, largely because the power becomes
dominated not by the microprocessors but by the transport of data - to memory and to the
routers. Clearly this implies a need for better off-chip protocols in terms of energy per bit,
regardless of the system architecture.

• None of the overall estimates come any closer than within an order of magnitude of an exaflops,
with the power constrained models running between two and three orders of magnitude too
low.

• In general there is a considerable spread between the “simplistic” predictions and the “fully
scaled.” Significant and more detailed projections would be needed to more accurately decide
where in this range the real numbers might lie. However, both are so far off of an “exa” goal
that it is clear that in any case there is a real problem.

7.2.2 Light Node Strawmen

The prior section addressed the possible evolution of systems based on leading edge high perfor-
mance microprocessors where single thread performance is important. In contrast, this section
projects what might be possible when “lighter weight” customized processors are used in an archi-
tecture that was designed from the ground up for dense packaging, massive replication, and explicit
parallelism.

7.2.2.1 A Baseline

The basis for this extrapolation is the Blue Gene series of supercomputers, both the ”/L”[48] and
the ”P”[147] series, with general characteristics summarized in Table 7.2. Here the basic unit of
packaging is not a large board with multiple, high powered, chips needing large heat sinks, but
small “DIMM-like” compute cards that include both memory and small, low-power, multi-core
compute chips. The key to the high density possible by stacking a lot of such cards on a board
is keeping the processing core power dissipation down to the point where only small heat sinks and
simple cooling are needed.

Keeping the heat down is achieved by keeping the architecture of the individual cores simple
and keeping the clock rate down. The latter has the side-effect of reducing the cycle level latency
penalty of cache misses, meaning that simpler (and thus lower power) memory systems can be used.
For the original Blue Gene/L core, the former is achieved by:

170
ECS Report

212
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Blue Gene/L[48] Blue Gene/P[147]
Technology Node 130 nm 90 nm

FPUs/Core 2 fused mpy-add 2 fused mpy-add
Cores per Compute Chip 2 4

Clock Rate 700MHz 850MHz
Flops per Compute Chip 5.6 Gflops 13.6 Gflops

Shared L3 per Compute Chip 4 MB embedded 8 MB embedded
Compute Chips per Node 1 1
DRAM capacity per Node 0.5-1 GB 2 GB
DRAM Chips per Node 9-18 20-40

Nodes per Card 2 1
Cards per Board 16 32
Boards per Rack 32 32
Nodes per Rack 1024 1024
Cores per Rack 2048 4096
Rpeak per Rack 5.73 Tflops 13.9 Tflops
Rmax per Rack 4.71 Tflops

Memory per rack 1 TB 2 TB
Memory per Flop 0.17B/Flop 0.14B/Flop

Power per Compute Chip 12.9 W
Power per rack 27.6KW 40KW
Gflops per KW 212.4 348.16

Power per Pflops 4.7 MW 2.9 MW

Table 7.2: Light node baseline based on Blue Gene.

171
ECS Report

213
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Cores+FPU+L1

58%L2+L3+DDR Ctl

20%

Network I/F

7%

Clock Tree

9%

Leakage

2%
Other

4%

Compute Chips

52%

Compute Memory

20%

Link & I/O Cards

2%

Voltage Conversion 

& Fans

26%

(a) Compute Chip (b) Single Rack

Figure 7.13: Power distribution in the light node strawman.

• a simple 7 stage pipeline,

• simple two instruction issue with 3 pipelines (load/store, integer, and other),

• a floating point unit with 2 fused multiply-adders and an extended ISA that supports simple
SIMD operations at up to the equivalent of 4 flops per cycle,

• an integrated memory controller.

Several of these cores are implemented on each compute chip that also includes complete memory
controllers and interface and routing functions. Thus, a complete single compute node consists
of a compute chip and some small number of commodity DRAM chips.

One or more of these compute nodes are placed on a small circuit card akin in size to a DIMM
card. Multiple such cards are then stacked on a larger board, which in turn plugs into a midplane
holding many such boards, and several such midplanes packaged in a rack.

The current system interconnect topology is a 3D torus, with an 8x8x8 sub cube on each mid-
plane and 4 link cards that glue the surfaces of this cube to other cubes on other midplanes.
From an application perspective, this network supports a message-passing protocol, rather than a
pGAS-like protocol as assumed for the heavy weight strawman of the previous section. A second in-
terface supports a collective network, which is a tree-like topology that permits synchronization,
barriers, and broadcasts.

In addition, on a per rack basis there are 32 compute cards and 2 I/O cards used for system
access and I/O.

In terms of power, Figure 7.13 gives an approximate distribution of power by subsystem for
both the compute chip and a single rack, using numbers from Blue Gene/L[20]. These numbers
assume only 9 DRAM chips (512 MB) per compute node.

7.2.2.2 Scaling Assumptions

For consistency, the scaling assumptions used in Section 7.2.1.2 for the heavyweight strawman is
modified only slightly:

• The die size for the compute chip will remain approximately constant, meaning that the
number of cores on each chip may grow roughly as the transistor density grows, as pictured

172
ECS Report

214
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



in Figure 4.3. We do not account L3 cache sizes that grow more than linearly with core count
to reduce pressure on off-chip contacts.

• Vdd for these microprocessors will flatten (Figure 4.7 and 6.2).

• The power dissipation per chip will be allowed to increase by 25% with every 4X gain in
transistor density (this mirrors roughly the increase from Blue Gene/L to Blue Gene/P).
Even at the end of the ITRS roadmap, this will still remain far under the per chip limits from
the ITRS.

• On a per core basis, the microarchitecture will improve from a peak of 4 flops per cycle per
core today to a peak of 8 flops per cycle in 2010.

• The system will want to maintain the same ratio of bytes of main memory to peak flops as
the most recent Blue Gene/P (2 GB per 13.9 Gflops, or 0.14 to 1), and to do this we will use
whatever natural increase in density comes about from commodity DRAM, but coupled with
additional memory chips as necessary if that intrinsic growth is insufficient.

• The maximum number of nodes per board may double a few times. This is assumed possible
because of a possible move to liquid cooling, for example, where more power can be dissipated,
allowing the white space to be used, memory chips to be stacked (freeing up white space),
and/or the size of the heat sinks to be reduced. For this projection we will assume this may
happen at roughly five year intervals.

• The maximum number of boards per rack may increase by perhaps 33% again because of
assumed improvements in physical packaging and cooling, and reduction in volume for support
systems. For this projection we will assume this may happen once in 2010.

• The maximum power will be the same as projected for the heavy-weight strawman.

• The overhead for the rack for power and cooling will be the same percentage as in the Blue
Gene/L.

• We ignore for now any secondary storage (or growth in that storage) for either scratch, file,
or archival purposes, although that must also undergo significant increases.

• The rack overhead for I/O and power is the same percentage of compute power as the baseline,
namely 33%.

For this sizing, we will ignore what all this means in terms of system topology.

7.2.2.3 Power Models

We assume the same two power models as for the heavy weight strawman (Section 7.2.1.3). The
Simplistic Power Scaled Model assumes that the number of cores grows in proportion to the
technology density increase, the power per core changes as the ITRS roadmap has predicted, and
that the power for the memory associated with each node grows only linearly with the number
of memory chips needed (i.e. the power per memory chip is “constant”). We also assume that
the clock rate of the cores may change as governed by the maximum power dissipation allowed
per compute chip. Finally, we assume that the power associated with compute chip memory and
network interfaces remains constant, i.e. the energy per bit transferred or accessed improves at the
same rate as the bandwidth needs of the on-chip cores increase.

173
ECS Report

215
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1/1/00 1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

G
F

lo
p

s

Top 10 Rmax

Rmax Leading Edge

Rpeak Leading Edge

Exascale Goal

Evolutionary Light Fully Scaled Power Constrained

Evolutionary Light Simplistically Scaled Power Constrained

Evolutionary Light Fully Scaled Power Unconstrained

Evolutionary Light Simplistically Scaled Power Unconstrained

Aggressive Strawman - 20MW

Figure 7.14: Light node strawman performance projections.

In contrast, for the Fully Scaled Power Model we assume the core power grows as above,
but that both the memory and network interface power scales linearly with the peak flops potential
of the multi-core microprocessors. This naively assumes that the total energy expended in these
two subsystems is used in moving data, and that the energy to move one bit (at whatever the
rate) is constant through time (i.e. no improvement in I/O energy protocol). This is clearly an
over-estimate.

As with the heavyweight strawman, neither model takes into account the effect of only a finite
number of signal I/Os available from a microprocessor die, and the power effects of trying to run
the available pins at a rate consistent with the I/O demands of the multiple cores on the die.

7.2.2.4 Projections

Figure 7.14 presents the results from the extrapolation in the same format as Figure 7.11. One
indication of the potential validity of these projections is that even though they were based on the
Blue Gene/L chip, for which a great deal of data is available, the first projections seem to line up
well with what is known about the Blue Gene/P chip and system.

As can be seen, this approach does get closer to the Exaflops goal, but not until after 2020. It
also, however, has a narrower window between the optimistic and pessimistic power models.

The performance per watt, Figure 7.15, is within one to two orders of magnitude by 2015, a
174

ECS Report

216
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

R
p

e
a
k
 G

fl
o

p
s
 p

e
r 

W
a
tt

Historical Top 10 Exascale Goal

Top System Trend Line Light Node - Fully Scaled Light Node - Simplistic

Aggressive Strawman Design

Figure 7.15: Light node strawman Gflops per watt.

substantial improvement over the heavy node strawman.
As much of an improvement this is, it still does not reach the Exascale goals. Looking closer

into the details of the power model, a key observation that jumps out is that the power consumed
in off-chip communication, and in memory references, is still a major contributor, and needs to be
worked seriously.

7.3 Aggressive Silicon System Strawman

In this section we develop a strawman architecture for an Exascale computer system based on silicon,
but with a clean sheet of paper and an aggressive but balanced approach to design options. While
the design target is a data-center class system, the design will be done in a way that yields significant
insight (discussed at the end) into what is feasible for both the departmental and embedded classes.
The exercise indicates the scale of such a machine and exposes a number of design, programming,
and technology challenges.

Our development proceeds in a bottom-up manner, starting with the floating-point units (FPUs)
and working upward until we reach the level of a complete system.

Table 7.3 summarizes our bottom-up composition of a system. We assume a 2013 technology
node of 32 nm as a baseline for the projection - this represents a reasonable technology out of
which a 2015 machine might be fabricated. We start with an FPU (along with its register files and
amortized instruction memory). Four FPUs along with instruction fetch and decode logic and an
L1 data memory forms a Core. We combine 742 such cores on a 4.5Tflops, 150W active power
(215W total) processor chip. This chip along with 16 DRAMs forms a Node with 16GB of
memory capacity. The final three groupings correspond to the three levels of our interconnection
network. 12 nodes plus routing support forms a Group, 32 Groups are packaged in a rack, and
583 racks are required to achieve a peak of 1 exaflops.

175
ECS Report

217
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Level What Perf Power RAM
FPU FPU, regs,. Instruction-memory 1.5 Gflops 30mW
Core 4FPUs, L1 6 Gflops 141mW

Processor Chip 742 Cores, L2/L3, Interconnect 4.5 Tflops 214W
Node Processor Chip, DRAM 4.5Tflops 230W 16GB
Group 12 Processor Chips, routers 54Tflops 3.5KW 192GB
rack 32 Groups 1.7 Pflops 116KW 6.1 TB

System 583 racks 1 Eflops 67.7MW 3.6PB

Table 7.3: Summary characteristics of aggressively designed strawman architecture.

Year Tech (nm) V Area (mm2) E/Op (pJ) f (GHz) Watts/Exaflops Watts/FPU
2004 90 1.10 0.50 100 1.00 1.0E+08 0.10
2007 65 1.10 0.26 72 1.38 7.2E+07 0.10
2010 45 1.00 0.13 45 2.00 4.5E+07 0.09
2013 32 0.90 0.06 29 2.81 2.9E+07 0.08
2016 22 0.80 0.03 18 4.09 1.8E+07 0.07
2019 16 0.70 0.02 11 5.63 1.1E+07 0.06

Table 7.4: Expected area, power, and performance of FPUs with technology scaling.

Figure 7.16 diagrams the structure of one such group.
The strawman system is balanced by cost and our best estimate of requirements. The ratios of

floating point performance to memory capacity in Table 7.3 are far from the conventional 1 byte per
flops, or even from the “traditional” ratios found in the historical ratios from the Top 500 (Section
4.5.4) or in the strawmen of Sections 7.2.1 and 7.2.2. However it is roughly cost balanced, and with
globally addressable memory across the system, should be adequate to hold at least some Exascale
problems. It is, however, about 10X what 2008-2010 Petascale machines will have, implying that
it is sufficient capacity for at least classes II and III of Section 5.6.1.

Similarly the bandwidth ratios of Table 7.7 do not provide a word of global bandwidth per flops,
but rather budgets power across the levels of the storage hierarchy in a manner that returns the
most performance per Watt. This is how implementable Exascale systems must be balanced.

In contrast to this fixed allocation, a system in which power allocation is adaptively balanced
across levels of the bandwidth hierarchy is considered in Section 7.3.7.

7.3.1 FPUs

If we define an Exascale system as one capable of performing 1018 64-bit floating-point operations,
then at a minimum, our system needs a number of FPUs capable of this aggregate arithmetic
rate. Table 7.4 shows how the area and power of FPUs is expected to scale with semiconductor
technology. The first three columns of the table reflect the technology nodes projected by the
International Technology Roadmap for Semiconductors (ITRS)[13]. The next three columns show
how the area, energy per operation, and performance of a single floating point unit scale as line
width (column 2) and voltage (column 3) are reduced. A floating point operation (flop) here
is defined as a 64-bit floating-point fused multiply-add. The final two columns give the power
to achieve an Exaflops (1018 64-bit floating-point operations) with just FPUs (i.e. no overhead,
memory, or transport), and the resulting power per FPU.

The baseline area, energy, and frequency for 90nm is taken from [42] and represents the power-
176

ECS Report

218
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



…..

PROC.

CHIP
InterconnectInterconnect

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

Interconnect

L2 M L2 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1

Interconnect

L2 L2

DRAM 0

DRAM 15

.

.

.

.

.

1
6
 
D

R
A

M
 
I
N

T
E

R
F

A
C

E
S

12 ROUTER 

INTERFACES

0 11

PROC.

CHIP
InterconnectInterconnect

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

Interconnect

L2 M L2 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1

Interconnect

L2 L2

DRAM 0

DRAM 15

.

.

.

.

.

1
6
 
D

R
A

M
 
I
N

T
E

R
F

A
C

E
S

12 ROUTER 

INTERFACES

0 11

PROC.

CHIP
InterconnectInterconnect

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

Interconnect

L2 M L2 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1

Interconnect

L2 L2

DRAM 0

DRAM 15

.

.

.

.

.

1
6
 
D

R
A

M
 
I
N

T
E

R
F

A
C

E
S

12 ROUTER 

INTERFACES

0 11

PROC.

CHIP
InterconnectInterconnect

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

Interconnect

L2 M L2 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1

Interconnect

L2/L3 L2/L3

DRAM 0

DRAM 15

.

.

.

.

.

1
6
 
D

R
A

M
 
I
N

T
E

R
F

A
C

E
S

12 ROUTER 

INTERFACES

0 110

11

R
O

U
TE

R

forN
/W

0

0

52

.

.

.

. R
O

U
TE

R

forN
/W

11

0

52

.

.

.

.

1 Group

1 Cabinet Contains 32 Groups on 12 Networks

Interconnect for intra and extra Cabinet Links

Figure 7.16: Aggressive strawman architecture.

177
ECS Report

219
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Year Tech (nm) V Area (mm2 E/Op (pJ) f (GHz) W/Exaflops W/FPU
2004 90 0.8 0.50 52.9 0.6 5.3E+07 0.03
2007 65 0.8 0.26 38.2 0.9 3.8E+07 0.03
2010 45 0.8 0.26 38.2 0.9 3.8E+07 0.03
2013 32 0.6 0.06 10.6 1.5 1.1E+07 0.02
2016 22 0.5 0.03 5.1 1.9 5.1E+06 0.01
2019 16 0.5 0.02 3.7 3.1 3.7E+06 0.01

Table 7.5: Expected area, power, and performance of FPUs with more aggressive voltage scaling.

Unit Energy per op (pJ) Comment
FPU 10.6 Just the arithmetic operation

Register 5.5 Two reads, one write, 128 regs
Instruction RAM 3.6 32KB each access amortized across 4 FPUs
L1 Data RAM 3.6 64KB each access amortized across 4 FPUs
Core (per FPU) 23.3 Total core energy per FPU per op

Core (Total) 93.4

Table 7.6: Energy breakdown for a four FPU processor core.

optimized FPU designed for the Merrimac Supercomputer. FPUs that are optimized for reduced
latency or for higher operating frequencies may dissipate considerably more energy per operation.
Energy scaling with process improvement is computed by assuming that energy per operation (CV2)
decreases linearly with line width (C) and quadratically with voltage (V2). Maximum operating
frequency is assumed to increase linearly as line width decreases.

The table shows that just the floating point units required to reach an Exaflops of performance
will require 29MW in the 32nm technology node that will be available for a 2015 machine. Because
this power number is prohibitively high, we also consider scaling supply voltage in a more aggressive
manner than projected by the ITRS roadmap. The area and power of FPUs under this more
aggressive voltage scaling is shown in Table 7.5. As above, energy is assumed to scale quadratically
with voltage. Operating frequency is assumed to scale linearly with overdrive (VDD - VT ) where
we assume the threshold voltage VT is 250mV.

Power lost to static leakage is not considered here but will be in the final numbers.
Table 7.5 shows that by aggressive voltage scaling we are able to significantly reduce the energy

per operation (by nearly a factor of three at the 32nm node) at the expense of operating frequency.
With this approach, the power required by the FPUs to achieve an Exaflops at the 32nm node is
reduced to 11MW - just over 50% of the overall desired system power target.

Table 7.5 represents a fairly straightforward, if aggressive, voltage scaling of existing FPU
designs. Further power savings may be possible by innovations in circuit design. Also, supply and
threshold voltage can be optimized further — leading to even greater power savings at the expense
of performance.

7.3.2 Single Processor Core

As a first step in building up to a processor core, we consider combining our FPU from the previous
section with a set of local memory structures to keep it supplied with data, as summarized in Table
7.6. As we shall see, aside from the FPUs, the bulk of energy in our strawman machine will be
consumed by data and instruction supply. At the 2013 32nm node, we estimate that a three-port

178
ECS Report

220
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



register file with 128 registers consumes 1.8pJ for each access and thus 5.5pJ for the three accesses
(2 read and 1 write) required to support each floating-point operation. (Note a fused multiply-add
actually requires a third read for a total of 7.3pJ). Adding in the FPU energy from Table 7.4 gives
a total energy of 16.1pJ per operation for arithmetic and the first-level data supply.

Instruction supply and L1 data supply are dominated by memory energy. Reading a word from
a 32KB memory array in this 32nm process requires about 15pJ. Hence, if we read an instruction
from an I-cache for each operation, we would nearly double operation energy to 31.1pJ. However,
by employing some degree of SIMD and/or VLIW control, we can amortize the cost of instruction
supply across several FPUs. For our aggressive strawman design, we assume each instruction is
amortized across four FPUs for a cost of 3.6pJ per FPU.

Similarly we assume that a single L1 Data Memory is shared by four FPUs for an energy cost of
3.6pJ per FPU. The energy of an L1 access is that to access a single 32KB L1 bank. However, the L1
memory may be composed of many banks to increase capacity. This can be done without increasing
energy as long as only one bank is accessed at a time. For our aggressive strawman design, we
assume that the L1 data memory is 2 32KB banks for a total of 64KB. For the purpose of the
strawman we do not specify whether the L1 data memory is managed explicitly (like a scratch-pad
memory that is simply directly addressed) or implicitly (like a cache which would require additional
energy for tag access and comparisons). Most effective organizations will allow a hybrid of both
approaches.

The energy breakdown of a 4-wide SIMD or VLIW processor core with registers, instruction
RAM, and data RAM as described above is shown in Table 7.6. Note that even with sharing of
the instruction and data memories across four FPUs the minimal functionality of a processor core
more than doubles the energy required per operation to 23.3pJ. This raises the total power needed
for an Exaflops machine to 23MW - again just considering the cores and their L1, and nothing
above that.

This estimate has assumed an extremely power-efficient architecture. With a more conventional
approach the energy per operation could be many times larger. Fetching one instruction per
operation, employing complex control, permitting out-of-order issue, adding tag logic and storage,
or increasing L1 data bandwidth, for example, could each increase the energy significantly. However,
with careful design, the number suggested here should be approachable.

7.3.3 On-Chip Accesses

At the next level of our strawman architecture, we consider combining a number of our simple
4-way cores on a single chip. The number of cores we put on a single chip is limited by power, not
area. In this power-limited regime the architecture of our multi-core chip is directly determined
by its power budget. We assume a limit of 150W for the active logic on chip and consider the
budget shown in Table 7.7. Given a power allocation of 70% (105W) for the cores (59% FPUs +
11% L1) the chip can support 742 4-way cores (2968 FPUs) for a peak aggregate performance of
4.5 teraflops. As shown in the table, the amount of power allocated to each level of the storage
hierarchy determines the bandwidth (BW in GWords/s) at that level. The column labeled “Taper”
is the number of FPU operations per single word access at each level. The numbers in the DRAM
and Network rows reflect only the energy consumed in the multi-core processor die. Accesses at
these levels consume additional energy in memory chips, router chips, and transceivers.

Note that to improve the yield of these ∼3K FPU chips some number of additional cores and
memory arrays would be fabricated on the chip as spares that can be substituted for bad cores and
memory arrays during the test process via configuration. Alternatively one can simply configure
all “good” cores on each chip for use and allow the number of cores per chip to vary from chip to

179
ECS Report

221
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Item Percent Watts Units BW (GW/s) Taper Comments
FPUs 59.0% 88.5 2968 4495 1 Includes 3-port reg and I-mem

L1 Data 10.9% 16.4 742 1124 4 64KB per 4 FPUs
L2 6.9% 10.4 371 562 8 256KB per 2 L1s
L3 7.5% 11.3 189 286 16 Global access to L2s

DRAM 10.0% 15.0 59 89 50 Attached to this chip
Network 5.6% 8.4 13 27 164 Global access

Taper = number of flops executed per access

Table 7.7: Power budget for strawman multi-core chip.

chip.
At some distance, the energy required to access on-chip memory becomes dominated by the

energy required to communicate to and from the memory. The distance at which this occurs
depends on the signaling technology used. At the 32nm process node we estimate on-chip line
capacitance at 300fF/mm. With an 0.6V supply and full-swing signaling this gives signaling energy
of 110fJ/bit-mm, or 6.9pJ/word-mm for a 64-bit word. With a signaling protocol that uses a
reduced signal swing of 0.1V, these numbers can be reduced to 18fJ/bit-mm and 1.2pJ/word-mm.
With array access energy of 14.6pJ, the point at which access via full-swing signaling becomes
dominated by signaling energy is at a distance of 2.1mm. With more efficient 0.1V signaling, this
crossover distance is increased to 12.7mm. For the rest of this analysis we assume the use of the
more efficient signaling system with 0.1V signal swings.

For our strawman design, as pictured in Figure 7.16 global on-chip memory consists of a 256KB
RAM (composed of 32KB subarrays) for every two 4-way cores, for a total of 371 arrays for 92.8MB
on-chip storage (again we ignore the distinction between cache and directly addressable memory).
These arrays are connected to the processor cores using an on-chip interconnection network that
uses efficient signaling. To account for locality we divide all of this on-chip memory into “L2” and
”L3” levels. Both of these levels share the same on-chip memory arrays. L2 accesses reference
memory arrays associated with a local group of 16 4-way cores. L3 accesses are to any location
on the chip. Each L2 access requires traversing an average of 3.4mm of network channels while an
L3 access requires an average of distance of 21.3mm. Note that the memory arrays can support
much higher bandwidth than is provisioned at all three levels. However the power budget (and
possibly the on-chip network bandwidth) limits the bandwidth to the level shown in the table. The
numbers in the table consider only the energy needed to transport payload data over the on-chip
interconnect. This is slightly optimistic; control overhead will add to the energy at these levels - the
amount of overhead depends on the granularity of transfers. Our data-only estimates are accurate
enough for the purposes of this strawman.

The DRAM and Network rows of Table 7.7 assume an energy of 2pJ/bit to cross between two
chips. The DRAM number includes one global communication on chip (21.3mm) and one chip
crossing. The network number includes one global on-chip communication and two chip crossings
- one to get to the router, and a second to get to the DRAM on the destination chip. Additional
energy consumed in the DRAM chips and the network are discussed below.

Table 7.8 shows the area breakdown for the multi-core processor chip. Power limits FPUs
(which includes register files and instruction memories) to occupy less than half the chip. The
capacity of the L1-L3 arrays is then adjusted to fill the remaining area on the die. Note that the
capacity of the memory arrays sets their area while the bandwidth provided at each level sets their
power allowing these two parameters to be adjusted independently.

180
ECS Report

222
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Item Units Each (mm2) Total (mm2)
FPUs 2968 0.06 188

L1 742 0.09 66
L2/L3 371 0.36 132

386

Table 7.8: Area breakdown of processor chip.

(a) Quilt Packaging (b) Thru via chip stack

Figure 7.17: Possible aggressive strawman packaging of a single node.

Finally, as discussed in Section 6.2.2.1, leakage currents will still be significant, and account for
roughly 30% of total chip power. This would raise the actual processor chip power to about 215W.

7.3.4 Processing Node

As pictured in Figure 7.16, a processing node consists of the multi-core processor chip described
above and 16 1GB DRAM chips for an aggregate memory of 16GB/node. Each DRAM chip is
assumed to have a 32-bit wide interface that operates at 11Gb/s per signal for a per-chip bandwidth
of 5.5GWords/s. The 16 chips provide an aggregate bandwidth of 88GWords/s - slightly less than
the 89GWords/s specified in Table 7.7. This DRAM interface consumes 512 differential signals (32
per DRAM chip) on the processor chip for the data path. We assume the control/address path
consumes an additional 128 differential signals (8 dedicated to each DRAM), for a total of 640
signals.

Figure 7.17 diagrams two ways in which such a node may be packaged so that chip to chip
interconnect is as direct as possible.

A contemporary commodity DRAM chip has an access energy of about 60pJ/bit. However,
analysis suggests that by 2013 a DRAM can be built that can access an internal array with an
energy of 0.5pJ/bit, transport a bit from the sense amp to the interface circuitry with an energy of
0.5pJ/bit, and drive a bit off chip with an energy of 2pJ/bit for a total access energy of 3pJ/bit.
We use this more aggressive DRAM energy estimate here to assume design of a specialized DRAM
optimized for high end systems. The internal access energy includes charging a 100fF bit line to the
full power supply (0.1pJ) and 5× overhead. The transport includes driving 12mm of wire through
a low swing and associated drivers, receivers, and repeaters.

A total energy of 3pJ/bit (or 192pJ/word) and a frequency of 5.5GW/s gives a power of 1.1W
per chip or 17W for the aggregate node memory. This brings the total node power to 230W. A
breakdown of how this power is distributed is shown in Figure 7.18.

The node memory could be stacked horizontally or vertically on the multi-core processor die.
181

ECS Report

223
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Reg File

11%

Cache Access

20%

Off-chip

13%

Leakage

28%

On-chip 

6%
DRAM Access

1%

FPU

21%

Figure 7.18: Power distribution within a node.

However this would only be useful to the extent that it reduces the energy per unit bandwidth
for accessing the DRAM or the cost of providing the high pin count otherwise required. The
numbers described in this strawman can be realized using existing signaling technology packaged
on conventional printed circuit boards.

By conventional measures having 16GB of memory associated with a 4 teraflops processor seems
small. However, this ratio is roughly balanced by cost and by interface bandwidth. Modern DRAMs
are connected point-to-point and creating larger memory systems by aggregating more memory
chips requires interface chips to terminate the signal pins on these memories. In this strawman
design, the processor chips act as these interface chips, but perform arithmetic operations as well.

Also, within this estimate we do not assume any leakage power on the DRAMs - in actuality
there may be some due to the enhanced logic circuits assumed, but they would be dwarfed by the
processor chip.

Note that an Exaflops system requires 223,000 processing nodes and provides 3.4PB total mem-
ory.

7.3.5 Rack and System

Like the processor die, the contents of a rack are power limited. We assume a single rack can support
120kW. The amortized power of interconnection network components is 62.7W/node, bringing the
total node power to 295W/node. Hence we can support up to 406 processing nodes in one rack.
To make the network a bit simpler we will use 12 × 32 = 384 nodes (283,444 cores and 1,133,776
FPUs) per rack. The aggregate floating point performance of the rack is 1.7 petaflops. A total of
583 racks is required to provide an exaflops of performance.

7.3.5.1 System Interconnect Topology

A simple interconnection network, based on a dragonfly topology is used to connect the processors
in a rack. This network is seamlessly connected to the on-chip network and provides a global
memory address space across the entire system. To provide the aggregate global node bandwidth
of 20GWords/s (1260Gb/s) in Table 7.7 we provide each processor chip with 12 full duplex 4-bit
wide channels that operate with a 30Gb/s signaling rate. Each of these 12 channels connects to a
separate parallel network and traffic originating at the node is load balanced across them. Global
bandwidth can be smoothly varied by provisioning fewer than all 12 parallel networks. Figure 7.19
diagrams these connections.

182
ECS Report

224
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Figure 7.19: The top level of a dragonfly system interconnect.

Each of the 12 parallel networks is constructed by dividing the 384 nodes in each rack into 32
groups of 12 processors each. A radix-64 router chip is associated with each of the groups giving
32 routers for each of the 12 parallel networks, or a total of 384 router chips (the same number as
the processor chips). The 61 channels on each router chip are divided into 12 processor channels
(one for each processor in the group), 31 local channels (one for each other group), and 21 global
channels (each of which goes to a different rack). Each group’s router connects to a different set
of 21 racks so that the 21 x 32 = 672 global channels out of each rack reach 672 different racks
enabling machines of up to 673 racks. For smaller configurations multiple connections are made to
the same distant rack in a modulo manner.

The network can be routed minimally or non-minimally. For a minimal route to a distant
rack, a packet traverses between two and four routers:

1. It is forwarded to any of the 12 routers connected to its source processor (the source router).
This picks one of the 12 parallel networks.

2. It is forwarded over a local link to a router within the current parallel network with a con-
nection to the destination rack, unless it is already at that router or is already in the correct
rack. This selects the group within the source rack attached to the correct destination rack.

3. It is forwarded over a global link to the destination rack unless it is already at the correct
rack. This selects the destination rack.

4. It is forwarded over a local link to a router connected to the destination processor unless it
is already there. This selects the destination group.

5. Finally, the packet is forwarded to the destination processor for further forwarding over the
on-chip interconnection network within this processor chip.

Note that each minimal packet traverses two local links and one global link. Hence with our
ratio of 12:32:21 processor:local:global links the processor links will be the bandwidth bottleneck
as is desired to deliver the specified node bandwidth.

183
ECS Report

225
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Like all butterfly derivatives, the dragonfly can become unbalanced using minimal routing on
adversarial traffic patterns. In such cases non-minimal routing must be employed - for example
by using global adaptive load-balanced routing. This is accomplished by forwarding the packet to a
different intermediate rack (randomly or adaptively selected) before forwarding it to the destination.
In this case, a route traverses up to three local and two global channels. For such non-minimal
routes the global channels become the bottleneck. However the network is very close to balanced.

7.3.5.2 Router Chips

Our radix-64 router chip has 64 full duplex channels, with each path consisting of a 4-signal high-
bandwidth differential link, all operating at 30Gb/s. For purposes of estimating energy, we assume
that transmitting each bit across a router takes 4pJ - 2pJ for the energy to drive the outgoing
link, and 2pJ to traverse the router internals. This gives an overall router active power of 30.7W.
Applying the leakage tax discussed earlier to the on-chip portion raises this to about 37.5W. We
also assume that the 21 global channels attached to each router require an additional 10pJ/bit for
external transceivers or buffers, so the 2520Gb/s of global channel bandwidth out of each router
requires an additional 25.2W giving a total interconnect power of 62.7W per node. Note that global
bandwidth can be varied independently of local bandwidth by omitting global channels from some
of the parallel networks. This allows a system to be configured with a desired amount of local
bandwidth - by provisioning N (between 1 and 12) parallel networks, and separately setting the
amount of global bandwidth by provisioning G (between 1 and N) of these networks with global
channels.

7.3.5.3 Packaging within a rack

While there are many options as to how to package all the logic that goes into one rack, we assume
here that each group of 12 processor chips, their 192 DRAM chips, and the associated 12 router
chips are all packaged on a single board, with edge connections for both the local and global
channels. There are up to 52x12=624 such channels that must be connected to each such board.
32 of these boards make up a rack, along with the disks, power supplies, and cooling subsystems.

We may also assume that each of these 32 boards plug into a single backpanel, eliminating the
need for cabling for the channels connecting groups within a rack. This accounts for all but 21 of
the channels of each of the 12 routers per group. The remaining 12x21=252 channels per board
(8064 overall) are distributed to the other racks as pictured in Figure 7.19. Since there are 12
parallel networks, it makes sense to assume that the 12 channels that interconnect each rack are
“bundled” into a single cable, meaning at least 582 cables leave each rack - one to each of the other
racks.

7.3.6 Secondary Storage

To provide checkpoint storage, scratch space, and archival file storage up to 16 disk drives are
associated with each group of 12 processors. These drives are located in the rack and attached via
high-speed serial channels (the evolution of SATA) to the routers in the group. They are accessible
via the network from any processor in the system. Using projections for 2014 disk drives (Section
6.4.1), the 16 drives will provide an aggregate of 192TB of storage, 64GB/s of bandwidth, and
dissipate about 150W. The 64GB/s of bandwidth is sufficient to checkpoint the 192GB of DRAM
storage in the group in 3 seconds, if they can all be run in parallel at full bandwidth.

Assuming a node MTBF of 106 hours we have a system MTBF of about 3 hours. With a
checkpoint time of 3 seconds (8.3×10−4 hours), a checkpointing interval of about 3 minutes is near

184
ECS Report

226
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Item Percentage Watts Units Bandwidth Taper
FPUs 84.3% 126.5 4240 6421 1

L1 62.5% 93.7 4240 6421 1
L2 79.1% 118.6 4240 6421 1
L3 99.7% 149.6 2523 3821 1.7

DRAM 100.0% 150.0 592 897 7
Network 100.0% 150.0 234 354 18

Table 7.9: Power allocation for adaptive node.

optimal which gives a checkpoint overhead of about 1.7% (see Section 6.7.4).
For scratch and archival storage, the disks provide an aggregate of 6.1PB of storage for each

rack and 3.6EB of storage in an Exaflops system. Larger amounts of storage if needed can be
provided external to the main system. Given that the configuration supports a total of 3.4PB of
DRAM memory, this 3.6EB of disk storage should be more than sufficient for both checkpointing,
and scratch usage, even with RAID overheads for redundancy. In fact, it may very well offer at
least rudimentary archival support.

An intermediate level of non-volatile memory - with latency, bandwidth, and cost/bit between
DRAM and disk would be valuable to reduce the latency of the checkpoint operation and speed
access to frequently accessed files. For example, suppose a technology existed for memory chips
with 16GB density (16x the density of the 1GB DRAMs expected in 2014) and a

bandwidth of 5.5GB/s (1/8 the bandwidth of the DRAM chips). An array of 8 of these chips
associated with each processing node would provide ample storage for checkpointing and would
provide an aggregate bandwidth of 44GB/s - reducing the time to take a checkpoint to 0.36s which
is nearly an order of magnitude faster than checkpointing with disks.

7.3.7 An Adaptively Balanced Node

In Sections 7.3.2-7.3.5 we architected a strawman system with a fixed allocation of power to the
various levels of the hierarchy. In this section, we revisit this design and sketch a system in which
each level of the hierarchy is provisioned so that it can consume all of the power allocation by itself.
The result is a node organization with higher bandwidth at each level of the hierarchy than shown
in Table 7.7. To prevent a chip from oversubscribing the total power limit, a throttling mechanism
is used to monitor overall power use (e.g. by counting the number of accesses at each level of the
hierarchy) and throttle instruction issue or other performance mechanisms when the short-term
average power exceeds a threshold.

With this power-adaptive organization all levels of the hierarchy cannot operate a maximum
capacity simultaneously — or the overall power limit would be exceeded by many fold. However, this
arrangement enables each node to adapt its power use to the application at hand. An application
segment that demands very high DRAM bandwidth and relatively little floating-point can use
all of its power on DRAM bandwidth. A different application segment that can operate entirely
out of registers may use all of its available power on floating point, with little for memory or
communication. Together, this may allow a single design to match more readily to a wider class
of applications, even though for any one class some part of the machine’s resources are “under-
utilized.”

Table 7.9 shows the power allocation for the adaptive node. We provision 4240 FPUs in 1060
cores. At our 1.5GHz clock rate, this provides a peak performance of 6.4Tflops when operating
out of registers. When operating at peak rate from registers, 84.3% of the power is consumed

185
ECS Report

227
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



FPU

17%

Memory

31%
Interconnect

27%

Leakage

25%
Reg File

28%

L1

39%

L2/L3

16%

DRAM

3%

Disk

14%
Processor

16%

Router

20%

DRAM

4%

Network

60%

(a) Overall System Power (b) Memory Power (c) Interconnect Power

Figure 7.20: Power distribution in aggressive strawman system.

by the FPUs with the balance consumed by accessing registers, fetching instructions, and control
overhead.

For on-chip access, we provision the L1 and L2 so they can each support one access for every
floating-point unit each cycle. This requires 62.5% and 70.1% of the total power respectively. Thus,
we cannot maintain the peak floating-point rate at the same time that these memories are being
accessed at full bandwidth. To stay within the power envelope, we restrict L3 accesses to one access
for each 1.68 floating point units per cycle. This consumes all available power.

For off-chip access, both the DRAM interface and the network interface are also configured so
that they can each consume all available power. This widens the DRAM interface by an order
of magnitude to a bandwidth of nearly 900GWords/s. The network bandwidth is half of this
rate. With this adaptive power provisioning, the off-chip data rates required now pose packaging
challenges where with the fixed budget shown above they were well within the capabilities of existing
technologies.

7.3.8 Overall Analysis

Figure 7.20(a) breaks down the power usage within the aggressive strawman design. The categories
include that for the FPUs alone, for accessing any memory structure in the system, for interconnect
(both on and off-chip), and for leakage. As can be seen, power is fairly evenly distributed, with
FPU power the lowest and memory power the highest.

Figure 7.20(b) then breaks down just the power associated with accessing any memory structure
in the system. This distribution is much less evenly divided, with about 2/3 of the power spent
closest to the FPUs in the register files and in the L1 instruction and data caches. The L1 energy
is evenly split between instruction and data accesses.

Figure 7.20(c) diagrams the distribution in power spent in transferring data, both on-chip and
between chips. Here the clear bulk of the power is spent in transferring data between racks.

7.3.9 Other Considerations

The power estimates above are a clear “best-case” scenario - it is very highly unlikely that any real
implementation is likely to come in at any lower power levels. The estimates above do consider the
effects of leakage current - at the system level it raises total power from 49.8MW to 67.7MW, or

186
ECS Report

228
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



an overall tax of about 26%. However, there are several other factors that may in fact increase the
total power of a real system, but are not in the above estimate:

• The ratio of flops (1 exaflops) to memory (3.6PB) is 0.0036 - about two orders of magnitude
less than what is seen in many of today’s supercomputers, such as described in the heavy
evolutionary strawman of Section 7.2.1.

• There is no ECC on the memory - this might apply about a 12% upside to both the memory
and the transfers between memory and processor chips.

• There is no energy expenditure for matching tag arrays in caches - we treat the on-processor
arrays as directly addressed “memories” in order to get a minimum energy measure.

• Energy for data references from any memory is for the exact 8-byte words desired - no extra
transfers for line prefetch is accounted for.

• Energy for address and command transfers on the processor-memory interfaces is not consid-
ered.

• Likewise, ECC and protocol overhead needs to be considered on the node-node and group-
group links.

• There is no overhead for clock distribution on the processor chips - in many real chips today
this is a significant percentage of the total die power.

• There is no overhead for redundancy management in the processors, such as duplicate cores,
spare FPUs, comparators, etc.

• There is no overhead for redundancy and RAID controllers in the scratch disk estimates.

• Other than the register files, there is no energy expenditures accounting for core instruction
decode logic, or for non-FPU processing such as address computations.

7.3.10 Summary and Translation to Other Exascale System Classes

Although the Exascale system described above targeted the data center class system, pieces of
it can be used to get a handle on the characteristics of the other two classes: departmental and
embedded. To drive such a discussion, Table 7.10 summarizes estimates for five different variations:

1. Exaflops Data Center: represents the aggressive design as discussed earlier - a system that
has a peak capability of 1 exaflops regardless of power or other limits.

2. 20 MW Data Center: the same system derated to fit a 20 MW power limit. This yields
perhaps 30% of an exaflops, and thus represents the best we can do with silicon in a 20 MW
envelop.

3. Departmental: A single rack from the first column.

4. Embedded A: A single processor die and its 16 DRAM chips. Neither a router chip nor
disk drives are counted.

5. Embedded B: the same as Embedded A, but where the number of cores (and thus power)
on the processor die has been derated to a peak of one teraflops.

187
ECS Report

229
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale System Class
Characteristic Exaflops

Data Cen-
ter

20 MW
Data Cen-
ter

Department Embedded
A

Embedded
B

Top-Level Attributes
Peak Flops (PF) 9.97E+02 303 1.71E+00 4.45E-03 1.08E-03
Cache Storage (GB) 3.72E+04 11,297 6.38E+01 1.66E-01 4.03E-02
DRAM Storage (PB) 3.58E+00 1 6.14E-03 1.60E-05 1.60E-05
Disk Storage (PB) 3.58E+03 1,087 6.14E+00 0.00E+00 0.00E+00
Total Power (KW) 6.77E+04 20,079 116.06 0.290 0.153

Normalized Attributes
GFlops/watt 14.73 14.73 14.73 15.37 7.07
Bytes/Flop 3.59E-03 3.59E-03 3.59E-03 3.59E-03 1.48E-02
Disk Bytes/DRAM Bytes 1.00E+03 1.00E+03 1.00E+03 0 0
Total Concurrency (Ops/
Cycle)

6.64E+08 2.02E+08 1.14E+06 2968 720

Component Count
Cores 1.66E+08 50,432,256 2.85E+05 742 180
Microprocessor Chips 223,872 67,968 384 1 1
Router Chips 223,872 67,968 384 0 0
DRAM Chips 3,581,952 1,087,488 6,144 16 16
Total Chips 4,029,696 1,223,424 6,912 17 17
Total Disk Drives 298,496 90,624 512 0 0
Total Nodes 223,872 67,968 384 1 1
Total Groups 18,656 5,664 32 0 0
Total racks 583 177 1 0 0

Connections
Chip Signal Contacts 8.45E+08 2.57E+08 1.45E+06 2,752 2,752
Board connections 1.86E+08 5.65E+07 3.19E+05 0 0
Inter-rack Channels 2.35E+06 7.14E+05 8,064 0 0

Table 7.10: Exascale class system characteristics derived from aggressive design.

188
ECS Report

230
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



For each of these system classes there are four sets of summary characteristics:

1. Some key absolute functional attributes from Section 2.1, namely peak performance, total
storage, and power.

2. Some normalized attributes.

3. Component counts.

4. Counts of connections of various sorts: chip, board edge, and channels between boards. The
chip contacts are individual contacts such as C4 pads that support individual signals - power,
ground, clocking, and control contacts are not counted. The board edge counts assume a
board with 12 nodes (processor + router + DRAMs) on it, and again represents individual
connector “pins” that carry individual electrical signals (two needed for a differential link).
The inter-rack channels represent the number of distinct router compatible channel paths
that couple racks.

The last two sets of metrics were included to give some sense of how reliability issues may come
into play, especially for larger systems.

7.3.10.1 Summary: Embedded

The two embedded columns indicated that even though a processor chip plus DRAMs make a rather
potent assembly of about the performance desired for an embedded class implementation, the power
of at least 153 W is still excessive by some non-trivial factor, even considering the low 0.014 bytes
per flop present in the 1 teraflops configuration. Boosting this memory capacity to something
more reasonable will increase power in two ways: per DRAM chip power and increased power
per processor-memory link. The latter is likely because there are insufficient contacts available in
silicon at that time to allow for many more memory interfaces, meaning that each interface must
now support multiple DRAM chips and the added capacitance they introduce.

In terms of memory bandwidth, the Embedded B column does support more bandwidth per
flop, mainly because we assume the number of cores drops to 180 from 742. However, no additional
bandwidth is gained by adding more DRAMs.

Also, there is still considerable concurrency - at least 720 flops per cycle must be extracted
from the application in order to achieve peak efficiency. This is orders of magnitude above any
“embedded class” processing system of today.

7.3.10.2 Summary: Departmental

The Departmental system consists of one rack from the exaflops system. This is again in the right
performance range of 1.7 petaflops (if we can run at 100% efficiency) and is the right physical size
(1 rack), but is again significantly off the mark in power and memory capacity. While the active
power of the electronics for a single rack is 116 KW, the overhead for power supply inefficiencies
and cooling may raise the wall-plug power to upwards of 200KW - probably too much for a small
machine room. Also 0.0036 bytes per flop is 10-100X below the expected Petascale machines of
2010, of either the heavy or light node types of Section 4.5. With the percentage of power due to
memory at 29% (Figure 7.20), getting to even 0.1PB of DRAM would add on the order of 1/2 MW
to the total.

Concurrency is also considerably higher - on the order of 1 million operations must be indepen-
dently specified by the program in each and every machine cycle.

189
ECS Report

231
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale 1 Exascale 2
Component FITs/Component # Components FITs # Components FITs

Processor chip 1000 224K 224M 224K 224M
DRAM chip 5 3,582K 18M 14,330K 72M
Flash chip 5 1,791K 9M 7,164K 36M
Router chip 1000 224K 224M 224K 224M
Disk Drive 1000 229K 299M 299K 299M
Power Supply 100 37K 4M 37K 4M
HW FITs 777M 857M
Other FITs 777M 857M
Total FITs 1,554M 1,715M
MTTI (minutes) 39 35

Table 7.11: Failure rates for the strawman Exascale system.

Also, from the packaging perspective, the number of individual pins carrying individual signals
between each board and the backplane is on the order of 5,000 pairs (52x12x4x2), which is not
practical with any technology of today.

On the bright side, for the amount of DRAM capacity in this system the disk capacity is 1000X
- more than ample for scratch or secondary, and bordering on useful for a more general file system
with some archival properties.

7.3.10.3 Summary: Data Center

The same comments spoken for the departmental system can be applied to the Data Center class.
As discussed in Chapter 5, different applications may scale from today to an exaflops in several
different ways, with a weather model, for example, taking anywhere between 10 and 100 PB of
main memory (Section 5.7.2). Even the lower of these numbers is almost 3X the assumed capacity,
meaning that the 67MW number would be low by an additional large factor. Again we have not
factored in environmental power considerations.

Concurrency in the full exaflops system nears one billion operations in each cycle.
Some additional significant reliability concerns also surface in this class. There are over 4

million chips, three hundred thousand drives, almost a billion signal-carrying chip contacts, and
about 170,000 cable bundles between racks that are each carrying about a dozen channels. Tripling
the memory to a mere 10PB adds another 10 million chips and 1 billion chip contacts.

7.4 Exascale Resiliency

We can now analyze the resiliency of the aggressive silicon strawman described in Section 7.3.
Table 7.11 shows an overview of two sample Exascale Systems: Exascale 1 with 16GB of DRAM
per processor chip and Exascale 2 with 64GB of DRAM per processor chip. According to the
strawman, we assume 16 disk drives per 12-node cluster and 8–32 flash chips per processor chip,
for data storage and checkpointing. We assume the same failure rate for Flash and DRAM (5 FITs
per chip) as was budgeted for BlueGene/L assuming that the decrease in single event upset rates
(SEUs or soft errors) will be offset by a slow increase in hard failures. The processor and router
chips are custom low-power circuits and we assume 1000 FIT per chip based on SIA projections,
which accounts for improvements in chip-level resiliency as well as more severe chip failure modes.

190
ECS Report

232
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale 1 Exascale 2
Disk Checkpoints Checkpoint Latency (Seconds) 60.0 240.0
(sustained 270 MB/sec) Availability 77% 52%
Disk Checkpoints Checkpoint Latency (Seconds) 6.0 24.0
(sustained 2.7 GB/sec) Availability 93% 85%
Flash Checkpoints Checkpoint Latency (Seconds) 0.7 2.9
(sustained 22 GB/sec) Availability 97% 95%

Table 7.12: Checkpointing overheads.

We assume a 100,000 hour reliability on disk drives (1000 FIT) and a lower 100 FIT rate on power
supplies.

These assumptions produce a hardware failure rate of 777–857 million FIT for an Exascale
system. Based on experience that hardware accounts for about half of the overall system failures,
an Exascale system could be expected to have a failure rate of 1.5–1.7 billion FITs. These failure
rates corresponds to a failure every 35–39 minutes.

Table 7.12 provides an analysis of the effect of failure rate on the availability of the system.
For this analysis, availability is defined to be the fraction of time that the machine operates at full
capacity, assuming that repair time is zero. While aggressive sparing with automatic fail-over can
help a system approach ideal zero-repair time, the system will still experience some degradation.
The table shows checkpoint latency for three different scenarios: (1) local disk checkpointing at
270 MB/second (1/20 the raw disk bandwidth) to account for system overheads, (2) local disk
checkpointing at 2.7 GB/second (optimistically 1/2 the raw disk bandwidth), and (3) local flash
checkpointing at 22 GB/second (1/16 of the raw DRAM bandwidth). The total checkpointing
latency is a function of both the checkpointing bandwidth and the memory capacity, assuming
checkpointing of the entire contents of DRAM. The slowest checkpointing rates are 1–4 minutes,
while the fastest are 1-3 seconds. The machine utilization is computed using an optimal check-
pointing interval that maximizes the availability, accounting for the overhead to take a checkpoint
as well as the work lost when a failure occurs. The utilization ranges from 52% to 95% depending
on the checkpointing bandwidth, failure rate, and memory capacity.

This analysis emphasizes the importance of design and technology developments on the capabil-
ities of the machine, as utilization degradation requires a larger machine to sustain a given level of
performance. Even 90% utilization requires a machine to have 10% more components and consume
10% more power to achieve a particular Exascale metric. This analysis also indicates that fast
rollback and recovery schemes, coupled with automatic fail-over, can reduce the effect of significant
failure rates. If these mechanisms are sufficiently effective, even higher failure rates can be toler-
ated, which gives designers the opportunity to choose less reliable components or technologies as a
part of the cost/power/performance/utility optimization.

7.5 Optical Interconnection Networks for Exascale Systems

We develop here an exercise to explore a simple model for the insertion of photonic interconnect
technologies within the context of the strawman Exascale system design in 7.3. The goal of this
analysis is to expose key system metrics which may be enabled by optical interconnects, particularly
potential gains in the available bandwidth under an equivalent power budget to the strawman
design. The unique challenges associated with optical technologies (i.e. the lack of equivalent
optical RAM) will of course require new architectural approaches for the interconnection networks.

191
ECS Report

233
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



21-port 

switch

Super-core

Gateway

Broadband 

router

Figure 7.21: Chip super-core organization and photonic interconnect.

The analysis here however makes no attempt to design any aspects of the interconnection network
and makes only broad assumptions regarding the topology, flow control, etc.

7.5.1 On-Chip Optical Interconnect

We begin as in the silicon system strawman design (7.3) in a bottom-up fashion with the processor
chip. We organize the processor chip into groups of cores, or super-cores. For the 742-core chip,
we have 36 super-cores each containing 21 cores (see Figure 7.21). An optical Gateway which
contains the electronic/photonic plane interface as well as a routing switch is associated with each
super-core. The super-cores form a regular 6x6 grid on-chip which is connected via a photonic on-
chip network. The gateways provide the electro-optic (E/O) and opto-electronic (O/E) interfacing
between the processor super-cores and the photonic interconnect. The optical Network on-chip
(NoC) network topology can be assumed to be a mesh, or some derivative thereof, such as a torus.
In addition to the E/O and O/E interface, the gateways include a broadband router switch which
can direct a multi-wavelength optical message either onto the on-chip network or to an off-chip
fiber port. The gateway router switch can be configured to receive multi-wavelength messages
from off-chip. The on-chip electronic network as described in the strawman is assumed to remain
and its full power budget of 8.4W will be included in the calculations. However as the design is
further optimized and the optical on-chip network is used for an increasing fraction of the traffic
(particularly for large, high-bandwidth message transfers) the power budget allocated to the on-chip
electronic interconnect may be reduced.

7.5.2 Off-chip Optical Interconnect

The strawman design chip is rated at 4.5 Tflops. We assume here that the optical NoC can provide
1 B/s for each flop. This is equivalent to 36 Tb/s available to the chip or 1Tb/s per super-core. In
addition, the 36 broadband router switches at each gateway can direct 1Tb/s to an off-chip fiber

192
ECS Report

234
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Rx

a
m

p

Gateway

Rx

Rx

����
��

.

.

.

a
m

p
a

m
p

modulator

modulator

.

.

.

modulator

Off-chip lasers

E
l
e
c
t
r
i
c
a

l

O
p

t
i
c
a
l

Figure 7.22: Gateway functional block design.

Modulator power 0.1 pJ/bit
Receiver power 0.1 pJ/bit

On-chip BroadBand Router Power 0.5 mW
Power per laser 10 mW

Number of wavelength channels 250

Table 7.13: Optical interconnect power parameters.

port and are configured to receive 1Tb/s from an off-chip port (these broadband ingress/egress
switches are not explicitly shown in the figure).

The gateway (see Figure 7.22) E/O interface consists of a bank of electro-optic modulators fed
by multiple off-chip lasers (one for each of the wavelengths) and the electronic signaling from the
processor plane. The O/E interface consists of passive wavelength demultiplexing and a bank of
receivers (one for each of the wavelengths).

Based on current measurements and projections for silicon photonic ring-resonator modulators
and receivers in the 2013-2014 time frame we employ 0.1 pJ/bit for the energy consumed at each
of the E/O and O/E interfaces. In addition, the laser power consumption which is continuous is
assumed to be 10mW per wavelength channel. Optical links are generally more power efficient at
higher frequencies and typically operate today at 10 GHz or 40 GHz. However to simplify this
calculation and to avoid additional computation of the serialization and de-serialization energies,
we assume here that the optical signals run at the electronic tributary rate of 4 GHz. To achieve
our designed bandwidth per super-core of 1 Tb/s, 250 wavelength channels are required. Although

193
ECS Report

235
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



modulator

modulator

modulator

Off-chip lasers

Rx

Rx

Rx

.

.

.

.

.

.

10 mW

. . .

0.1 pJ/bit1 Tb/s

Broadband 

router

Broadband 

router

0.5 mW 0.5 mW

0.1 pJ/bit

Super-

core

Super-

core

1 Tb/s

Figure 7.23: Super-core to super-core optical on-chip link.

Parameter Value
Cores per supercore 21
Supercores per chip 36

broadband switch routers 36
Number of lasers 250

Bandwidth per supercore 1 Tb/s

Optical Tx + Rx Power (36 Tb/s) 7.2 W
On-chip Broadband routers (36) 18 mW

External lasers (250) 2.5 W

Total power for photonic interconnect 9.7 W

Table 7.14: Optical on-chip interconnect power consumption.

aggressive, this is not an unrealistic number, as it has been demonstrated within the context of
commercial telecom fiber optic transmission. These components power parameters are summarized
in Table 7.13. Each chip would require 250 external lasers each consuming 10mW for a total of
2.5W per chip.

Broadband silicon photonic router switches are used at each gateway to route optical messages
within the on-chip network and to off-chip optical ports, as pictured in Figure 7.23. Based on today’s
silicon photonic switch technology, each router switch is assumed to consume approximately 0.5
mW. Importantly, this is independent of the number of wavelengths being routed simultaneously
or the bit rate in each channel.

We now have all the components necessary to estimate the power consumed by the chip itself.
Table 7.14 summarizes the calculations of the power consumed by on-chip photonic interconnection
network.

There are several key observations from this simplified analysis. The total power of the on-chip
photonic interconnect, estimated at 9.7 W is equivalent to the on-chip electronic interconnect in
the strawman design of 8.4 W (Table 7.7). The photonic interconnect provides about a factor of
28 higher bandwidth (36 Tb/s versus 1.28 Tb/s) to the chip in comparison with the electronic on-
chip interconnect. Secondly, the broadband router switches consume practically negligible power.
As expected, the dominant contribution to the power dissipation comes from the E/O and O/E
interfaces. Once these are performed however, the optical signal does not need to be regenerated

194
ECS Report

236
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Rack

Figure 7.24: Optical system interconnect.

as it propagates off-chip and across the systems. This is the critical advantage that photonic
interconnects can provide and will become apparent as we continue to compute the total Exascale
system interconnect power dissipation.

From the strawman design, each processing node contains 16 chips of 1GB of DRAM each at
5.5 GWords/s. The total bandwidth of memory for each node is therefore 88 GWords/s, or 5.63
Tb/s. In this analysis we assume that the same optical Tx/Rx interface technologies are employed
for the memory gateways.

Approximately 40 wavelength channels (or lasers) each operating at 4 Gb/s are needed to
achieve this bandwidth across the 36 super-cores. This puts the power for the memory gateways
per node: 40 * 10 mW + 5.63 Tb/s * 0.2 pJ/bit = 1.526 W. It is clear that if we were to use
a much higher bandwidth at the memory interface, such as 4.5 TB/s to match the bandwidth at
the core, the memory interface power consumption would be similar to the on-chip interconnect or
approximately 9.7 W.

The power to access DRAM was estimated at 10 pJ/bit for the strawman design. This includes
the access and transmission of the data. It is unclear how much of this is contributed by each, so it
is difficult to estimate the fraction of power contributed by the DRAM itself and the fraction that
would fall under the optical interconnect budget.

7.5.3 Rack to Rack Optical Interconnect

At the system level, Figure 7.24, there are 583 racks each containing 384 processing nodes. We
assume here that the racks are connected by a transparent optical network using a double layer
hierarchical network topology with 2 optical MEMS 384x384-port routers per rack. These routers
consume 100 W of power each, regardless of bit rate per port. We note here that this estimate is
based on current optical MEMS cross-connects designed for telecom applications and is expected
to be significantly less (by a factor of 10) when customized for computing systems. Racks are
organized into approximately 60 groups of 10 with a central router, as shown in the figure below.
The racks are also fully connected point-to-point to avoid the central router becoming a bottleneck

195
ECS Report

237
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Parameter Value
Bandwidth per chip 36 Tb/s

Bandwidth to/from memory per node 5.6 Tb/s
Number of MEMS routers 1226

Total Power for chip interconnect 9.7 W
Total Power for external network 122.6 KW

Total Power for node memory interface 1.53 W

Total power consumed by optics 2.6 MW

Table 7.15: Optical system interconnect power consumption.

for close-proximity transfers, which should be exploited in the mapping of the application to the
system architecture. Note that because both the NoC and external optical network are integrated
and transparent, data generated from one super-core on one chip in one rack traveling to any other
super-core in the system will consume power per bit only at the gateway interfaces, set at 0.2
pJ/bit.

The only remaining power calculations are to add the power from the 1226 (583*2 + 60) routers
to the total power from the racks. Table 7.15 summarizes these power calculations.

7.5.4 Alternative Optically-connected Memory and Storage System

Exascale memory and storage systems must mitigate the disparity in bandwidth among levels of
the hierarchy, achieve adequate storage performance, minimize energy expenditure, and provide
adequate resilience. As discussed above, familiar DRAM main memory, disk, and tape hierarchy
will probably not suffice. Memories in the form of commodity-based single-die silicon substrates
will not deliver the requisite bandwidth and latency at acceptable power levels. Copper-based
interconnect up and down the hierarchy may be inadequate to deliver the performance needed
within the power budgeted. A truly serious approach to build an Exascale system within a decade
may very well require alternative structures such as photonic communication between logic and 3D
optically connected memory modules (OCM). Such a strawman memory system is discussed here.

As a baseline for a strawman data center scale memory system we assume a 32 petabyte main
memory. Depending on the types of memory available, one may be able to afford more than that, in
both cost and power terms, through the use of an OCM technology. data center projections shows
storage file system to main memory ratios fall typically in the 100:1 range, and hence 4 exabytes
of usable file storage is a reasonable estimate (adding 20 percent for ECC and other metadata). A
substantial amount of storage needs to be much higher bandwidth and lower latency than current
spinning disk technology, which is not improving for either of these performance measures.

Application checkpoints through defensive I/O to disk files play an essential role in ensuring
resilience in today’s Petascale systems. The growing disparity between disk bandwidth and inte-
grated devices argues for more research into solid-state distributed storage solutions that are much
faster and more energy efficient than mechanical systems. Several nonvolatile RAM (NVRAM)
technologies look promising, as discussed previously. Some combination of DRAM and NVRAM in
the same stack will significantly improve bandwidth and save energy. Depending on the cost and
capability of the NVRAM, it may be able to supply most of the storage capabilities for an Exascale
system, or at least act as a high capacity buffer to enable a better match between memory and

196
ECS Report

238
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



package body

optical layer

DRAM

DRAM

NVRAM

NVRAM

NVRAM

NVRAM

control and interface silicon

Through silicon vias forming 

vertical data buses

Fiber 

connections

Figure 7.25: A possible optically connected memory stack.

storage.
The ITRS projects that each high performance DRAM die in a 2017 (20 nm) process will

cost .03 microcents/bit with a capacity of 1-2 GB per die. A 32 PB commodity memory would
therefore require 16.7-33 million die, each with 81-270 pins. The cost for just the memory die would
be $86.5M. The cost in power and DIMM packaging would increase this number significantly given
the need for somewhere between 1.3 and 4.5 million wires. An OCM package such as that shown
in the figure below that combines two layers of DRAM and four layers of high density NVRAM
can reduce the number of components by at least 6, since the wires to each OCM module can
be replaced by shorter in-module vias, and the external connection will only need 4 waveguides
per OCM. Interconnect power alone for an Exascale system can be reduced from 15 MW (for all-
electrical) to less than 1 MW for an optically interconnected system. A simple analysis for the
DRAM portion of the OCM shows that at peak access rates, an 8 gigabyte OCM will consume 2.0
watts in 2017 and a 4 gigabyte OCM will consume 1.4 watts. This puts the total memory power
requirement between 8.5 MW and 12 MW.

The OCM module, with a capacity of 4 or 8 gigabytes is constructed from a 3D stack of DRAM
and NVRAM dies as shown in Figure 7.25. Each processor socket can connect optically to 64 of
these modules. Using a photonic scheme enables each socket to be connected to more memory
than would be possible by stacking the memory directly on top of a processor chip, and also avoids
the problem of heating of memory by the processor when memory is stacked directly on top of
a processor chip. More OCMs can be attached to the same memory controller channel for larger
configurations. The channel consists of four waveguides, each of which carries 64 wavelengths
modulated at 10 GHz for a total per channel memory bandwidth in excess of 160 gigabytes/sec per
OCM, and 10 terabytes/sec per processor socket. Power and performance issues motivate an OCM
organization where each access is a complete 128 byte cache line.

NVRAM capacity should be at least twice that of main memory, since a failure may occur
during a checkpoint operation. More should be provided if affordable. It makes sense to place the
NVRAM in the OCM stack: this allows fast in-stack DRAM to NVRAM copy, which saves energy
since data will not have to be transported over a global interconnect.

There are several technologies currently competing for ultra-dense NVRAM, as discussed in
Section 6.3.5. Simple crossbar circuits on top of functional CMOS have been demonstrated with a
local density of 10 GB/cm2 for a single layer. Further, the crossbar technology itself is stackable, so
that effective densities as high as 100 GB/cm2 on a single die are conceivable. There is a significant
amount of activity in examining the switch material for nanometer-scalable resistive-RAM (RRAM)

197
ECS Report

239
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



junctions incorporating metal oxide layers (NiO and TiO2), that in principle can be written in less
than 10 ns for less than 1 pJ/b energy dissipation. The resiliency of these systems is being designed
to handle 1-10% defects in the crosspoints.

7.6 Aggressive Operating Environments

By the end of the next decade, expected technology trends and possible architectural responses
to exploiting them will impose extreme demands on software operating environments which will
subsume the current responsibilities of run-time systems, operating systems, virtual machine layers,
and system level schedulers and resource managers. As a consequence, they may look very different
from today’s operating environments. This section summarizes the extreme demands that will be
placed on the operating environment software across the trans-Exaflops performance regime and
discusses some elements of one possible approach to addressing them. Through this perspective, a
set of general research questions is derived that may help.

7.6.1 Summary of Requirements

From this study, potential properties for Exascale computing systems has been explored and esti-
mated. Here we highlight those that will have the largest impact on operating environments:

• Parallelism - concurrency of action will have to be elevated to unprecedented levels to
reduce execution time, achieve target performance levels, and maintain adequate efficiency.
It appears that sustained parallelism of a minimum of 100 million-way will be required to meet
this requirement, regardless of technology. But time distances (measured in processor core
cycles) to almost every resource whether local memory, remote nodes, or system services must
also rely on additional parallelism to hide such latencies. While many factors contribute to
determining exactly what the level of additional concurrency required for this purpose is, two
orders of magnitude may prove a conservative estimate. The result is that future environments
should be assumed to support parallelism of ten billion-way or more.

• Latency - As touched on previously, latencies measured as delay time in processor core
cycles to intra-node and remote resources can be a source of extreme performance degrada-
tion. Multi-ten thousand-way latencies will demand locality management and latency hiding
methodologies far more aggressive than today’s systems. The apparent latency will be ag-
gravated by contention for shared resources such as memory bank access and global system
interconnect.

• Overheads - While conventionally a combination of static scheduling, global barrier syn-
chronization, and large point to point data block transfers, future computations on Exascale
systems may be very different. Application algorithms of future large scale problems will be
multi-discipline, sparse, dynamic, and potentially irregular in data structure and operations
on them. A major consequence is that the run-time resource management and application
task synchronization overhead will become a significant part of the total execution.

• Reliability - As the number of devices grows and their size shrinks to nano-scale features,
single point failures may have devastating effects on the operational viability of the system.
Conventional practices of checkpoint/restart will be infeasible as the time to dump core to
external storage will exceed the MTBF of the system. In the future, no system will be static
in structure but will be continually modifying its form as hard faults dictate isolation of failed

198
ECS Report

240
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



components and transfer of data and tasks to functionally elements. An aggressive operating
environment will out of necessity have to contend with this continuously changing physical
platform while providing a global virtual interface to basic functional capabilities.

7.6.2 Phase Change in Operating Environments

To meet these unprecedented challenges, a change in execution model and operating environments
is probable. While it is unclear at this time what form such a revolutionary environment may take
on, it is possible to consider one such strategy as an exemplar for a class of possible alternatives.
Such a strategy would mark a phase change in operating environments with respect to conventional
practices as it directly addresses the challenges and requirements described above.

The levels of physical and abstract parallelism combined with the unprecedented potential
efficiency losses due to overhead and latency will drive strategic changes. It is imperative that
our objective function, our metric of success, be changed to reflect the realities of the costs and
tradeoffs. Even today, we use as our principal measure of efficiency the ratio of sustained to peak
floating point performance. In fact, the floating point ALU is among the least expensive resources
in terms of die area, cost, or power consumption. Instead, the precious resources and therefore
the overall efficiency are memory capacity, memory access bandwidth, and system bandwidth and
latency. In addition, there should be high availability of flow control to handle over-subscription
with respect to peak capability of these bottlenecks.

Dynamic scheduling of resources is required both for load balancing and reallocation in the
presence of faults, as well as exigencies of system demand outside the user application domain.
For this reason, the conventional practice of the user code controlling the dynamic scheduling is
infeasible (especially when billions of threads of control may be present), and must be performed
by a system sensitive set of policies and mechanisms while minimizing overhead impact on the
application execution. In turn, this forces an important change in the relationship between oper-
ating and run-time systems, forcing a merger where there was once clear separation of roles and
responsibilities. It also changes the relationship between the programmer and the resources. Where
conventionally the programmer is largely responsible for explicit management of locality and re-
sources, in the future the system operating environment will have to take on this responsibility,
with declarative directives from the user indicating effects to be achieved rather than imperative
statements of explicitly how to achieve them.

7.6.3 An Aggressive Strategy

An alternative operating environment to the incremental derivative described in Section 6.8 is sug-
gested that may achieve superior scalability and robustness for dynamically adaptive systems while
providing a relatively simple implementation strategy. The approach proposed employs lightweight
kernel elements in each local collection of physical threads. Unlike typical lightweight kernel meth-
ods, the virtualization is not limited to each “node” but across the entire system through an
intermediate set of protocols between kernel element instances. For simplicity, the brief descrip-
tion here is considered for three primary functionalities, although in a realistic implementation
other support mechanisms would be provided as well. The three basic system level functions are:
distributed memory, threads, and communication fabric.

The expected physical memory will likely comprise multiple distributed sets of local memory
banks with a minimal manager for each fixed sized bank. The local memory kernel serves this
resource in an object oriented manner through a defined protocol of functions. However, this
protocol extends beyond the local memory bank to include interaction and possible negotiation

199
ECS Report

241
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



with other like local memory kernels serving separate memory banks. This synergistic operation
permits collective functionality across local memory resources to satisfy relatively global memory
demands. Such functionality includes dynamic data distribution, global address translation, fault
management, and copy semantics.

The other two global virtual functions, distributed threads and communication fabric, are
achieved through a similar global combination of local lightweight kernel elements. Within the
operational framework under consideration, tasks in the form of lightweight threads are scheduled
to be executed where their primary operand data are located and when there are available execu-
tion resources. Thus, an aggressive operating environment will support a global distributed thread
execution environment where the work may move to the data when appropriate rather than the
data always moving to the work, a potentially costly operation.

The communication fabric is also supported by the synergy of like lightweight kernel elements
managing the flow of information, routing, and address translation. An important property of all
three of these distributed functionalities is that they adapt to changing structures due to diagnosed
faults and other drivers of reconfiguration. As a physical module is deemed faulty, its local ker-
nel elements are turned off and the neighboring elements book-keep the fact that they no longer
represent available resources, providing a degree of system adaptive reconfigurability.

The operating environment supports a message-driven work queue execution model in addi-
tion to the more conventional process oriented message-passing model of computation. This ad-
vanced strategy for controlling distributed processing exposes a high degree of parallelism through
lightweight synchronization mechanisms and is intrinsically latency hiding. This is because the
work queue model, assuming sufficient parallelism, does not wait on remote actions but processes
a stream of incoming task requests on local data. This method also reduces overhead by localizing
synchronization within the flow control or within the data itself, thus eliminating such unscalable
techniques like global barrier synchronization. The strategy outlined here is highly scalable if the
operation of the local lightweight kernel elements are primarily dependent in the state of their
neighboring domains of local resources. The design of these kernel elements is simple. Complexity
of operation is derived, not through complexity of design, but rather through the emergent global
behavior of the synergistically interacting collections of simple local kernel elements. This greatly
bounds difficulty of software design, debugging, and scalability.

7.6.4 Open Questions

An aggressive strategy to billion-way parallelism (or more) processing systems’ operating envi-
ronments presents many challenges and questions to be resolved before realization of the promise
implied. The sketch of an aggressive operating environment above exposes a number of issues that
must be resolved prior to realizing the promise of such future systems. Here we briefly discuss some
of these key research questions.

• Model of Computation - The key issue driving all research for future Exascale computing
system architectures is the principal model of computation that will provide the governing
principles of parallel computation and the interrelationships among the physical and abstract
computing elements. If the model is an immediate extension of current conventional practices
based on a mix of communicating sequential processes globally and local shared memory
operation, then locality management becomes paramount to avoid performance degradation
due to latency and overhead. If, as has happened many times in the past, the field transitions
to a new model better capable of exploiting the emergent technologies and enabling new
classes of dynamic applications, then this enabling paradigm or perhaps a multiplicity of

200
ECS Report

242
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



such paradigms needs to be devised against a set of specified requirements. It should be
noted that although a significant shift in methodology is suggested, this does not assume a
disruptive discontinuity with respect to legacy application codes and techniques. Rather, any
such innovation should subsume as a semantic subset the typical practices of the past.

• Synergy Algorithm - In most simple terms, the choice space for managing large scale
resources is either a centralized control system or a fully distributed control system. Most
systems today are either the former or a cluster of such systems; the extreme being Grid based
widely distributed systems. There has been little exploration of the latter, fully distributed
control systems. Yet, it is possible that the degree of scaling expected by the nano-scale era
will make any centralized methodology infeasible for both efficiency and reliability reasons.
A class of algorithms must be derived that enables and supports the synergistic interaction
of simple local rule sets to achieve the desired emergent behavior of each of the critical global
functionalities of the system yielding a global virtual machine that is dynamically adaptive to
resource demands in the presence of faults. This resilient strategy is scalable to the regimes
of parallelism demanded and should be the subject of future research. In this context, we will
see a merger of operating system and run-time system roles and responsibilities which today
are largely mutually isolated.

• Global Name Space Management - Whether merely at the user application level or as an
intrinsic of the hardware architecture, every program exhibits a global or hierarchical name
space; the set of referents to which the algorithm is applied. Conventional practices assume
a physically fragmented name space on most scalable systems (DSM is an exception) at least
to the level of the node. Load balancing is handled if at all by user transformation of effective
addresses from one node to another; a low level and costly effort with many restrictions and
highly error prone. Research that finds a superior mode of operation somewhere between full
DSM and PGAS is required to guide future system design in support of user name spaces in
dynamic adaptive resource management systems, in part due to the needs of resilience.

• Fault Management Methodology - New methods are required to provide effective func-
tionality in systems of the scale being considered. It is recognized that conventional practices
of checkpoint/restart will not scale to Exascale system structures, in part because the MTBF
with single point failure modes will cross the threshold for which it will be shorter than the
time to dump core. Research will be required to address this challenge by building in micro-
checkpointing semantics directly in to the execution model and to provide low overhead and
robust mechanisms to support it. Key is the management of commits of global side-effects to
ensure that any such are performed only after verification of correctness. A second challenge
is the dynamic remapping of virtual to physical addresses and its efficient implementation in
system interconnect routing. This may require a second level of hardware address translation
to complement conventional TLBs (translation lookaside buffers).

• Programming Models - Programming languages have served poorly in recent years as the
programmer has been responsible for hands-on management of the low level resources as they
are applied to the user application. Research is required to provide an API that serves the new
class of operating and run-time system models developed in the context of dynamic adaptive
resource management and application execution. While it is often thought that the user needs
access to the lowest level to achieve adequate performance, an alternative strategy will have
to be devised that supports hardware/software co-design so that the architecture, new run-
time, and programming interface are devised to be mutually complementing. Multiple levels

201
ECS Report

243
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



of programming may be a resulting set of solutions depending on computational domain with
source to source translation proving the norm to lower level APIs. Compilation strategies will
rely more heavily on run-time resource management and thus become more simple. However,
they will also have to contend with heterogeneous hardware structures and therefore require
a more advanced protocol between compiler and run-time elements.

7.7 Programming Model

While that programming model for the strawman proposed in this section cannot be specified
completely at this time, many of its properties may be considered with some confidence. Among
these are:

• Expose and exploit diversity of parallelism in form and granularity;

• Lightweight (low overhead) local synchronization;

• Intrinsic latency hiding and locality management;

• Local/incremental fault management and graceful degradation;

• Global name space and virtual to physical address translation;

• Dynamic resource management and load balancing;

• Energy minimization per operation;

Other properties may be assigned as well in response to in depth consideration of the needs of
device technology and system scale envisioned for the next decade.

In each of these areas, the development of new technologies is required, but in many cases
quite feasible. For example, many of the features of the HPCS programming models are designed
to expose parallelism in many forms. These features, and especially the tools behind them, can
be enhanced for the even greater parallelism required for Exascale. Energy minimization models
already exist in the embedded computing market and it is quite likely that their features could be
applied here as well. The major challenge will be to produce a model which combines all of the
features in a coherent and productive whole.

7.8 Exascale Applications

In 2007, Scientists and engineers from around the country have attended three town hall meet-
ings hosted by DOE’s Simulation and Modeling at the Exascale for Energy, Ecological
Sustainability, and Global Security (E3) initiative. At these meetings, participants discussed
the future research possibilities offered by Exascale supercomputers capable of a million trillion
calculations per second and more. A primary finding was that computer scientists will need to
push the boundaries of computer architecture, software algorithms, and data management to make
way for these revolutionary new systems.

Typical exercises at this series of workshops included extrapolations of science problems of
today to Exascale. Many of these exercises involved conceptually increasing the size and scope of
the input data, adding new physics and chemistry to the calculations, increasing resolution, and
coupling disparate system models.

202
ECS Report

244
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



The following subsections describes how several applications could plausibly be mapped to the
kinds of systems extrapolated in Section 7.3. In all cases, the match indicates a reasonable to
good match to the capabilities of the machine, and thus a reasonable claim of achieving “Exascale
performance.”

7.8.1 WRF

Consider a futuristic calculation that might be carried out using WRF. The largest run of WRF
ever carried out to date is described in [105]. The performance characteristics and a related perfor-
mance model were presented in Section 5.7.2. The record calculation is 2 billion cells, 5km square
resolution, 101 vertical levels on a half-hemisphere of the earth. Using rounded-off numbers for
ease of projecting to Exascale, this calculation achieved about 10 Tflops on 10,000 5 GFlops nodes
(about 20% of theoretical peak) on a system with 1 GB of memory per node and sustained memory
bandwidth of about 1 byte per flop.

The strawman architecture of Section 7.3 would confer about a 10x increase in total memory
capacity over the machine of today (this is the strawman’s least dimension of improvement). One
could still increase the number of cells under simulation with WRF to about 20 billion, going down
to about 1km square resolution on such a global calculation, thereby to capture such effects as
cloud dynamics in the atmosphere and interaction with topography on the ground – a calculation
of great scientific interest.

The strawman architecture would represent about an order-of-magnitude increase in the number
of nodes over the number used in the record run. However given WRF’s inherent parallelism and
the relative robustness of the strawman network, this should pose little challenge to WRF (indeed
in unpublished work WRF has been run at 100K nodes on BG/L - the same order-of-magnitude in
number of nodes as the strawman.)

Although the strawman represents about a 1000x increase in peak flops per node, it delivers
only about a 100x increase in memory bandwidth per node. WRF is memory bandwidth limited
(see Section 5.7.2). Efficiency (percentage of peak) could then fall an order-of-magnitude (to 2%
from 20%).

Reading the performance prediction for WRF to improvements in flop issue rate and memory
bandwidth (more exactly 1 / memory latency) off of Figure 5.11 one should then be able to run
the 10x larger problem 100x faster than on todays machines (if todays machine had the memory
capacity). This is a perfectly plausible definition of Exascale as a 10x larger problem 100x faster
(a 1000-fold increase of todays capability).

This above projection is the optimistic one based on the notion communications overheads
will not grow as log(n) of node count (not implausibly optimistic given WRF’s locality, and likely
increased computation to communication ratio for the more highly resolved problem). A more
pessimistic projection could be read off of Figure 5.14 (25x faster on the 10x bigger problem), but
that still represents a 250x capability boost for WRF.

7.8.2 AVUS

Consider a futuristic calculation that might be carried out using AVUS[26]. The performance
characteristics and a related performance model were presented in Section 5.7.2.

A future calculation might model the entire structure of a full aircraft interacting with atmo-
sphere and sound waves hypersonically (next generation fighter) under maneuvers. This problem
maps plausibly to an order-of-magnitude increase in memory footprint (current calculations focus

203
ECS Report

245
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



typically on a part of the aircraft i.e. wing, tail, or fuselage) so a 10X memory capacity boost
allows full aircraft model to be held in memory with useful resolution.

Like WRF, AVUS is not highly communication bound, and is quite scalable by weak scaling
(making the problem larger). It is however even more memory-bandwidth-bound than WRF.
Reading the performance prediction for AVUS to improvements in flop issue rate and memory
bandwidth (more exactly the reciprocal of memory latency) off of Figure 5.12 one should then be
able to run the 10x larger problem 70x faster than on todays machines (if todays machine had the
memory capacity).

This above projection is the optimistic one based on the notion communications overheads will
not grow as log(n) of node count (not implausibly optimistic given AVUS’s locality, and likely
increased computation to communication ratio for the more highly resolved problem). A more
pessimistic projection could be read off of Figure 5.14 (50x faster on the 10x bigger problem -
AVUS is even less communications dependent than WRF) still a 500x capability boost for AVUS.

7.8.3 HPL

Recall from Section 5.7.2 that even HPL has some memory references and some slight dependency
on memory bandwidth. Reading off projected performances from Figure 5.13 it is predicted that a
machine such as the strawman could run an HPL problem 10x larger than one that can be solved
today 125x faster than today, a greater than 1000x boost in capability.

7.9 Strawman Assessments

This chapter has provided a series of insights that seem directly relevant to achieving Exascale
computing technology, including:

1. Silicon technology has reached the point where power dissipation represents the major design
constraint on advanced chips, due to a flattening of both chip power maximums and of Vdd.

2. In terms of chip microarchitecture, the above constraints have driven the silicon design com-
munity towards explicit parallelism in the form of multi-core processor chips, with flat or even
declining clock rates.

3. For Exascale systems, power is perhaps the major concern, across the board. Real progress
will be made when technical explorations focus not on power, but on “energy per operation” in
regimes where there is still enough upside performance (clock rate) to moderate the explosive
growth in parallelism. For silicon, this appears today to lie in low voltage, but not sub-
threshold, logic running around 1-2 GHz in clock rate.

4. From an overall systems perspective, the real energy (and thus power) challenges lie not so
much in efficient FPUs as in low energy data transport (intra-chip, inter-chip, board to board,
and rack to rack), and in the accessing of data from dense memory arrays.

5. DRAM memory density growth is slowing, because of both a flattening in the basic bit
cell architecture and because of growing concerns about the increasingly fine features needed
within the memory arrays. In fact, while in the past, DRAM has led the industry in improving
feature sizes, it is now flash that will drive DRAM.

204
ECS Report

246
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



6. The voltage used with the DRAM memory structures has long since flattened at a much
higher level than that for logic of any kind, meaning that the energy per bit accessed inside
commercial products will see little decline in the future.

7. Modern commodity DRAM chip architectures have major energy inefficiencies that are built
in because of the protocols that have developed to communicate with them. With current
memory system architectures, the transmission of addresses and commands is replicated to
multiple chips, with each chip then internally accessing and temporarily storing much more
data than is passed to the outside world. While there appears to be nothing technologically
that stands in the way of rearchitecting DRAMs into a much more energy efficient form, the
cost-driven nature of the commodity DRAM business will preclude that from happening on
its own accord.

8. Flash memories hold significant density advantages over DRAM, but their currently relatively
high write power and relatively limited rewrite lifetimes preclude their serious use in Exascale
systems. However, it does appear that both problems may be solvable by relaxing retention
times. This, however, requires rearchitecting both the devices and the chip architectures,
something that is difficult to do in the cost-driven commercial market.

9. A variety of novel non-silicon devices and chip architectures have been proposed, with perhaps
the greatest potential coming from those that can implement dense non-volatile memory
structures, particularly ones that can be built in multiple layers, especially above conventional
logic. As with the optical devices, however, there is still significant development work needed
to bring them to commercialization, and significant architectural work to determine whether,
and how best, to marry them with conventional technology.

10. A variety of novel on-chip optical devices have been prototyped, but before definitive state-
ments can be made about their real potential, complete end-to-end energy per bit cost es-
timates must be made and compared to advanced all electrical protocols in a full system
context. This includes the electrical costs of serializing parallel data from a conventional core
to a high speed serial stream (and then back again at the other end), the fixed overhead costs
of the light sources, the costs of switching the photonic routers (especially those distant from
the source and to which routing information must be sent), and in providing appropriate
temperature control for the optical devices, especially as large numbers of wavelengths are
employed. In addition, these devices are just now being prototyped at low levels of integra-
tion, and there is still significant work that needs to be done to complete their characterization
and optimize their designs and architectures for commercialization, especially by 2015.

11. Conventional spinning magnetic disk drives continue to advance in density, although latency
for random accesses has been flat for years, and data rates, while growing, are still no match
for solid state memories of any kind. However, at least through 2015 they seem to continue to
hold an edge in overall physical densities over alternative emerging mass storage technologies.

12. A variety of alternative chip packaging and cooling technologies are emerging that may prove
useful in moving memory and logic closer together, particularly in ways that lower the energy
per bit transported, and thus result in significantly lower system power. Leveraging such
technologies, however, requires rearchitecting the underlying chips.

13. Both fault mechanisms and fault rates will degrade as we go forward. Silicon below 45 nm
will begin to exhibit more instabilities and wearout mechanisms that will be exacerbated

205
ECS Report

247
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



by lower voltages with less margin. Many of these effects will be temperature and/or time-
dependent, such as the variable retention bit problem being observed today in DRAMs. All
these, especially when coupled with the massive numbers of components in the data center
scale systems, will introduce more complex failure patterns and higher FIT rates into system
designs.

14. From the three strawmen system architectures explored, the heavy weight strawman based
on leading edge commercial microprocessors, the light weight strawman based on lower power
and simpler multi-core scalable compute chips, and the aggressive design based on low voltage
logic and minimal overhead, the following observations are made:

• Designs based from the beginning on massive replication of small chip sets with tailored
and balanced design characteristics are by far more energy (and thus power) efficient.
This was obvious from the light weight and the aggressive strawmen projections.

• Reducing energy overhead costs in CPU microarchitecture is a necessity, and results in
very simple cores that are then massively replicatable on a processor die.

• Reducing the on and off-chip data transport costs is crucial, with low swing signalling a
necessity.

• A combination of memory chip architectures, off-chip contacts, and chip-to-chip data
transport energy costs will tend to keep the number of DRAM die that can be supported
by a single processor die in a dense configuration to a relative handful, meaning that the
intrinsic bytes to flops ratio of future Exascale systems is liable to be significantly lower
than that seen on classical computers.

• The aggressive strawman design is not possible without a rearchitecture of the DRAM
chips to solve the above problems, and a packaging scheme that allows lower energy
chip-to-chip transport to occur.

• Integrating significant routing capabilities into each processing die seems to pay signif-
icant dividends in reducing overall system power, especially if high bandwidth pGAS
systems are desired.

• Regardless of architecture, massive concurrency that is largely visible to, and must be
expressed by, the program seems inevitable. When overheads for latency management
are included, the total number of threads that an application may have to express for
execution on data center scale problems will reach into the billions.

• This explosion in concurrency will also exhibit itself at both the departmental and em-
bedded scale. The numbers present at the departmental scale will rival those expected in
the near-term Petascale systems, meaning that such systems will be unusable unless the
heroic programming efforts needed for today’s supercomputers can be greatly simplified.
While not as severe at the embedded scale, there still will be the emergence of the need
to express embedded applications in a several hundred-way parallel fashion, something
that is not common today.

• There are at least a few applications such as WRF, AVUS, and HPL, that appear scalable
to an “exa” level at reasonable efficiencies, even with the relatively low bytes to flops
ratios that are liable to be present.

206
ECS Report

248
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Chapter 8

Exascale Challenges and Key
Research Areas

The goals of this study were two-fold: determine what are the major technological barriers to
enabling Exascale systems by 2015, and suggest key research directions that should help accelerate
the reduction or elimination of these barriers.

As reference, Figure 8.1 (a variant of Figure 7.11) places one possible specific goal of an exaflops
in a data center class system in the context of the current Top 500 projections from Section 4.5,
and the evolutionary strawmen projection of Section 7.2. Assuming that Linpack performance will
continue to be of at least passing significance to real Exascale applications, and that technology
advances in fact proceed as they did in the last decade (both of which have been shown here to be
of dubious validity), then while an Exaflop per second system is possible (at around 67MW), one
that is under 20MW is not. Projections from today’s supercomputers (“heavy weight” nodes from
Section 7.2.1 and “lightweight” nodes from Section 7.2.2) are off by up to three orders of magnitude.
Even the very aggressive strawman design of Section 7.3, with processor, interface techniques, and
DRAM chip designs we have never tried commercially at scale, is off by a factor of greater than 3
when an upper limit of 20MW is applied, and this is without some major considerations discussed
in Section 7.3.9 such as a very low memory to flops ratio. This gap will get even worse when we
consider more stressing applications.

While this result is disappointing at the data center scale, the aggressive strawman design by
itself does indicate at least a 3X better potential than the best of the extrapolations from current
architectures – a significant advance in its own right. Further, a 3X improvement in terms of power
at the departmental scale is of potentially tremendous commercial value, since it would mean that
today’s data center class Petascale system will fit (aggressively) in 2015 into a very small number
of racks. This in turn has the breakthrough potential for growing the Petascale user community
many-fold.

Likewise at the embedded level, the techniques that make the aggressive strawman possible
seem to offer the potential for an order of magnitude increase in power efficiency over today. This
alone will enable a huge increase in embedded computational potential.

The conclusion from this is that regardless of the outcome of the data center, the results of
this study indicate that if the challenges described here can be met, then there is a very significant
payoff potential across the board. In particular, the study group’s conclusion was that there are
four such very specific major consensus challenges for which there is no obvious technological
bridge with development as usual, and/or that will need particular attention to ensure that they
do not rise to the level of a showstopper. These challenges focus on energy, memory, concurrency,

207
ECS Report

249
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

G
F

lo
p

s

Top 10 Rmax

Rmax Leading Edge

Rpeak Leading Edge

Exascale Goal

Aggressive Strawman - 20MW

Evolutionary Light Simplistically Scaled Power Unconstrained

Evolutionary Light Simplistically Scaled 20MW Constrained

Evolutionary Heavy Simplistically Scaled Power Unconstrained

Evolutionary Heavy Simplistically Scaled 20MW Constrained

Evolutionary Light Fully Scaled Power Unconstrained

Evolutionary Light Fully Scaled 20MW Constrained

Evolutionary Heavy Fully Scaled Power Unconstrained

Evolutionary Heavy Fully Scale 20MW Constrained

The Exascale Challenge

Figure 8.1: Exascale goals - Linpack.

208
ECS Report

250
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Embedded                       Departmental                     Data Center

Classes of Exascale Systems

Critical

High

Medium

Low

Power

Resilie
ncy

Concurrency

Memory Capacity

G
ap

 w
it

h
 C

u
rr

en
t 

T
ec

h
n

o
lo

g
y

Figure 8.2: Critically of each challenge to each Exascale system class.

and overall system resiliency. Each of these challenges are discussed in greater detail in Section 8.1.
However, Figure 8.2 diagrams notionally how important each of these challenges is to each class of
Exascale system. As can be seen two of them, power and concurrency, are or real concern across
the board, while the other two become of increasing importance as the size of the system increases.

The study group also developed a list of research thrust areas (Section 8.2) where significant
progress in the next few years could go a long way towards reducing the barriers caused by the
challenges, and thus enabling Exascale systems. Table 8.1 summarizes the relationship between
these barriers and the proposed research directions. Its columns (challenges) are discussed in more
detail in Section 8.1, and the rows (thrusts) in Section 8.2.

8.1 Major Challenges

As was demonstrated in Chapter 7, there are multiple areas where the natural progression of tech-
nology appears inadequate to enable the implementation of systems that come anywhere achieving
Exascale attributes in the desired timeframe. Each of these thus represent a major Challenge,
and is discussed individually below.

8.1.1 The Energy and Power Challenge

The single most difficult and pervasive challenge perceived by the study group dealt with energy,
namely finding technologies that allow complete systems to be built that consume low enough total
energy per operation so that when operated at the desired computational rates, exhibit an
overall power dissipation (energy per operation times operations per second) that is low enough
to satisfy the identified system parameters. This challenge is across the board in terms of energy per
computation, energy per data transport, energy per memory access, or energy per secondary storage
unit. While there has been a recognition of this challenge before, the focus has been predominately
on the energy of computation; the real impact of this study is that the problem is much broader

209
ECS Report

251
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Challenges
Power Memory Concurrency Resiliency

& Energy & Storage & Locality
Exascale Research Thrust Crit Gap Crit Gap Crit Gap Crit Gap
Technology & Architectures High High High Med High Med
Architectures & Programming
Models

Med Med High High High Med

Algorithms & Applications
Development

Low Med Med Med High High Low High

Resilient Systems Med Med Med Med High High
Crit. = criticality of thrust area to the Challenge for widespread solutions.
Gap = the gap between the maturity of existing research and the needed solution.
A “Med.” in the Hardware row reflects existence of lab prototype devices.
Blanks for any entry imply that the interaction is indirect.

Table 8.1: The relationship between research thrusts and challenges.

than just “low-power logic” - it truly is in the entire system. In fact, in many cases it has be become
clear to the panel that the non-computational aspects of the energy problem, especially the energy
in data transport, will dwarf the traditional computational component in future Exascale systems.

While the resulting power dissipation is a challenge for all three classes of Exascale systems, it
is particularly so for the largest data center class. The design target of 20MW for the electronics
alone was chosen to have some flexibility above that of today’s largest systems, but still not be so
high as to preclude it from deployment in anything other than specialized strategic national defense
applications. Figure 8.3 presents some historical data along with a “trend line” and the Exascale
goal assuming a Linpack reference. The reference metric in this case is “Gflops per Watt,” where
the power is taken over the entire system, not just the floating point units. As can be seen, even if
the positive trends of the last two decades were capable of being maintained, in 2015 power would
still be off by between a factor of 10 and 100.

As discussed in Section 7.2.1, for at least a “heavy node” system architecture, although the
most optimistic of possible projections barely makes the current trend line, more realistic estimates
seem to be barely more than flat from today. The ”light node” system architecture is better, but
still is a factor of 10 off. Even the very aggressive strawman design of Section 7.3, with processor
and interface techniques and DRAM chip designs we have never tried commercially at scale, is off
by a factor of greater than 3, and this is without some major considerations discussed in Section
7.3.9 such as a very low memory to flops ratio.

As discussed in the roadmaps of Chapter 6, a variety of factors are responsible for this effect,
especially the flattening of Vdd and the concurrent flattening of clock rates, that in turn force
performance growth by physical parallelism alone and increasing power-consuming area. Further,
as the point studies and strawmen of Chapter 7 indicated, even aggressive circuit and architecture
approaches to lowering energy do not close the gap in a timely fashion.

The following subsections discuss individual components of this power and energy challenge in
detail.

8.1.1.1 Functional Power

First, if a peak exaflop per second was the metric (i.e. a Linpack-based extrapolation of today’s
Top 500 rankings), then silicon based floating point units (FPUs), by themselves, exceed 20 MW by

210
ECS Report

252
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1/1/92 1/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

R
m

a
x
 G

fl
o

p
s
 p

e
r 

W
a
tt

Historical Top 10 Top System Trend Line

Exascale Goal Aggressive Strawman Light Node Simplistic

Heavy Node Simplistic Light Node Fully Scaled Heavy Node Fully Scaled

C

A

G

R

=

1
.
4
4

Figure 8.3: The power challenge for an Exaflops Linpack.

themselves using today’s high performance logic (Figure 7.1). We are still around 10 MW even if
aggressive circuit designs and lowered clock rates were used that reduced Vdd to 2X the threshold,
and then somehow are used at 100% efficiency - regardless of the resultant explosive growth in
required parallelism to literally hundreds of millions of simultaneous operations.

Again, as discussed in prior chapters, both the probability of 100% efficient use of numbers
of FPUs far in excess of anything we’ve managed to date, and the applicability of floating point
operations alone as metrics for successfully deployable Exascale applications are indicators that
this problem is in reality even more severe than depicted.

8.1.1.2 DRAM Main Memory Power

Next, if DRAM is used for main memory, then its power is a function of:

• Total memory capacity: this includes the continuous energy needed for refresh.

• Total number of independent accesses that must be maintained per second: each memory
access that escapes any cache hierarchy must activate some memory bank on some memory
chip to retrieve the necessary data.

• The number of bits read per access versus the number of bits actually transferred.

• Data bandwidth needed to move the accessed data from the on-chip memory banks to the
off-chip contacts of the DRAM (regardless of how such DRAM are packaged).

As discussed in Section 7.1.4, such numbers may be reasonable for very small memory capac-
ities and non-memory-intensive applications, but rapidly run out of control when either memory

211
ECS Report

253
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



capacities exceed around 5PB or applications such as GUPS are the driving factors.

8.1.1.3 Interconnect Power

Interconnect power comes in several forms: on-chip, chip to nearby chip, board to board, and
rack to rack. Even with a variety of circuit techniques (such as low-swing on-chip interconnect),
emerging chip-chip techniques (such as through via), and optical signalling techniques, the energy
to move one bit through any one level was on the order of 1-3 pJ (Section 6.5). For any one level
of the transport path that requires on the order of an exabyte per second, the power thus balloons
to 10-30MW, and multiplies as multiple types of interfaces must be crossed by the same data.

8.1.1.4 Secondary Storage Power

Today the only media for scratch and persistent storage is disk, and projections for the highest
density per watt in the 2014 timeframe are for up to 5MW for each exabyte (Section 6.4.1.2).
Further, the actual amounts of such storage needed is a function of the main memory capacity,
which if system implementations move into the larger regimes to support emerging and stressing
applications, may result in upwards of 100EB of such storage, as discussed in Section 7.1.6.

8.1.2 The Memory and Storage Challenge

The second major challenge is also pervasive, and concerns the lack of currently available technology
to retain at high enough capacities, and access information at high enough rates, to support the
desired application suites at the desired computational rate, and still fit within an acceptable
power envelope. This information storage challenge lies in both main memory and in secondary
storage. By main memory we mean the memory characterized by the ability of a processor to
randomly access any part of it in relatively small increments with individual instructions. By
secondary storage we mean the memory where data is typically accessed in “blocks” with access
handled by subroutines, not individual instructions. This includes both scratch storage for
checkpoints and intermediate data files, file storage for more persistent data sets, and to some
extent archival storage for the long term preservation of data sets.

While this challenge is felt by all Exascale classes, it is particularly severe at the data center
scale, where affordable capacities are probably at least an order of magnitude less than what is
needed for the projected application suite.

8.1.2.1 Main Memory

DRAM density today is driven by both the architecture of an individual bit cell (and how the
capacitor that stores the information is merged into the access logic) and the basic metal-to-metal
feature size of the underlying level of lithography (how close can individual row and column access
wires be placed). Today, and for the foreseeable future, the architecture of a basic cell will be
stuck at 6F2, where F is the technology feature size (1/2 pitch of M1). Second, this feature size
is driven today not by DRAM but by flash memory technology, and there are serious concerns as
to how this can be achieved below 45 nm. Together, this makes the ITRS projections[13] of 1GB
per commodity DRAM chip in the desired timeframe rather aggressive. However, even at 1GB per
chip, each PB of main memory translates into 1 million chips, and with realistic capacity needs
for data center class systems in the 10s to 100s of PB, the number of such chips grows excessively,
resulting in multiple power and resiliency issues, not to mention cost.

212
ECS Report

254
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Additionally, there is a significant challenge in bandwidth, that is how to get enough data off of
each memory die to match the desired rates. While as shown in Section 7.1.4.2, it is possible with
projected silicon technology to provide enough such bandwidth, the resulting chips look nothing
like the commercial high-volume parts of today, or the next decade. Thus even if DRAM capacities
were sufficient, there is a significant challenge in how such chips should be organized and interfaced
with other system components, and in how such chips could be brought to market in a way that is
economically competitive with today’s commodity DRAM.

The challenge thus is to find a way to increasing memory densities and bandwidths by orders
of magnitude over that which is projected for 2014, without running into other problems. The
study considered flash memory in various forms as an existing technology that might be employed
somehow, since it has both significant density and cost advantages over DRAM. However, its slow
access times, and limited rewrite lifetimes made it unsuitable for at least the fast random access part
of the main memory role. The study did, however, encounter several other emerging non-silicon
memory technologies, as described in Section 6.3.5, that have the potential for such density gains,
but not on a commercialization path that today will result in useable devices in the appropriate
time frame. Further, it is unclear how best to architect memory systems out of such devices, as
replacements for DRAM, or perhaps as a new level of memory within the overall information storage
hierarchy.

8.1.2.2 Secondary Storage

As discussed previously (Section 6.4.1), current scratch and file systems have been implemented
with the same disk technology that has Moore’s law-like growth in density, and some increase
in bandwidth, but has been essentially stagnant in seek time for decades. Also, as described in
Section 5.6.3, growth in storage requirements above the main memory level has been continuous,
with scratch needs growing at a rate of 1.7X to 1.9X per year, overall projections for scratch in the
20-40X main memory, and that for file systems in the 100X range.

For data center class systems, projected disk storage density growth using these factors is
acceptable as long as the implemented main memory is in the low petabyte range. However, there
are significant Exascale applications with needs way beyond a few petabytes that would in turn
make achieving sufficient secondary storage a real difficulty, particularly in complexity and in power.

While flash memory may have a role to play here, flash as currently designed does not have
a sufficient level of rewrites to make it acceptable as is. The alternative memory technologies
mentioned as possibilities for main memory are also possibilities, but again there are currently
significant challenges to making them viable enough, with the right systems architectures, to take
on such replacement roles.

A second consideration deals again with bandwidth. For scratch storage the need to do check-
pointing requires copying the bulk of main memory to disk, usually with the application suspended
in the process. Today, for memory-rich systems this process often takes up to 50% of the execution
time, and with the stagnation of disk bandwidth, this fraction could grow even higher, leaving no
time for computation to advance before another checkpoint is required. Thus, while extrapolation
from the strawman indicates that with the sheer number of disks needed to provide such backup for
the 3-4PB main memory range may provide sufficient bandwidth, this may not hold true if main
memory needs on a per operation basis grow to ratios commensurate with today’s systems.

Another major concern with storage is with the growing application-level need to perform
mall unaligned I/O. Because of the flat seek times foreseen for future disks, achieving the peak
bandwidths assumed above can only be done by performing all transfers in large megabyte or
bigger sized blocks, and aligned with the basic disk block size. Unfortunately, many of today’s

213
ECS Report

255
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



more critical applications perform file I/O that does not have such characteristics. As the degree of
concurrency grows as discussed above, such random unaligned I/O will become even more prevalent,
since it will become infeasible to require huge numbers of independent threads to synchronize at a
point where data can be buffered into bigger segments than what each thread processes.

Finally, the managing of metadata (file descriptors, i-nodes, file control blocks, etc.) associated
with data structures on disks is beginning to severely hamper Petascale systems. Before any I/O
requests can actually touch a disk to perform the data transfers (regardless of the transfer length),
the run time must determine on which disk a particular block of data in a certain file is located,
whether or not some other threads are already accessing any overlapping data, and how to schedule
the transfer to minimize seek time. With today’s high end applications often opening literally
millions of files during a single run, and with the potential for hundreds of thousands to millions
of physical disks to maintain just catalogs, the amount of such metadata that must be accessed
and sorted through is becoming enormous, and a severe impediment to maintaining high levels of
efficiency of processing. Many of the emerging Exascale applications, especially ones maintaining
massive persistent databases, will make this process even worse.

8.1.3 The Concurrency and Locality Challenge

As discussed earlier, concurrency can be measured in three ways:

• The total number of operations (such as floating point operations) that must be instantiated
in each and even cycle to run the applications at Exascale speeds.

• The minimum number of threads that must be run concurrently to provide enough instruc-
tions to generate the desired operation-level concurrency.

• The overall thread-level concurrency that is needed to allow some percentage of threads to
stall while performing high-latency operations, and still keep the desired dynamic thread
concurrency.

8.1.3.1 Extraordinary Concurrency as the Only Game in Town

The end of increasing single compute node performance by increasing ILP (Instruction Level Par-
allelism) and/or higher clock rates has left explicit parallelism as the only mechanism in silicon to
increase performance of a system. Thus in the embedded class, what was a single core processor
will rapidly become a 1,000 core device. In the departmental scale, downsizing a Petascale machine
with perhaps a large fraction of a million function units to a few racks will still require a million
function units. Further, at the data center class, scaling up in absolute performance will require
scaling up the number of function units required accordingly (Section 7.1.2) into the billion range.

Efficiently exploiting this level of concurrency, particularly in terms of applications programs,
is a challenge for which there currently are no good solutions. Solving it requires that

• the simplicity of programming an application for a medium sized cluster of today’s computers
becomes as easy as programming an application today for a single core,

• the heroics needed to produce applications for today’s supercomputer Petascale systems be
reduced to the point where widespread departmental systems, each with different mixes of
applications, are feasible,

• and that some way is found to describe efficient programs for systems where a billion separate
operations must be managed at each and every clock cycle.

214
ECS Report

256
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

T
o

ta
l 

C
o

n
c
u

rr
e
c
n

c
y

Top 10 Top System Top 1 Trend

Historical Exa Strawman Evolutionary Light Node

Evolutionary Heavy Node

Figure 8.4: The overall concurrency challenge.

Each of these stress the state of the art beyond today’s limits; especially for the data center
class of systems there is little idea of even how to create “heroic” programs that actually work
efficiently.

Figure 8.4 attempts to place the concurrency challenge in perspective, where concurrency is
defined in Section 4.5.3 as the total number of operations (flops in this case) that must be initiated
on each and every cycle. This figure is drawn by taking the trend line for concurrency from Section
4.5.3.4, and including the heavy and light node systems projection from Sections 7.2.1 and 7.2.2, the
light node system projection from Section 7.2.2, and the estimate from the strawman of Section 7.3.
As can be seen, even if the current trends are maintainable, billion-way concurrency will be needed
for exaflops systems, and the 2015 strawman simply requires it about 5 years earlier. Further, and
equally important, this level of concurrency is three orders of magnitude larger than what we have
today, or expect to see near term.

Figure 8.5 graphs a similar analysis, but assuming an architecture like today’s where the major
unit of logic is a single-threaded processor. As discussed in Section 4.5.3.1, here there is no clean
trend line that fits the top system, albeit there is a super-exponential trend in the median of the
Top 10. In any case, the strawman estimate three orders of magnitude higher than any system
today. Given that as the chart shows it took a decade to be able to efficiently utilize a 10X increase
in processor parallelism, to expect that 1000X can be handled in less than that is a long stretch.

Making these issues of concurrency even harder is the other characteristic of the memory wall
- latency. We are already at or beyond our ability to find enough activities to keep hardware
busy in classical architectures while long time events such as memory references occur. While the
flattening of clock rates has one positive effect in that such latencies won’t get dramatically worse
by themselves, the explosive growth in concurrency means that there will be substantially more

215
ECS Report

257
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1/1/72 1/1/76 1/1/80 1/1/84 1/1/88 1/1/92 1/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

P
ro

c
e
s
s
o

r 
P

a
ra

ll
e
li

s
m

Historical Top 10 Top System Exa Strawman

Figure 8.5: The processor parallelism challenge.

of these high latency events, and the routing, buffering, and management of all these events will
introduce even more delay. When applications then require any sort of synchronization or other
interaction between different threads, the effect of this latency will be to exponentially increase the
facilities needed to manage independent activities, which in turn forces up the level of concurrent
operations that must be derived from an application to hide them.

Further complicating this is the explosive growth in the ratio of energy to transport data
versus the energy to compute with it. At the Exascale this transport energy becomes a front-and-
center issue in terms of architecture. Reducing it will require creative packaging, interconnect,
and architecture to makes the holders for the data needed by a computation (the memory) to
be energy-wise “closer to” the function units. This closeness translates directly into reducing the
latency of such accesses in creative ways that are significantly better than today’s multi-level cache
hierarchies.

8.1.3.2 Applications Aren’t Going in the Same Direction

Section 5.8 discussed the expected future of the scalability of applications. The summary, as
pictured back in Figure 5.16, is that as we look forward both applications and the algorithms
behind them seem to have some definite limits in both concurrency and locality. Overlaying on
this the hardware trends as we discussed above, we get Figure 8.6, where the gap between what we
expect to be able to extract from applications and what hardware as we know it today seems to be
growing.

Thus a significant challenge will be in developing basic architectures, execution models, and
programming models that leverage emerging packaging, signalling, and memory technologies to in
fact scale to such levels of concurrency, and to do so in ways that reduce the time and energy de-

216
ECS Report

258
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Seriality

In
v

e
rs

e
 o

f 
D

a
ta

 L
o

c
a

li
ty

Weak Scaling EP Apps

Molecular Dynamics

Desktop Applications

Sparse Graph Algorithms

High-order DataBase Search

Ordered Summation

HPL

Coupled Physics

WRF + Cloud and Eco model

Multigrid

Single Physics

WRF today

Non-uniform fields & grids

GUPS

Future of Desktop Apps

Graph Algorithms

Coupled organism models

Science going like this

Commercial going this way slowly

HPC
hard

ware
tre

nd

Easy to 

parallelize but 

hard to localize

Easy to 

parallelize and 

localize

Just plain 

hard to 

speedup

Here is DARPA Hard gap

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Seriality

In
v

e
rs

e
 o

f 
D

a
ta

 L
o

c
a

li
ty

Weak Scaling EP Apps

Molecular Dynamics

Desktop Applications

Sparse Graph Algorithms

High-order DataBase Search

Ordered Summation

HPL

Coupled Physics

WRF + Cloud and Eco model

Multigrid

Single Physics

WRF today

Non-uniform fields & grids

GUPS

Future of Desktop Apps

Graph Algorithms

Coupled organism models

Science going like this

Commercial going this way slowly

HPC
hard

ware
tre

nd

Easy to 

parallelize but 

hard to localize

Easy to 

parallelize and 

localize

Just plain 

hard to 

speedup

Here is DARPA Hard gap

Figure 8.6: Future scaling trends present DARPA-hard challenges.

mands of access remote data in ways that applications can actually utilize the resulting concurrency
in an efficient manner.

8.1.4 The Resiliency Challenge

Resiliency is the property of a system to continue effective operations even in the presence of
faults either in hardware or software. The study found multiple indications that Exascale systems,
especially at the data center class, will experience more and different forms of faults and disruptions
than present in today’s systems, including:

• Huge numbers of components, from millions to hundreds of millions of memory chips to
millions of disk drives.

• Running interfaces at very high clock rates to maximize bandwidth, thus increasing both bit
error rates (BER) and actual bit errors on data transmissions.

• Where leading edge silicon feature sizes are used, a growing variation in device properties
across single die will increase the variation in performance characteristics of even identical
circuits at different places on the die.

• In many advanced technologies there are increasing “wear-out” mechanisms in play that bring
in aging effects into the fault characteristics of a device (for example, the buildup of stray
charge on a gate).

217
ECS Report

259
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



• Smaller feature sizes, with less charge on a device, can in many cases increase the sensitivity
of devices to single event upsets (SEU) due to cosmic rays and other radiation sources.

• Many of the technologies have significant sensitivities to temperature, making their perfor-
mance characteristics a dynamic function of surrounding activity and power dissipation.

• Running silicon at lower voltages will lower power but also decreases margin, increasing the
effects of noise sources such as from power supplies, and thus increasing transient errors.

• The increased levels of concurrency in a system greatly increases the number of times that
different kinds of independent activity must come together at some sort of synchronization
point, increasing the potential for races, metastable states, and other difficult to detect timing
problems.

When taken together and placed in a system context, many of these observations tend to
reinforce themselves and complicate the overall system. For example, checkpointing in high end
applications requires dumping large amounts of information (in some “consistent” state) from one
level of the memory hierarchy to another. How often this occurs is a function of the mean time
to disruption due to a fault from which recovery is not possible. As the memory footprint of
applications grow, the amount of memory that has to be fault free grows, as does the time to copy
it out. The first decreases the time between checkpoints, the second increases the non-productive
time to do the checkpoint, which in turn reduces the time the hardware is active, which in further
turn increases the number of hardware units needed to achieve an overall performance goal, and
which further increases the fault rate. Anything that an application can do to either checkpoint
smaller footprints and/or indicate a willingness to ignore certain classes of errors in certain regions
of code is thus clearly of huge benefit, but is currently not at all part of any application design and
coding process.

Further, while many of these fault characteristics can be mitigated at design time by approaches
such as ECC or duplication, not all can. As an example, variations in device parameters across a
multi-core processor die results in different cores that draw different amounts of power (and thus
heat differently), with different delay and thus clocking characteristics, and different sensitivities to
noise, all of which may change with both local heating or aging effects. If advanced 3D chip stacking
technologies are employed, then other die (with their own and different variational characteristics)
will also affect and be affected by these variations. This makes the job of deciding which cores at
what clock rates can be used safely a daunting real-time problem.

8.2 Research Thrust Areas

Overcoming these challenges and concerns will take a coordinated portfolio of research that is
focused on some fundamental topics, but must be done within a larger context that helps direct
them to Exascale-specific objectives. The study group thus looked at a whole range of topics that
seemed to be of most potential impact, and grouped then into four cross-cutting thrust areas:

1. Co-development and optimization of Exascale Hardware Technologies and Architectures

2. Co-development and optimization of Exascale Architectures and Programming Models

3. Co-development of Exascale Algorithm, Applications, Tools, and Run-times

4. Coordinated development of Resilient Exascale Systems
218

ECS Report

260
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



This distinction between research thrust areas and challenges was deliberate; all four of the
challenges are inter-related sets of problems, and solutions that address the problems represented
by one challenge often affect those of other challenges. Further, even when we address the problems
of just one area, solving them is not localized to a single research topic but requires co-consideration
of multiple levels of the design hierarchy.

Table 8.1 overviews this relationship. The four major challenges from Section 8.1 make up the
columns of Table 8.1, with the rows representing the three Thrust Areas (each discussed in detail
below). Each entry in this table has two values representing criticality and gap.

Criticality is an indication by the study group as to how important effective research done
in the designated research thrust is to solving the problems of the designated challenge. Thus a
high value to criticality indicates the group’s collective view that research in this area is absolutely
crucial to solving the key problems of the challenge.

Gap is a collective view by the group of the maturity level of the current leading research in the
area vis-a-vis the maturity deemed necessary to achieving Exascale systems that solve the challenge
in the appropriate time frame. Thus a high value indicates the group’s feeling that “business as
usual” is highly unlikely to lead to viable solutions in the desired time frame.

Thus entries of the “High-High” rankings are indications that the study group believed that
research into the specified areas is absolutely vital to solving the challenges, but where the current
directions in research are highly unlikely to bridge the gap. These are areas where in particular
additional research focus is liable to have the highest payoff.

Entries that are left blank in the Table are not areas where the group felt that there was no
value to the research, only that the interaction between research and problem solution was at best
indirect.

8.2.1 Thrust Area: Exascale Hardware Technologies and Architecture

In many areas it is clear that current technologies associated with the implementation of the
hardware parts of systems (logic, memory, interconnect, packaging, cooling) is inadequate to solve
the overall challenges, and significant research is needed. However, it is equally clear to the group
that doing so in the absence of a deep understanding of how to architect such systems is liable to
lead to perhaps interesting but ineffective new devices, at least for Exascale systems. Further, from
experience it is also clear that today’s system architectures are liable to be totally unsuited for
optimizing the characteristics of such new device-level technology, and new system architectures
are really needed.

Thus by grouping research topics that look at the interaction between architectures and device
technologies, the group is saying that these two topics must be studied and developed together.
Only when new device technologies are developed that blend in with system architectures that
leverage their special characteristics are we liable to see overall success in solving the challenges.

As an aside, for this row in Table 8.1 an entry of “Medium” in a gap indicates that in the
group’s view there are laboratory demonstration devices in existence now that look promising, but
that either their current path to commercialization is insufficient to get them there in time, or
there is a significant lack in understanding on how to adjust Exascale architectures to leverage
their properties, or (more frequently) both.

The following subsections describe several potential research topics that might fit this area.
219

ECS Report

261
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



8.2.1.1 Energy-efficient Circuits and Architecture In Silicon

Even given the promise of several non-silicon technologies, our 40 year investment in silicon means,
however, that an aggressive attempt must be made to utilize silicon in some form. The challenge
of building an Exascale machine (of any class) in silicon of any form that consumes an amount
of power reasonable for its scale must thus be addressed at all levels. At the circuit level, there
are significant opportunities to improve the energy efficiency of the basic building blocks (logic,
communication, and memory) from which computing systems are built. By co-optimizing these
circuits with energy-efficient architecture, even greater energy savings may be realized. Both levels
of opportunities will be needed, and must be addressed together.

Most circuits and architectures today are optimized for speed, not energy. This is reflected in the
supply voltage at which the circuits are operated, the threshold voltage(s) selected for the devices,
the pipeline depth of the circuits, and the circuit concepts and topologies employed. We expect
that substantial savings can be realized by re-optimizing all of these parameters for operations per
Joule, rather than for minimum latency.

A key starting point for development of efficient circuits is in setting the power supply voltage
(Vdd) and the device threshold voltages (VTN and VTP ). The ITRS projections for the 32nm
node project a supply voltage of 0.9V and a threshold voltage of 0.3V. Because energy scales as
V2, significant energy savings can be realized by reducing the supply voltage. The strawman of
Section 7.3 reduces operation energy by a factor of nearly three by reducing VDD to 0.6V. Some
preliminary studies (see Section 6.2.2.3) suggest that for static CMOS logic, the supply voltage
that optimizes operations per Joule is just slightly above the threshold voltage (320mV for VT =
300mV see Figure 6.10, repeated here as Figure 8.7.

The optimization is more involved, however, because threshold voltage is also a free variable. As
the supply voltage is reduced, threshold voltage should also be reduced to the point where leakage
power and dynamic power are balanced. The optimum setting of Vdd and VT is also dependent
on the circuit being optimized and its duty factor. The activity factor largely drives the balance
of dynamic and static power. Also, some efficient circuit forms require some headroom - requiring
higher supply voltages. Moreover a given circuit is not restricted to a single supply voltage or
a single threshold voltage. Multiple threshold voltages are already used to advantage in modern
circuits and multiple supply voltages may be employed as well. A study of energy efficient circuits
needs to start with a careful examination of supply and threshold voltages in the context of an
Exascale system.

The circuits employed in modern computer systems can be roughly broken down into those used
for communication, memory, and logic. We discuss each of these briefly.

Communication circuits move bits from one location to another in a system with different
circuits being employed at different levels of the packaging hierarchy. Static CMOS drivers and
repeaters are typically used to drive on-chip signals, while high-speed SerDes are often used to drive
signals between chips.

The circuits used to transmit global on-chip signals are a great example of the potential energy
savings from optimized circuits. On-chip signal lines have a capacitance of about 300fF/mm.
With conventional full-swing speed-optimal repeaters, the repeater capacitance equals the line
capacitance for a total of 600fF/mm. At the ITRS supply level of 0.9V, sending a bit on chip using
conventional full-swing signaling requires about 0.5pJ/mm.

If we optimize on-chip transmission for energy rather than speed, we can significantly reduce the
energy required to transport them. First, we reduce the signal swing VS to a level which minimizes
energy/bit. Note that this is not the minimum possible VS , but rather the level which balances
transmit energy (that reduces with VS) against receive energy (which increases as VS is reduced).

220
ECS Report

262
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0

5

10

15

20

25

0.2 0.4 0.6 0.8 1

G
O

P
S

/W
a
tt

 (
N

o
rm

a
li
z
e
d
)

Vt0

Vt0+50mV

Vt0-50mV

32nm

45nm

65nm

Nominal Vt

Vt+50mV

Vt-50mV

0

5

10

15

20

25

0.2 0.4 0.6 0.8 1

Vdd (Normalized)

G
O

P
S

/W
a
tt

 (
N

o
rm

a
li
z
e

d
)

Vt0

Vt0+50mV

Vt0-50mV

32nm

45nm

65nm

Nominal Vt

Vt+50mV

Vt
-50mV

Figure 8.7: Sensitivities to changing Vdd.

With a VS of 100mV, for example, generated from an efficient switching supply, the transmission
energy would be about 6fJ/mm, a savings of nearly two orders of magnitude.1 Optimizing repeater
spacing, line geometry, and equalization for energy may also yield significant gains.

The serializer/deserializer (SerDes) circuits that are used for high-speed off-chip communication
have energy that is dominated by timing, serialization, and deserialization. Over 2/3 of the power
consumed by a recent energy-efficient SerDes was consumed by these functions - with the remaining
1/3 used by the actual transmitter and receiver. While the gains expected for off-chip communica-
tion are more modest than for on-chip, efficiency improvements of one order of magnitude or more
are possible from improvements in these circuits and the protocols they implement.

It is clear that optimized communication circuits have the potential to reduce signaling energy
by as much as two orders of magnitude. Such a dramatic change in communication cost changes
the space of architectures that are possible, and greatly changes which architectures are optimal.
Hence any architecture optimization must take optimized signaling into account.

Memory circuits move bits forward in time - storing data and later retrieving it. On the
processor die memories are typically implemented today using 6-transistor SRAM circuits, while the
bulk memory is usually implemented as 1-transistor DRAM. There is the potential for significant
energy improvement in both. For the on-chip SRAM, access energy is dominated by charging
and discharging bit lines. This can be reduced by either reducing voltage swing or by employing
hierarchical bit lines to reduce the amount of capacitance switched. For the bulk DRAMs, bounding
arguments suggest that one should be able to access a bit of DRAM for about 3pJ of energy, yet
for conventional DRAMs access energy is about 60pJ/bit.

1The straw man of Section 7.3 assumes a less aggressive 20fJ/mm per bit.

221
ECS Report

263
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



As with communication circuits, optimized memory circuits can result in order-of-magnitude
reductions in access energy which will have a substantial impact on machine architecture.

Logic circuits perform arithmetic and control the operation of a computer system. There are
fewer opportunities to improve the energy of silicon logic circuits because static CMOS circuits are
already highly efficient and designs for common arithmetic functions are already highly optimized.
Gains may be realized by optimizing supply and threshold voltages. Additional gains may be real-
ized through machine organization - e.g. using shallow pipelines and arithmetic unit organizations
that reduce energy.

8.2.1.2 Alternative Low-energy Devices and Circuits for Logic and Memory

Given the criticality of driving energy per operation down, and the uncertainty surrounding silicon,
the study group believes that it is equally important to develop an understanding of the potential
for alternative device technologies to yield suitable low-energy high-performance circuits for both
computational functions and storage. Equally important is sufficient density to meet or exceed that
possible with traditional technologies.

The group believes that several such technologies may already exist, at different levels of ma-
turity. RSFQ (Rapid Single Flux Quantum) devices have been demonstrated in several projects
such as HTMT[140] in some real circuits at huge clock rates and very low power, but not in system
architectures that deliver large memory capacities.

Additionally, several labs have begun discussing crossbar architectures from novel bi-state de-
vices (see HP’s SNIC[137] and IBM’s SCM[61]) that can either provide very dense memory, or a
dense new form of combinational logic with minimal active devices, or enable a new generation
of reprogrammable logic that can work in conjunction with silicon devices underneath to reduce
power by dynamic circuit reconfiguration. Again, however, what is lacking is a careful study of
how best to utilize such devices in Exascale circuits to minimize total energy per operation while
still having sufficient performance not to make the concurrency and capacity problems worse.

8.2.1.3 Alternative Low-energy Systems for Memory and Storage

As shown in the strawman of Section 7.3, power in the memory system is a severe problem. This
power comes in several forms:

1. maintaining the actual storage arrays themselves, in whatever technology they are imple-
mented.

2. accessing these arrays, and extracting the desired information.

3. maintaining “copies” of such data in other memories with better locality than their home.

4. moving data from arrays to off-chip (for memory-chip technologies)

5. moving data between chips, boards, and racks.

6. implementing the storage access protocols needed to trigger the transfer and synchronization
of such data.

Clearly there are issues and tradeoffs to be made here in terms of density of storage medium
and bandwidth, just as we have wrestled with for years. These get only dramatically worse when
we attempt to use today’s technologies and memory architectures in Exascale systems, especially
the data center class.

222
ECS Report

264
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



While there is promise from several emerging technologies to address some of these issues,
the only way to address the whole problem in a more than incremental way is to refocus in a
serious fashion the whole notion of a memory hierarchy. The capabilities of some of the emerging
technologies need to be blended with new architectural ideas that truly do leverage them in a way
where they integrate with the other parts of the system to dramatically reduce energy. Section
7.5.4 is one example of an attempt to begin the exploration of such a space. In general, a complete
exploration will require simultaneous attention to multiple dimensions, including:

• Considering new levels in the memory hierarchy where the characteristics of emerging or al-
ternative memory technologies can bridge the gap between, for example, DRAM and disk
storage, especially for some critical functions such as checkpointing and metadata manage-
ment.

• Explicitly and pro-actively managing data movement between levels of the memory hierarchy
to reduce power consumed by such movement.

• Rearchitecting conventional DRAMs in ways that greatly reduce the energy per bit access
when used in massive memory arrays where high concurrency of access and bandwidth are
required.

• Developing multi-chip and 3D packaging that allows chips of either of the above types to be
efficiently stacked in ways that minimize the total energy cost of access, while still retaining
the high access rates needed.

• Developing alternative memory access paths and protocols using photonics for example, that
actually provide end-to-end reductions in both energy per bit accessed and time per access.

• Mixing and matching the right suite of storage devices, transport media, and protocols with
the careful positioning of function units to minimize not only unnecessary copies, but also
the total power needed to execute latency-sensitive pieces of code.

8.2.1.4 3D Interconnect, Packaging, and Cooling

The degree of difficulty posed by the packaging challenge depends on the memory bandwidth
requirements of the eventual computer, as discussed in Section 7.3, and abstracted in Section 6.5.
The lower end of the requirement, 44 GBps from the CPU to each of 16 DRAM die can most likely be
satisfied with conventional high-end packaging. The high-end requirement of 320 GBps to each of 32
DRAMs is well beyond the means of any currently available packaging technology. Some embedded
applications were investigated to obtain another perspective on the possible size requirement. As
discussed elsewhere in this document, the usual requirement of 1 Byte per second and 1 Byte of
memory for every FLOPS, would require larger scales of memory system but would have significant
power issues. A system anywhere near this scale would require significant advances in interconnect
and packaging. In particular, advances in 3D system geometries need to be considered.

Advances in 3D packaging also presents an opportunity to use geometry to reduce power con-
sumption. With a conventional packaging approach, aggressive scaling of interconnect power would
permit memory-CPU communications at an energy cost of around 2 pJ/bit. On the other hand,
some 3D integration technologies, as discussed in Section 7.1.5 may permit power levels to approach
1-20 fJ/bit, depending on the length of run of on-chip interconnect required. Even at the low end
bandwidth of 16 x 44 GBps, this represents a potential power savings of around 10 W per module,
which could be more productively used for FPUs or additional memory capacity.

223
ECS Report

265
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



As well as provisioning interconnect, packaging also plays roles in power and ground current
distribution, noise control (through embedded capacitors), heat removal and mechanical support,
so as to ensure high reliability. The simultaneous roles of current delivery and heat removal create a
geometric conundrum as the high power areas of the chip need lots of both at the same time. Again,
this is a case where a concerted effort that involves both architecture and technology expertise es
needed to arrive at practical solutions that would have real effect on achieving Exascale metrics.

Finally, it should be realized that advances in areas outside of packaging could simplify the
creation of an Exascale 3D solution. In particular, if efficient voltage conversion could be incorpo-
rated within a 3D chip stack, then the “two-sided problem” is greatly simplified. Delivering 100
A at 1 V is a lot harder than delivering 1 A at 100 V. Similarly, releasing one side from a cooling
function provides a similar improvement. For example, incorporating silicon micro-channel cooling
into the chip stack removes the need for using one side for heat removal. Again, this is a difficult
co-optimization problem if a truly useable solution is to be found.

On the topic of cooling, it might be that an initial embedded Exascale computing stack would
be air-cooled. Large scale deployment of water chillers and circulating coolants, such as feasible
for the data center or even departmental classes, do not lend themselves to embedded solutions
in war fighting craft and vehicles. However, this global issues does not prevent designs from
using liquid phase solutions locally (inside the stack). As long as the liquid does not require
replenishment, then such local solutions might be reasonable. There are severe challenges in such
solutions though. Leaks are still a problem in liquid cooling, and a leak-free technology would be
a worthwhile investment. Also, techniques to circulate and pump the coolant are needed on the
physical scale of a small 3D package. Similarly, local heat exchangers would be needed if local
liquid cooling solutions are to be used. Heat pipes provide an excellent way to use liquid phase
cooling locally without mechanical complexity. Thus, advances in the capacity of thin heat-pipe
like solutions would be welcome in an Exascale computer.

8.2.1.5 Photonic Interconnect Research Opportunities and Goals

Photonics for long-haul data communication has long been believed to have real potential for
significant power and latency reduction, especially when very high bandwidths are needed (see
Section 7.5). Recent research (see for example Section 7.5.4) has opened up some tantalizing
alternatives that push photonics far deeper into a system architecture than considered in the past.
Given the pressing need to reduce energy and power throughout an Exascale system, it is incumbent
that a complete research program fully explore the potentials for such technologies for their possible
infusion, and do so in a way where the potential advantages can be fully compared on a common
basis to the best of conventional wire based communication.

Further, as with many of the alternative technologies discussed earlier, it is also essential that
such studies tightly integrate both architectural, circuit-level, and technological innovation and
tradeoffs, and do so with metrics that cover not just power and bandwidth but also ones that are
relevant to the other major challenges discussed in this report, such as resiliency. Consequently, a
well-designed program in this area will need to focus on both long and short range communication.
To a large extent, the long-range studies are already under way in industry, but efforts must be
made to ensure their relevance to both data center and departmental class Exascale peta systems.

The goal of “short-range” photonic studies need to determine whether or not there are in fact
gains to be made by creative use of new optical devices, with the key goal of establishing on a true
“apples-to-apples” basis what the energy and performance gains really are possible. As before, this
can only be done by considering microarchitectural alternatives concurrently with alternatives in
interconnect devices and protocols for the photonic-digital interface. This will involve modeling for

224
ECS Report

266
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



performance, power, and resiliency.

8.2.2 Thrust Area: Exascale Architectures and Programming Models

Just as slowing clock and memory density growth have driven the need for alternative technologies
and architectures which can incorporate them, the expected explosive growth in concurrency is
driving the need to explore and develop better ways to connect what is programmed with what
is left visible to programs from the underlying architectures. Thus the group feels that a second
major research thrust must involve new technologies to bridge the gap, and again do so with a
strong component of architectural development.

The following subsections describe several potential research topics that might fit this area.

8.2.2.1 Systems Architectures and Programming Models to Reduce Communication

The toughest of the power problems is not on circuits for computation, but on communication.
Communication is insidious - a pJ wasted on moving data is not only a pJ that is not available for
communication, but also a pJ that must often be matched by other pJs that must be expended to
monitor the progress of the data during the movement, to correct for any errors, and to manage
the suspension and reawakening of any circuits that source or sink the data.

Further, simply minimizing communication power alone may not minimize overall power. If
higher power signalling can reduce latency, then perhaps more energy may be saved in maintaining
the state of higher level threads, which in turn may reduce the number of threads that must be
maintained in a register file, which in turn may allow the size of the register file to become smaller,
which in turn may reduce the energy associated with all accesses to that file.

Hence there is a real need for the development of architectures and matching programming
systems solutions that focus on reducing communications, and thus communication power. Such
solutions would allow more of the total power to be used for computation.

Examples of potential techniques include:

• Over-provision the design with both function units and communications paths, but with
flexible activation so as we can either use all available power in the function units if the
problem is computation limited and all data is local, or use all the power for communication
if the problem is global communication limited.

• Design in self-awareness of the status of energy usage at all levels, and the ability to adjust
the activation of either logic or communication circuits to maintain a specific power level
below a maximum while maintaining specified performance or system throughput goals.

• Provide more explicit and dynamic program control over the contents of memory structures
closest to the function units so that minimal communication energy can be expended.

• Develop alternative execution and programming models where short sequences of code can
be exported to data that is not resident, rather than dragging the data all across the system.

8.2.2.2 Locality-aware Architectures

The energy required to access an operand or instruction increases significantly with distance, with
a particularly large increase occurring when moving from on-chip to off-chip. Hence data locality is
a key element of reducing energy per operation to a level that enables Exascale systems. To operate
efficiently, the bulk of data accesses must come from small registers and memories co-located with

225
ECS Report

267
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



the arithmetic units consuming the data. The number of high-energy off-chip and cross-machine
accesses must be limited.

The problem of data locality spans several abstraction levels, and achieving high data locality
requires a locality-aware architecture, a programming system that optimizes data placement and
movement, and applications with inherent locality. Some applications (and portions of applications)
fundamentally require large numbers of global accesses and will not benefit from locality-aware
architectures and programming systems. For other applications, however, large gains can be realized
by keeping data local and explicitly controlling its movement.

In this section we discuss a possible thrust to develop locality-aware architectures. Almost
all architectures employ a storage hierarchy of some variety. These hierarchies are distinguished
by their structure (the sizes of memory arrays and how they are connected), their management
(implicit and/or explicit mapping and replacement policies), and how power is budgeted across the
levels of the hierarchy.

The structure of the storage hierarchy limits what management and power policies are possible,
since these policies operate over the structure. Any structure includes at least a level of registers
close to the arithmetic units, one or more levels of on-chip storage arrays interconnected by a
network, a level of per-chip or per-node off-chip storage, and one or more levels of global storage,
also interconnected by a network. The granularity of the storage levels is often driven by efficient
sizes for storage arrays and the levels are often designed to fit the packaging hierarchy. As machines
increase in scale - both more cores per chip and more chips - we expect the number of levels and
the complexity of certain levels to increase.

Most contemporary machines manage the hierarchy between registers and main memory implic-
itly (i.e.: as caches) and reactively (moving data in response to a miss at one level in the hierarchy)
and use a uniform mapping at each level. While conceptually simple, these management policies
leave large opportunities for improvement in energy efficiency and performance. Managing L2 or
L3 on-chip storage uniformly, for example, results in distributing data across the entire area of the
storage level - often the entire chip. Using non-uniform mapping policies can potentially reduce
communication (and hence energy) by placing data nearer to its point of use.

Implicit and reactive caches wait to fetch data until it is requested - which increases the amount
of concurrency required to cover the resulting long latency - and replace the data according to a
simple least-recently-used policy. Managing the same memory structures in an explicit and pro-
active manner (i.e., explicitly transferring data from one level to another before it is needed, as
in the IBM Cell) has been shown to yield large improvements in both efficiency (by eliminating
unneeded data movement) and performance (by overlapping load latency with operations). The
fully-associative nature of an explicitly-managed memory hierarchy means that arbitrary data can
be placed in a memory structure, limited only by the capacity of the memory. Software can thus
count on deterministic access latencies, and can be scheduled by the compiler to achieve high
utilization. Explicit management is particularly attractive when combined with locality-enhancing
program transformations so that a fragment of a data set can be produced in a local memory
and consumed from the same memory without ever having to be read from or be written to main
memory.

Explicit management, however, poses programming challenges for irregular applications that
share mutable data. Copying data into a local memory with a separate address space can lead
to incoherent data updates if proper synchronization is not employed. A hybrid management
strategy that explicitly moves data while providing the needed exclusion and synchronization holds
the potential to provide performance and efficiency gains even for irregular codes with mutable
data. Research on hardware/software approaches for structuring and efficiently managing a storage
hierarchy is likely to yield large gains in efficiency while at the same time reducing the required

226
ECS Report

268
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



concurrency and simplifying programming.
Explicit management poses other challenges for the compiler. Runtime data dependencies

may make it difficult or impossible to know where a given piece of data is located. Furthermore,
legacy applications may need extensive, whole-program-level transformations affecting the order
in which data is traversed in order to exploit a locality-aware machine architecture. For this
reason, a locality aware architecture may require (or at least be best exploited by) a locality-aware
programming model. Research in compiler technologies and/or programming models for locality-
aware architectures should be focused on achieving high locality without burdening the programmer
with detailed control of data movement.

Power is the critical resource in emerging computer systems and a memory hierarchy is largely
defined by how power is budgeted across the levels of the hierarchy. Putting the bulk of the power
into arithmetic units, registers, and L1 access, for example, gives a machine that performs well on
highly local problems at the expense of problems dominated by global accesses. A machine that
puts the bulk of its power into global accesses is optimized in the opposite direction.

Because modern chips are power, not area, constrained, it is possible to build a multi-core
computing node that can spend its entire power budget on any one level of the hierarchy. Such
a power-adaptive architecture would be able to use its total power budget across a wide range of
program locality - rather than being constrained by a fixed power allocation. Such an architecture,
however, requires power management hardware and software to ensure that it does not exceed its
total power budget in a way that would either collapse the power supply or result in an over-
temperature situation. Research in power-aware architectures and management policies will not
improve energy efficiency, but rather will allow a machine with a fixed power limit achieve a larger
fraction of its peak performance by adapting its power budget to the needs of the application.

8.2.3 Thrust Area: Exascale Algorithm and Application Development

In the past two decades there has been a three order-of-magnitude growth in the amount of con-
currency that application and algorithm developers must confront. Where once it was O(100)
operations in a vector, it is now O(100,000) individual processors, each furnished with multiple
floating-point arithmetic processing units (ALUs). This dramatic increase in concurrency has lead
the dramatic lessening of efficient application scaling. Small load imbalances or synchronization
events can create an Amdahl fraction that prevents most of today’s applications from efficiently
utilizing hundreds of thousands of processors.

As we look forward to Exascale computing, using processors whose clock frequencies will be
at best marginally higher than those in use today, we anticipate a further growth in ALU count
of another three orders-of-magnitude. On top of this will likely be another one or two orders-
of-magnitude increase in the number of threads as processor vendors increasingly turn to multi-
threading as a strategy for tolerating the latency of main memory accesses (i.e., cache misses).
The challenge of developing applications that can effectively express O(1010) threads of concur-
rent operations will be daunting. Equally difficult will be avoiding even the smallest unnecessary
synchronization overheads, load imbalances, or accesses to remote data.

In addition, historically, software developers have striven to minimize the number of operations
performed. More recently, as the memory hierarchies of today’s mainstream systems have made
main memory references increasingly costly, the emphasis has turned to organizing the operations
so as to keep them in cache. At Exascale, where fetching a word from DRAM will cost more power
than performing a double precision floating point multiply-accumulate operation with it, there will
be a new imperative to minimize state size and eliminate unnecessary references to deep in the
memory hierarchy. Research into a new generation of algorithms which repeat calculations to avoid

227
ECS Report

269
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



storing intermediate values or use additional calculations to compress state size will be needed.
Similar and equally vexing difficulties will arise when trying to counter the other challenges of

resiliency, locality, and storage capacity.
Together, this calls for a substantial research effort to fund a variety of areas such as discussed

in the following subsections.

8.2.3.1 Power and Resiliency Models in Application Models

Going forward it will be critical to understand the impacts of architectural choices on the perfor-
mance and reliability of applications. For example, one will wish to measure or predict the “science
results per watt” of a specific design in terms of intended uses. If an algorithm or application can be
made less compute-intensive it may require fewer, or slower/cooler functional units. On the other
hand if it is already memory bandwidth-bound at Petascale we want to know that and perhaps
invest more of the energy budget in the memory subsystem. Related to energy and memory, if
an algorithm’s or application’s overall memory footprint or locality clusters can be improved, then
perhaps a power-aware architecture can run it for less energy. And related to concurrency, one
must understand “what is the inherent concurrency of an algorithm or application?” to be able to
say what sort of processors, and how many processors, will enable it to run at Exascale. Finally,
as to resiliency, we must understand the fault-tolerance and checkpointing overhead of algorithms
and applications to be able to say if they can run at all on proposed architectures, or if the require
more development work to make them resilient enough to survive the anticipated hardware fault
rates.

An initial research thrust then is simply to characterize the computational intensity, locality,
memory footprints and access patterns, communications patterns, and resiliency of existing nearly-
Petascale applications deemed most likely to go to Exascale, create performance models of these,
and connect these performance models to power and failure-rate models from the Exascale technol-
ogists and architects. This will tell us how much power these applications will consume, how fast
they will run, how often they will fail etc. at various system design points. We want to construct
unified application-system models that enable critical-path analysis, thus to say where the energy
budget is being expended, what are the performance bottlenecks, where will irrecoverable failures
happen first, on a per-application basis.

8.2.3.2 Understanding and Adapting Old Algorithms

It is probably the case that few if any of today’s applications would run at Exascale. Reasons might
include: inability to scale to the new levels of concurrency, inefficient performance at whatever levels
it can reach, poor energy per operation management, or inadequate checkpointing considerations
that do not match the resiliency characteristics of the machine.

In most cases, we are not going to replace fundamental mathematical kernels. Therefore we
will be forced to learn how to adapt them to this extraordinary scale. This will likely involve
reformulating such algorithms as well as expressing them in new programming languages. An
example might be to try to reformulate Krylov space algorithms so as to minimize the number
of dot-products (and hence the global synchronization necessary to sum up across huge processor
sections) without a subsequent loss in numerical robustness.

In addition, we will also have to learn to tune and scale these algorithms for the target machines,
most probably using whatever modeling facilities might become available as discussed in the prior
section. For example, it may be that applications inherently have ample fine-grained asynchronous
parallelism, but that it is poorly expressed in the inherently course-grained and synchronous MPI

228
ECS Report

270
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



of today. Models will tell us the inherent parallelism and thus predict the potential suitability and
benefit to converting the application to modern, more expressive and asynchronous, programming
paradigms and languages.

As to locality, many applications may have inherent locality that is poorly expressed, or im-
possible to exploit with today’s clumsy cache and prefetch management systems, or is present but
ill-understood. As mentioned in Chapter 5, tools should be developed as part of this research thrust
to help identify inherent locality, while programming languages should allow hooks to control the
memory hierarchy of power-aware machines to exploit locality. As to checkpointing, it may be that
crude checkpointing (write out entire memory image every time-step) works acceptably at Petascale
but is impossible to do because of size and overheads of data at Exascale. Again, an algorithm
reformulation approach that uses models can indicate this and guide development of refined smarter
and cheaper application specific checkpointing strategies.

8.2.3.3 Inventing New Algorithms

Developing new algorithms that adapt to Exascale systems will involve more than just finding
algorithms with sufficient amounts of useable concurrency. These systems will be extremely sensi-
tive to starvation, and will require a new generation of graph-partitioning heuristics and dynamic
load-balancing techniques that need to be developed and integrated hand-in-hand with the basic
computational kernels. There will be a premium on locality to minimize unnecessary data move-
ment and the concomitant expense of both power and latency. Exascale systems will likely have a
much higher ratio of computing power over memory volume than today’s systems, and this will open
up room for new algorithms that exploit this surfeit of processing power to reduce their memory
size.

8.2.3.4 Inventing New Applications

Applications are typically complex compositions of multiple algorithms interacting through a variety
of data structures, and thus are entities separate from the underlying algorithms discussed above.
Exascale systems cannot be designed independently of the target applications that will run on them,
lest there be a vanishingly small number of them. It has taken a decade for applications to evolve to
the point where they express enough concurrency to exploit today’s trans-Petascale systems. It will
be harder still for them to stretch to Exascale. Clearly it will also be important to develop a keen
understanding of how to develop full-scale applications suitable for execution on Exascale systems.
For example, future DoE applications will most likely be focused on developing massively parallel
coupled-physics calculations. While these science drivers are inherently billion-way parallel they
risk being less efficient, not more efficient, than today’s mono-physics codes would be at Exascale,
for reasons elaborated in Section 5. And, as shown in Figure 8.6 the trend may be away from
easy-to-exploit locality in these applications. An important research thrust then will be to invest
in scalable algorithm and application development that preserves locality. However an emphasis
of this research thrust might again be to provide parameterized power/reliability/performance
models to application development teams so they can proceed with such development in parallel
with Exascale hardware and system research, and be ready to take advantage of new architectures
when they emerge. Again the search for locality in applications is symbiotic with the ability of
power-aware architectures to manage locality explicitly (cache only the things I want cached, don’t
prefetch the things I don’t want prefetched etc.) It is important though that Exascale architecture
not be carried out in a vacuum but inform and be informed by development of Exascale applications.
Thus we propose a specific research thrust in this area towards developing models that can be a

229
ECS Report

271
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Lingua Franca for communicating to applications developers the capabilities, limitations, and best
usage models, for Exascale technologies and architectures.

8.2.3.5 Making Applications Resiliency-Aware

Finally, the development of Resiliency-aware applications will become critically valuable to
achieving genuinely useful Exascale. We must understand the fault-tolerance and checkpointing
overhead of algorithms and applications to be able to say if they can run at all on proposed
architectures or if they require more development work to make them resilient enough to survive
the anticipated hardware fault rates. Applications may need to specify where higher guarantees of
correctness are necessary, and not necessary, in order to avoid such techniques as brute duplication
that can rapidly run up power consumption.

8.2.4 Thrust Area: Resilient Exascale Systems

Technology trends and increased device count pose fundamental challenges in resisting intermittent
hardware and software errors, device degradation and wearout, and device variability. Unfortu-
nately, traditional resiliency solutions will not be sufficient. Extensive hardware redundancy could
dramatically improve resiliency, but at a cost of 2-3 times more power. Checkpointing is effective at
providing fault recovery, but when error rates become sufficiently high, the system may need to be
saving checkpoints all of the time, driving down the time left for useful computation. To increase
system resiliency without excess power or performance costs, we recommend a multi-pronged ap-
proach which includes innovations at each level of the system hierarchy and a vertically integrated
effort that enables new resiliency strategies across the levels.

8.2.4.1 Energy-efficient Error Detection and Correction Architectures

The tradeoff between resiliency and power consumption manifests itself in several ways. Reducing
power supply voltages toward the threshold voltage reduces power consumption in the primary cir-
cuits but may require more rigorous resiliency to handle higher error rates. In memories, shortening
the refresh rate reduces power consumption but may increase the bit-error rate. Error rates can
also be a function of the application characteristics or the temperature. We recommend research
into low overhead hardware mechanisms to detect (and potentially correct) errors at the logic block
level, rather than the gate level. Past research into arithmetic residual computation checking and
on-line control logic protocol verification are starting points for this work. We also recommend tun-
able resiliency in which the degree of resiliency (and therefore the power required for it) can vary
depending on the demand. Examples include selective redundant execution in software through
re-execution or in hardware through on-the-fly processor pairing.

8.2.4.2 Fail-in-place and Self-Healing Systems

Because Exascale systems will experience frequent component failures, they must be able to continue
operating at peak or near-peak capacity without requiring constant service. Research into fail-in-
place and self-healing systems will be necessary to achieve this goal. Exploiting the redundancy
inherent in Exascale systems in a manner transparent to application programmers will be critical.
Hardware redundancy may include spare cores per chip, spare chips per node, memory modules, or
path diversity in the interconnection network. The key to exploiting the redundancy transparently
will likely be virtualization so that applications need not care precisely which resources are being
used. Redundancy and virtualization techniques will be necessary to tolerate manufacturing defects,

230
ECS Report

272
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



device variation, aging, and degradation. The system must be able to reconfigure its hardware and
software to make the system resilient to frequent hardware failures. This goal also reaches up to the
packaging design so that system modules can be easily hot-swapped without halting the system.
Emerging nanoscale devices, such as hybrid CMOS Field Programmable Nanowire Interconnect
architectures, will require redundancy and automatic reconfiguration just to tolerate the inherent
unpredictability in the manufacturing processes.

8.2.4.3 Checkpoint Rollback and Recovery

The dominant form of system recovery relies on checkpoint-restart and would benefit from inno-
vations to reduce checkpointing overheads. For example, using solid-state non-volatile level of the
memory hierarchy (flash memory) could provide substantial bandwidth for checkpointing so that it
could be done under hardware control, drastically reducing checkpoint latency. Another avenue for
research is in intelligent checkpointing, at the application or system levels. Such intelligent check-
pointing schemes would select when and which data structures to checkpoint so that no unnecessary
data is saved or time is wasted. Ideally, compilers or run-time systems would automatically select
when and what to checkpoint, but an intermediate approach that runs semi-automatically (perhaps
relying on application-level directives) would be a substantial advance over the state-of-the-art. An-
other approach is to shift to a programming model that is inherently amenable to checkpointing
and recovery, such as transactions from the database and commercial computing domains. Finally,
the community should prepare itself for a time when parallel systems must be continuously check-
pointing due to the high error rates. Providing resiliency to such systems will require a range of
solutions at the software system level.

8.2.4.4 Algorithmic-level Fault Checking and Fault Resiliency

Algorithmic based fault tolerance can provide extremely efficient error detection as only a small
amount of computation is required to check the results for a large amount of computation. Prior
research has produced algorithmic approaches for matrix multiply, QR factorization, FFT, and
multi-grid methods. Further research in this area could expand the domain of algorithms suitable for
efficient checking. Additional research will also be needed to automatically provide error checking
for intermediate results in these algorithms, as high error rates may prevent any long-running
computation from completing without correction. Another class of applications that can provide
efficient correction are those that are self-healing, in which the algorithm can automatically correct
errors. Some convergence algorithms already have this property as some data errors in one iteration
can be corrected in subsequent iterations. Finally, applications that require less precision than the
computer numerical representations provide may not care if errors exist in insignificant bits. The
rise in error rates may require application and software tools writers to optimize for fast error
detection and recovery in order to make good use of the inherently unreliable hardware.

8.2.4.5 Vertically-Integrated Resilient Systems

A vertically integrated approach will span all levels of the system stack including applications,
programming systems, operating systems, and hardware. Achieving a system that is optimized as
a whole for resiliency will require substantial research at the system level, but can result higher
overall resiliency at a lower cost. As an example, a vertically integrated system might employ
watchdog timers to detect faults in control logic, but use programming system controlled checking
threads to provide redundancy for the critical portions of an application. Selective replication
eliminates duplicate hardware and is applied only when necessary. Checkpointing would still be

231
ECS Report

273
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



required for recovery from control or data errors, but intelligent checkpointing (at the application
or system level) in conjunction with fast hardware checkpointing mechanisms could reduce the
overhead experienced by the application. System-level resiliency can be an enabling technology
by allowing less reliable or new devices to be manufactured at lower cost; such techniques may
be necessary for continued device scaling or to bridge the gap beyond traditional semiconductor
technologies.

8.3 Multi-phase Technology Development

Given the relative immaturity of many of the technologies mentioned above as potential members
of an ultimate Exascale technology portfolio, it made sense to the study group that bringing them
to a level of technological maturity commensurate with a 2015 timeframe would require a careful
phasing of the research efforts into roughly three phases:

1. System architecture explorations

2. Technology demonstrations

3. Scalability slice prototyping

The most immature of the technology solutions will have to go through all three, while others
than have, for example, lab demonstrations, may simply have to accelerate their transition through
the last two.

8.3.1 Phase 1: Systems Architecture Explorations

This would be the earliest phase for those challenges where the level of technological maturity is
very low. The goal for research in this phase is to propose potential new alternatives, develop a
coherent understanding of the interaction of the new technologies with architectures that will scale
to the exa level, and identify what are the critical experiments that need to be performed to verify
their applicability.

8.3.2 Phase 2: Technology Demonstrators

Research at this phase would focus on demonstrating solutions to the “long poles” of challenges
using new technologies developed in the first phase. Each such demonstration would most probably
be done in isolation of integration with other new technologies, so that the real properties and
attributes of a single technology can be identified and measured with a fair degree of confidence.

The purpose here is not to demonstrate system solutions or even subsystems, but to develop and
demonstrate targeted pieces of new technology in ways that would provide system implementers
enough confidence that they could start planning for its introduction into Exascale products.

8.3.3 Phase 3: Scalability Slice Prototype

This phase would build on multiple demonstrations from the second phase to integrate different
pieces of technology in ways that represent a relatively complete end-to-end “slice” through a
potential Exascale system. This slice is not expected to be a complete system, but should include
enough of multiple subsystems from a potential real system that the scaling to a real, complete,
system integration is now feasible and believable.

232
ECS Report

274
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Such a phase is an absolute necessity were significant deviations from existing architectures,
programming models, and tools are forecast.

233
ECS Report

275
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



234
ECS Report

276
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

mr22
Text Box
This page intentionally left blank.



Appendix A

Exascale Study Group Members

A.1 Committee Members

Academia and Industry
Name Organization

Peter M. Kogge, Chair University of Notre Dame
Keren Bergman Columbia University
Shekhar Borkar Intel Corporation

William W. Carlson Institute for Defense Analysis
William J. Dally Stanford University
Monty Denneau IBM Corporation
Paul D. Franzon North Carolina State University

Stephen W. Keckler University of Texas at Austin
Dean Klein Micron Technology

Robert F. Lucas University of Southern California Information Sciences Institute
Steve Scott Cray, Inc.

Allan E. Snavely San Diego Supercomputer Center
Thomas L. Sterling Louisiana State University
R. Stanley Williams Hewlett-Packard Laboratories
Katherine A. Yelick University of California at Berkeley

Government and Support
William Harrod, Organizer Defense Advanced Research Projects Agency

Daniel P. Campbell Georgia Institute of Technology
Kerry L. Hill Air Force Research Laboratory
Jon C. Hiller Science & Technology Associates

Sherman Karp Consultant
Mark A. Richards Georgia Institute of Technology
Alfred J. Scarpelli Air Force Research Laboratory

Table A.1: Study Committee Members.

A.2 Biographies

Keren Bergman is a Professor of Electrical Engineering at Columbia University where she also
235

ECS Report

277
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



directs the Lightwave Research Laboratory. Her current research programs involve optical
interconnection networks for advanced computing systems, photonic packet switching, and
nanophotonic networks-on-chip. Before joining Columbia, Dr. Bergman was with the optical
networking group at Tellium where she headed the optical design of large-scale MEMS based
cross-connects. Dr. Bergman received her B.S in 1988 from Bucknell University, the M.S. in
1991 and Ph.D. in 1994 from M.I.T. all in Electrical Engineering. She is a recipient of the
National Science Foundation CAREER award in 1995 and the Office of Naval Research Young
Investigator in 1996. In 1997 she received the CalTech President’s Award for joint work with
JPL on optical interconnection networks. Dr. Bergman led the optical interconnect effort in
the HTMT Petaflops scale design project that combined advanced technologies and parallel
architecture exploration. She recently served as Technical Advisor to the Interconnect Thrust
of the NSA’s Advanced Computing Systems research initiative. Dr. Bergman is a senior
member of IEEE and a fellow of OSA. She is currently Associate Editor for IEEE Photonic
Technology Letters and Editor-in-Chief of the OSA Journal of Optical Networking.

Shekhar Borkar graduated with MSc in Physics from University of Bombay, MSEE from Uni-
versity of Notre Dame in 1981, and joined Intel Corporation. He worked on the 8051 family
of microcontrollers, the iWarp multicomputer project, and subsequently on Intel’s supercom-
puters. He is an Intel Fellow and director of Microprocessor Research. His research interests
are high performance and low power digital circuits, and high-speed signaling.

Daniel P. Campbell is a Senior Research Engineer in the Sensors and Electromagnetic Appli-
cations Laboratory of the Georgia Tech Research Institute. Mr. Campbell’s research focuses
on application development infrastructure for high performance embedded computing, with
an emphasis on inexpensive, commodity computing platforms. He is co-chair of the Vector
Signal Image Processing Library (VSIPL) Forum, and has developed implementations of the
VSIPL and VSIPL++ specifications that exploit various graphics processors for accelera-
tion. Mr. Campbell has been involved in several programs that developed middleware and
system abstractions for configurable multicore processors, including DARPA’s Polymorphous
Computing Architectures (PCA) program.

William W. Carlson is a member of the research staff at the IDA Center for Computing
Sciences where, since 1990, his focus has been on applications and system tools for large-scale
parallel and distributed computers. He also leads the UPC language effort, a consortium of
industry and academic research institutions aiming to produce a unified approach to parallel C
programming based on global address space methods. Dr. Carlson graduated from Worcester
Polytechnic Institute in 1981 with a BS degree in Electrical Engineering. He then attended
Purdue University, receiving the MSEE and Ph.D. degrees in Electrical Engineering in 1983
and 1988, respectively. From 1988 to 1990, Dr. Carlson was an Assistant Professor at
the University of Wisconsin-Madison, where his work centered on performance evaluation of
advanced computer architectures.

William J. Dally is The Willard R. and Inez Kerr Bell Professor of Engineering and the Chair-
man of the Department of Computer Science at Stanford University. He is also co-founder,
Chairman, and Chief Scientist of Stream Processors, Inc. Dr. Dally and his group have
developed system architecture, network architecture, signaling, routing, and synchronization
technology that can be found in most large parallel computers today. While at Bell Labs
Bill contributed to the BELLMAC32 microprocessor and designed the MARS hardware ac-
celerator. At Caltech he designed the MOSSIM Simulation Engine and the Torus Routing

236
ECS Report

278
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Chip which pioneered wormhole routing and virtual-channel flow control. While a Professor
of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology
his group built the J-Machine and the M-Machine, experimental parallel computer systems
that pioneered the separation of mechanisms from programming models and demonstrated
very low overhead synchronization and communication mechanisms. At Stanford University
his group has developed the Imagine processor, which introduced the concepts of stream pro-
cessing and partitioned register organizations. Dr. Dally has worked with Cray Research and
Intel to incorporate many of these innovations in commercial parallel computers, with Avici
Systems to incorporate this technology into Internet routers, co-founded Velio Communica-
tions to commercialize high-speed signaling technology, and co-founded Stream Processors,
Inc. to commercialize stream processor technology. He is a Fellow of the IEEE, a Fellow
of the ACM, and a Fellow of the American Academy of Arts and Sciences. He has received
numerous honors including the IEEE Seymour Cray Award and the ACM Maurice Wilkes
award. He currently leads projects on computer architecture, network architecture, and pro-
gramming systems. He has published over 200 papers in these areas, holds over 50 issued
patents, and is an author of the textbooks, Digital Systems Engineering and Principles and
Practices of Interconnection Networks.

Monty Denneau is a Research Staff Member at the IBM T.J. Watson Research Center in
Yorktown Heights, NY. He is has been involved in the architecture, design, and construction
of a number of special and general purpose parallel machines.

Paul D. Franzon is currently a Professor of Electrical and Computer Engineering at North
Carolina State University. He earned his Ph.D. from the University of Adelaide, Adelaide,
Australia in 1988. He has also worked at AT&T Bell Laboratories, DSTO Australia, Australia
Telecom and two companies he cofounded, Communica and LightSpin Technologies. His
research interests focus on three main areas: Interconnect solutions; Application Specific
Architectures and Nanocomputing circuits and structures. He developed core concepts in
low-power contactless signaling (capacitive and inductive coupling) for conventional and 3D
systems. Examples of these systems have flown in test satellites. He has developed MEMS-
based interconnect solutions for electronic and optical applications. He led the development
of the popular Spice2Ibis tools and IC Physical Design Kits that are have thousands of
users world-wide. He has developed sub-25 nm wafer-scale interconnect solutions and new
approaches to using nano-crystal elements in electronics. He has established new approaches
to enabling extreme environment circuits. He has lead several major research efforts and
published over 180 papers in these areas. In 1993 he received an NSF Young Investigators
Award, in 2001 was selected to join the NCSU Academy of Outstanding Teachers, in 2003,
selected as a Distinguished Alumni Professor, and in 2005 won the Alcoa Research award. He
is a Fellow of the IEEE.

William Harrod joined DARPA’s Information Processing Technology Office (IPTO) as a Pro-
gram Manager in December of 2005. His area of interest is extreme computing, including
a current focus on advanced computer architectures and system productivity, including self-
monitoring and self-healing processing, Exascale computing systems, highly productive de-
velopment environments and high performance, advanced compilers. He has over 20 years of
algorithmic, application, and high performance processing computing experience in industry,
academics and government. Prior to his DARPA employment, he was awarded a technical
fellowship for the intelligence community while employed at Silicon Graphics Incorporated
(SGI). Prior to this at SGI, he led technical teams developing specialized processors and ad-

237
ECS Report

279
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



vanced algorithms, and high performance software. Dr. Harrod holds a B.S. in Mathematics
from Emory University, a M.S. and a Ph.D. in Mathematics from the University of Tennessee.

Kerry L. Hill is a Senior Electronics Engineer with the Advanced Sensor Components Branch,
Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB OH. Ms. Hill
has 27 years experience in advanced computing hardware and software technologies. Her cur-
rent research interests include advanced digital processor architectures, real-time embedded
computing, and reconfigurable computing. Ms. Hill worked computer resource acquisition
technical management for both the F-117 and F-15 System Program Offices before joining the
Air Force Research Laboratory in 1993. Ms. Hill has provided technical support to several
DARPA programs including Adaptive Computing Systems, Power Aware Computing and
Communications, Polymorphous Computing Architectures, and Architectures for Cognitive
Information Processing.

Jon C. Hiller is a Senior Program Manager at Science and Technology Associates, Inc. Mr. Hiller
has provided technical support to a number of DARPA programs, and specifically comput-
ing architecture research and development. This has included the Polymorphous Computing
Architectures, Architectures for Cognitive Information Processing, Power Aware Computing
and Communications, Data Intensive Systems, Adaptive Computing Systems, and Embedded
High Performance Computing Programs. Previously in support of DARPA and the services,
Mr. Hiller’s activities included computer architecture, embedded processing application, au-
tonomous vehicle, and weapons systems research and development. Prior to his support of
DARPA, Mr. Hiller worked at General Electric’s Military Electronic Systems Operation,
Electronic Systems Division in the areas of GaAs and CMOS circuit design, computing archi-
tecture, and digital and analog design and at Honeywell’s Electro-Optics Center in the areas
of digital and analog design. Mr. Hiller has a BS from the University of Rochester and a MS
from Syracuse University in Electrical Engineering.

Sherman Karp has been a consultant to the Defense Research Projects Agency (DARPA) for
the past 21 years and has worked on a variety of projects including the High Productivity
Computing System (HPCS) program. Before that he was the Chief Scientist for the Strategic
Technology Office (STO) of DARPA. At DARPA he did pioneering work in Low Contrast
(sub-visibility) Image enhancement and Multi-Spectral Processing. He also worked in the area
of fault tolerant spaceborne processors. Before moving to DARPA, he worked at the Naval
Ocean Systems Center where he conceived the concept for Blue-Green laser communications
from satellite to submarine through clouds and water, and directed the initial proof of principle
experiment and system design. He authored two seminal papers on this topic. For this work
he was named the NOSC Scientist of the Year (1976), and was elected to the rank of Fellow
in the IEEE. He is currently a Life Fellow. He has co-authored four books and two Special
Issues of the IEEE. He was awarded the Secretary of Defense Medal for Meritorious Civilian
Service, and is a Fellow of the Washington Academy of Science, where he won the Engineering
Sciences Award. He was also a member of the Editorial Board of the IEEE Proceedings, the
IEEE FCC Liaison Committee, the DC Area IEEE Fellows Nomination Committee, the IEEE
Communications Society Technical Committee on Communication Theory, on which he served
as Chairman from 1979-1984, and was a member of the Fellows Nominating Committee. He
is also a member of Tau Beta Pi, Eta Kappa Nu, Sigma Xi and the Cosmos Club.

Stephen W. Keckler is an Associate Professor of both Computer Sciences and Electrical and
Computer Engineering at the University of Texas at Austin. He earned his Ph.D. from the

238
ECS Report

280
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Massachusetts Institute of Technology in 1998. Dr. Keckler’s research focuses on three main
areas: high performance parallel processor architectures, distributed memory architectures,
and interconnection networks. At MIT, he worked on the M-Machine, an experimental paral-
lel computer system that pioneered multithreaded and tightly-coupled multicore processors.
At UT-Austin, his group developed the NUCA cache which exploits non-uniform access time
inherent in wire-dominated integrated circuits. His group recently built the TRIPS machine,
a parallel computing system with numerous innovations in the processing and memory sub-
systems. The TRIPS machine demonstrates a hybrid dataflow instruction set and execution
model and employs a logically and physically tiled implementation. Other innovations include
tight coupling of routed interconnection networks into processing cores and reconfigurability
to allow automatic or manual control of the memory hierarchy. Dr. Keckler has also worked
as a VLSI circuit designer at Intel. Dr. Keckler has won numerous awards, including an Al-
fred P. Sloan Research Fellowship, the ACM Grace Murray Hopper award, an NSF CAREER
award, and the 2007 President’s Associates Teaching Excellence Award at UT-Austin. Dr.
Keckler is a senior member of both the IEEE and the ACM, and a member of Sigma Xi and
Phi Beta Kappa.

Dean Klein is the Vice President of Memory System Development at Micron Technology, Inc.,
where he has held a variety of executive positions since joining Micron in 1999. Mr. Klein’s
earliest role at Micron was the development of embedded DRAM and logic capability at
Micron, a provider of semiconductor memory devices. The embedded DRAM efforts culmi-
nated in the creation of the Yukon Processor-In-Memory device, an embedded DRAM part
containing 16MBytes of commodity-density DRAM closely coupled to a SIMD array of 256
processing elements. Prior to joining Micron Technology, Klein held the position of Chief
Technical Officer and EVP at Micron Electronics, Inc. a personal computer manufacturer.
While at Micron Electronics, Klein was responsible for the development of chip sets that ex-
ploited advanced memory technology to dramatically boost the performance of Intel’s highest
performing processors. Prior to Micron Electronics, Mr. Klein was President of PC Tech,
Inc., which he co-founded in 1984 and which became a wholly owned subsidiary of Micron
Electronics in 1995. Mr. Klein is a graduate of the University of Minnesota, with Bachelor’s
and Master’s degrees in Electrical Engineering. He holds over 180 patents in the area of
computer architecture and memory.

Peter M. Kogge (chair) is currently the Associate Dean for research for the College of Engi-
neering, the Ted McCourtney Chair in Computer Science and Engineering, and a Concurrent
Professor of Electrical Engineering at the University of Notre Dame, Notre Dame, Indiana.
From 1968 until 1994, he was with IBM’s Federal Systems Division in Owego, NY, where
he was appointed an IBM Fellow in 1993. In 1977 he was a Visiting Professor in the ECE
Dept. at the University of Massachusetts, Amherst, MA, and from 1977 through 1994, he was
also an Adjunct Professor of Computer Science at the State University of New York at Bing-
hamton. He has been a Distinguished Visiting Scientist at the Center for Integrated Space
Microsystems at JPL, and the Research Thrust Leader for Architecture in Notre Dame’s
Center for Nano Science and Technology. For the 2000-2001 academic year he was also the
Interim Schubmehl-Prein Chairman of the CSE Dept. at Notre Dame. His research areas
include advanced VLSI and nano technologies, non von Neumann models of programming
and execution, parallel algorithms and applications, and their impact on massively parallel
computer architecture. Since the late 1980s’ this has focused on scalable single VLSI chip
designs integrating both dense memory and logic into “Processing In Memory” (PIM) archi-

239
ECS Report

281
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



tectures, efficient execution models to support them, and scaling multiple chips to complete
systems, for a range of real system applications, from highly scalable deep space exploration
to trans-petaflops level supercomputing. This has included the world’s first true multi-core
chip, EXECUBE, that in the early 1990s integrated 4 Mbits of DRAM with over 100K gates
of logic to support a complete 8 way binary hypercube parallel processor which could run in
both SIMD and MIMD modes. Prior parallel machines included the IBM 3838 Array Proces-
sor which for a time was the fastest single precision floating point processor marketed by IBM,
and the Space Shuttle Input/Output Processor which probably represents the first true paral-
lel processor to fly in space, and one of the earliest examples of multi-threaded architectures.
His Ph.D. thesis on the parallel solution of recurrence equations was one of the early works
on what is now called parallel prefix, and applications of those results are still acknowledged
as defining the fastest possible implementations of circuits such as adders with limited fan-in
blocks (known as the Kogge-Stone adder). More recent work is investigating how PIM-like
ideas may port into quantum cellular array (QCA) and other nanotechnology logic, where in-
stead of “Processing-In-Memory” we have opportunities for “Processing-In-Wire” and similar
paradigm shifts.

Robert F. Lucas is the Director of the Computational Sciences Division of the University of
Southern California’s Information Sciences Institute (ISI). There he manages research in
computer architecture, VLSI, compilers and other software tools. Prior to joining ISI, he was
the Head of the High Performance Computing Research Department in the National Energy
Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.
There he oversaw work in scientific data management, visualization, numerical algorithms,
and scientific applications. Prior to joining NERSC, Dr. Lucas was the Deputy Director
of DARPA’s Information Technology Office. He also served as DARPA’s Program Manager
for Scalable Computing Systems and Data-Intensive Computing. From 1988 to 1998 he was
a member of the research staff of the Institute for Defense Analysis, Center for Computing
Sciences. From 1979 to 1984 he was a member of the Technical Staff of the Hughes Aircraft
Company. Dr. Lucas received his BS, MS, and PhD degrees in Electrical Engineering from
Stanford University in 1980, 1983, and 1988 respectively.

Mark A. Richards is a Principal Research Engineer and Adjunct Professor in the School of
Electrical and Computer Engineering, Georgia Institute of Technology. From 1988 to 2001,
Dr. Richards held a series of technical management positions at the Georgia Tech Research
Institute, culminating as Chief of the Radar Systems Division of GTRI’s Sensors and Elec-
tromagnetic Applications Laboratory. From 1993 to 1995, he served as a Program Manager
for the Defense Advanced Research Projects Agency’s (DARPA) Rapid Prototyping of Ap-
plication Specific Signal Processors (RASSP) program, which developed new computer-aided
design (CAD) tools, processor architectures, and design and manufacturing methodologies
for embedded signal processors. Since the mid-1990s, he has been involved in a series of pro-
grams in high performance embedded computing, including the efforts to develop the Vector,
Signal, and Image Processing Library (VSIPL) and VSIPL++ specifications and the Stream
Virtual Machine (SVM) middleware developed under DARPA’s Polymorphous Computing
Architectures (PCA) program. Dr. Richards is the author of the text Fundamentals of Radar
Signal Processing (McGraw-Hill, 2005).

Alfred J. Scarpelli is a Senior Electronics Engineer with the Advanced Sensor Components
Branch, Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB OH. His
current research areas include advanced digital processor architectures, real-time embedded

240
ECS Report

282
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



computing, and reconfigurable computing. Mr. Scarpelli has 32 years research experience in
computer architectures and computer software. In the 1970’s, he conducted benchmarking to
support development of the MIL-STD-1750 instruction set architecture, and test and evalu-
ation work for the DoD standard Ada language development. In the 1980’s, he was involved
with the DoD VHSIC program, and advanced digital signal processor development, a pre-
cursor to the F-22 Common Integrated Processor. In the 1990’s, his research focused on the
DARPA Pilot’s Associate, the development of an embedded, artificial intelligence processor
powered by an Associative Memory CoProcessor, real-time embedded software schedulability
techniques, VHDL compilation and simulation tools, and application partitioning tools for re-
configurable computing platforms. Since 1997, he has provided technical support to multiple
DARPA programs such as Adaptive Computing Systems, Polymorphous Computing Archi-
tectures, Architectures for Cognitive Information Processing, Networked Embedded Systems
Technology, Mission Specific Processing, and Foliage Penetration. He holds a B.S. degree in
Computer Science from the University of Dayton (1979) and an M.S. degree in Computer
Engineering from Wright State University (1987).

Steve Scott is the Chief Technology Officer and SVP at Cray Inc., where he has been since
1992 (originally with Cray Research and SGI). Dr. Scott was one of the architects of the
groundbreaking Cray T3E multiprocessor, focusing on the interconnect and on synchroniza-
tion and communication mechanisms. He was the chief architect of the GigaRing system area
network used in all Cray systems in the late 1990s. More recently, he was the chief architect
of the Cray X1/X1E supercomputers, which combined high performance vector processors
with a scalable, globally-addressable system architecture. He was also the chief architect of
the next generation Cray “BlackWidow” system, and the architect of the router used in Cray
XT3 MPP and the follow-on Baker system. Dr. Scott is currently leading the Cray Cascade
project, which is part of the DARPA High Productivity Computing Systems program target-
ing productive, trans-petaflop systems in the 2010 timeframe. Dr. Scott received his PhD in
computer architecture from the University of Wisconsin, Madison in 1992, where he was a
Wisconsin Alumni Research Foundation and Hertz Foundation Fellow. He holds seventeen US
patents, has served on numerous program committees, and has served as an associate editor
for the IEEE Transactions on Parallel and Distributed Systems. He was the recipient of the
ACM 2005 Maurice Wilkes Award and the IEEE 2005 Seymour Cray Computer Engineering
Award.

Allan E. Snavely is an Adjunct Assistant Professor in the University of California at San Diego’s
Department of Computer Science and is founding director of the Performance Modeling and
Characterization (PMaC) Laboratory at the San Diego Supercomputer Center. He is a noted
expert in high performance computing (HPC). He has published more than 50 papers on this
subject, has presented numerous invited talks including briefing U.S. congressional staff on
the importance of the field to economic competitiveness, was a finalist for the Gordon Bell
Prize 2007 in recognition for outstanding achievement in HPC applications, and is primary
investigator (PI) on several federal research grants. Notably, he is PI of the Cyberinfrastruc-
ture Evaluation Center supported by National Science Foundation, and Co-PI in charge of
the performance modeling thrust for PERI (the Performance Evaluation Research Institute),
a Department of Energy SciDAC2 institute.

Thomas Sterling is the Arnaud and Edwards Professor of Computer Science at Louisiana State
University and a member of the Faculty of the Center for Computation and Technology. Dr.
Sterling is also a Faculty Associate at the Center for Computation and Technology at Cali-

241
ECS Report

283
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



fornia Institute of Technology and a Distinguished Visiting Scientist at Oak Ridge National
Laboratory. Sterling is an expert in the field of parallel computer system architecture and
parallel programming methods. Dr. Sterling led the Beowulf Project that performed seminal
pathfinding research establishing commodity cluster computing as a viable high performance
computing approach. He led the Federally sponsored HTMT project that conducted the first
Petaflops scale design point study that combined advanced technologies and parallel architec-
ture exploration as part of the national petaflops initiative. His current research directions
are the ParalleX execution model and processor in memory architecture for directed graph
based applications. He is a winner of the Gorden Bell Prize, co-author of five books, and
holds six patents.

R. Stanley Williams is an HP Senior Fellow at Hewlett-Packard Laboratories and Director of the
Advanced Studies Lab (ASL), a group of approximately 80 research scientists and engineers
working in areas of strategic interest to HP. The areas covered in ASL include computing
architectures, photonics, nano-electronics, micro- and nano-mechanical systems, information
theory and quantum information processing. He received a B.A. degree in Chemical Physics
in 1974 from Rice University and his Ph.D. in Physical Chemistry from U. C. Berkeley in
1978. He was a Member of Technical Staff at AT&T Bell Labs from 1978-80 and a faculty
member (Assistant, Associate and Full Professor) of the Chemistry Department at UCLA
from 1980 1995. His primary scientific research during the past thirty years has been in
the areas of solid-state chemistry and physics, and their applications to technology. Most
recently, he has examined the fundamental limits of information and computing, which has
led to his current research in nano-electronics and nano-photonics. He has received awards
for business, scientific and academic achievement, including the 2004 Joel Birnbaum Prize
(the highest internal HP award for research), the 2004 Herman Bloch Medal for Industrial
Research, the 2000 Julius Springer Award for Applied Physics, the 2000 Feynman Prize in
Nanotechnology. He was named to the inaugural Scientific American 50 Top Technology
leaders in 2002 and then again in 2005 (the first to be named twice). In 2005, the US patent
collection that he has assembled at HP was named the world’s top nanotechnology intellectual
property portfolio by Small Times magazine. He was a co-organizer and co-editor (with Paul
Alivisatos and Mike Roco) of the workshop and book “Vision for Nanotechnology in the 21st
Century”, respectively, that led to the establishment of the U. S. National Nanotechnology
Initiative in 2000. He has been awarded more than 60 US patents with more than 40 pending
and he has published over 300 papers in reviewed scientific journals. One of his patents on
crossbar based nanoscale circuits was named as one of five that will “transform business and
technology” by MIT’s Technology Review in 2000.

Katherine A. Yelick is Professor of Electrical Engineering and Computer Sciences at the Univer-
sity of California, Berkeley and a Senior Research Scientist at the Lawrence Berkeley National
Laboratory. Prof. Yelick co-leads and co-invented the Titanium language, which is a Par-
titioned Global Address Space (PGAS) language based on Java. The Titanium group has
demonstrated tremendous productivity advantages for adaptive mesh refinement algorithms
and immersed boundary method simulations. She also leads the Berkeley UPC project, an
open source compiler project for the Unified Parallel C (UPC) language. She co-invented
the UPC language with 5 other researchers from IDA, LLNL, and UC Berkeley, and co-
authored both the original language specification and the main UPC textbook, UPC: Dis-
tributed Shared-Memory Programming (Wiley-Interscience, 2005). The Berkeley UPC com-
piler project is a highly portable compiler that is the used on clusters and shared memory

242
ECS Report

284
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



systems and is shipped with systems from Cray, SGI, and some Linux clusters. Prof. Yelick
leads the Berkeley Institute for Performance Studies (BIPS), which involves performance
analysis, modeling, tuning, and benchmarking. The groups within BIPS work on large ap-
plication performance studies across vector, cluster, and ultrascale (BG/L) supercomputers
as well as synthetic benchmarking and identification of architectural bottlenecks. She also
co-leads the Berkeley Benchmarking and Optimization (BeBOP) group, which developed the
OSKI system for automatically tuning sparse matrix kernels. Based on ideas from her earlier
Sparsity system, OSKI includes optimizations for registers and caches that are tailored to
a given sparse matrix structure. The group has recently developed multicore optimizations
which are being integrated into OSKI. Prof. Yelick received her B.S., M.S., and Ph.D. degrees
in Computer Science from the Massachusetts Institute of Technology. She has been a Visit-
ing Researcher at ETH, Zurich and a Visiting Associate Professor at MIT, and has received
teaching awards from both Berkeley and from MIT. She was a member of the WTEC team on
“Assessment of High-End Computing Research and Development in Japan,” and is currently
a member of an NRC committee on “Sustaining the Growth in Computing Performance.”

243
ECS Report

285
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



244
ECS Report

286
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

mr22
Text Box
This page intentionally left blank.



Appendix B

Exascale Computing Study Meetings,
Speakers, and Guests

B.1 Meeting #1: Study Kickoff

May 30, 2007, Arlington, VA
Host: Science and Technology Associates

Committee members present: Shekhar Borkar, Dan Campbell, William Dally, Monty Den-
neau, William Harrod, Kerry Hill, Jon Hiller, Sherman Karp, Steve Keckler, Dean Klein, Peter
Kogge, Bob Lucas, Mark Richards, Alfred Scarpelli, Steve Scott, Allan Snavely, Thomas Sterling,
Kathy Yelick

Visitors

• Jose Munoz, NSF

• Rob Schreiber, HP Labs

• Barbara Yoon, DARPA

Presentations

• Peter Kogge - Introduction and Goals

• Thomas Sterling - Towards an Exascale Report

• William Dally - NRC Future of Supercomputing Study

• Dean Klein - Memory

• Steve Scott - Processor Requirements and Scaling

• Allan Snavely - Application Scaling

• Katherine Yelick - Berkeley Dwarfs
245

ECS Report

287
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



B.2 Meeting #2: Roadmaps and Nanotechnology

June 26-27, 2007, Palo Alto, CA
Host: Hewlett-Packard Laboratories

Committee members present: Shekhar Borkar, Daniel Campbell, William Carlson, William
Dally, Monty Denneau, William Harrod, Jon Hiller, Sherman Karp, Stephen Keckler, Peter Kogge,
Mark Richards, Allan Snavely, Stanley Williams, Katherine Yelick

Visitors

• Jeff Draper, USC/ISI

• Rob Smith, Nantero

• Norm Jouppi, HP Labs

• Richard Kaufmann, HP Labs

• Phil Kuekes, HP Labs

• Chandrakant Patel, HP Labs

• Rob Schreiber, HP Labs

• Greg Snider, HP Labs

Presentations

• Shekhar Borkar - Logic Roadmap

• Norm Jouppi - Configurable Isolation

• Stan Williams: Exascale Overview

• Greg Snider - Adaptive, Probabilistic Exacomputing

• William Dally - Future Projections Spreadsheet

• Phil Kuekes - Defects & Faults

• Richard Kaufmann - Checkpoint/Restart & Ratios

• Steve Keckler - Reliability

• Chandrakant Patel - Smart Data Center

B.3 Special Topics Meeting #1: Packaging

July 17-18, 2007, Atlanta, GA
Host: Georgia Institute of Technology

Committee members present: William Dally, Dan Campbell, Monty Denneau, Paul Fran-
zon, William Harrod, Jon Hiller, Peter Kogge, Mark Richards, Alfred Scarpelli. By teleconference:
Kerry Hill, Sherman Karp

Visitors
246

ECS Report

288
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



• Muhannad Bakir, Georgia Institute of Technology

• Robert Conn, Research Triangle Institute

• Patrick Fay, University of Notre Dame

• Paul Franzon, NCSU

• Dorota Temple, Research Triangle Institute

• Rao Tummala, Georgia Institute of Technology

Presentations

• Paul Franzon - High Bandwidth Interconnect

• Rao Tummala - System Packaging

• Robert Conn - 3D Impact on HPC

• Dorota Temple - 3D Integration

• Patrick Fay - Quilt Packaging

• Muhannad Bakir - Electrical, Optical & Thermofluidic Interconnects

B.4 Meeting #3: Logic

July 24-25, 2007, Portland, OR
Host: Intel Corporation

Committee members present: Shekhar Borkar, Daniel Campbell, William Carlson, William
Dally, Monty Denneau, Paul Franzon, William Harrod, Jon Hiller, Sherman Karp, Stephen Keck-
ler, Dean Klein, Peter Kogge, Robert Lucas, Mark Richards, Steve Scott, Allan Snavely, Stanley
Williams

Visitors

• Jim Held, Intel

• Jose Maiz, Intel

• Tim Mattson, Intel

• Marko Radosavljevic, Intel

Presentations

• William Dally - Exascale Silicon Architecture

• Allan Snavely - Applications

• Shekhar Borkar - Exascale Power Performance Tradeoffs

• Steve Scott - Socket Architecture

• Stanley Williams - Nanoscale Implications for Exascale
247

ECS Report

289
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



• Steve Keckler - Reliability

• Paul Franzon - 3-D Interconnects

• Dean Klein - DRAM Challenges

• Marko Radosavljevic - Nanoelectronic Devices

• Jim Held - Terascale Computing

• Jose Maiz - Exascale Reliability

• Clair Webb - 3DIC Integration

• Tim Mattson - Programming at Exascale

B.5 Meeting #4: Memory Roadmap and Issues

August 16-17, Boise, ID
Host: Micron Technology

Committee members present: Shekhar Borkar, Daniel Campbell, Monty Denneau,William
Harrod, Jon Hiller, Sherman Karp, Stephen Keckler, Dean Klein, Peter Kogge, Robert Lucas, Mark
Richards, Steve Scott, Allan Snavely, Stanley Williams. By teleconference: Paul Franzon

Visitors

• Rob Schreiber, HP Labs

• Jim Hutchby, Semiconductor Research Corporation

• Terry Lee, Micron

• Dave Resnick, Micron

• Kevin Ryan, Micron

• Brent Keeth, Micron

• Mark Durcan, Micron

• Kirk Prall, Micron

• Chandra Mouli, Micron

Presentations

• Paul Franzon - 3D Memory Packaging

• Jim Hutchby - Emerging Research Memory Devices

• Steve Scott - Thoughts on a 3D Node

• Allan Snavely - Locality versus performance

• Monty Denneau - EDRAM

• Steve Scott - Iso Curves
248

ECS Report

290
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



• Dean Klein - Micron’s Yukon Architecture

• Kirk Prall - NAND

• Overview Brent Keeth - DRAM Architectures & Technology

• Micron - 3D Integration Update

• Chandra Mouli - Memory Technology Trends

• Micron - Low End Memory Solutions

B.6 Special Topics Meeting #2: Architectures and Programming
Environments

August 29-30, 2007, Palo Alto, CA
Host: Stanford University

Committee members present: Shekhar Borkar, Daniel Campbell, William Dally, Paul Fran-
zon, William Harrod, Jon Hiller, Sherman Karp, Stephen Keckler, Dean Klein, Peter Kogge, Robert
Lucas, Mark Richards, Alfred Scarpelli, Steve Scott, Allan Snavely, Thomas Sterling, Stanley
Williams, Katherine Yelick

Visitors

• Krste Asanovic, University of California at Berkeley

• Luiz Barroso, Google

• Mark Horowitz, Stanford University

• Kunle Olukotun, Stanford University

• Mary Hall, University of Southern California

• Vivek Sarkar, Rice University

Presentations

• Allan Snavely - Isosurfaces

• Stephen Keckler - Reliability for Exascale

• Robert Lucas - Musings on Exascale

• Robert Lucas - ORNL Exascale presentation

• Katherine Yelick - Memory footprint

• William Dally - Strawman Architecture

• Steve Scott - 3D Node Thoughts

• Stephen Keckler - IBM Fault Tolerance from HotChips

• Mark Horowitz - Power & CMOS Scaling
249

ECS Report

291
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



B.7 Special Topics Meeting #3: Applications, Storage, and I/O

September 6-7, 2007, Berkeley, CA
Host: University of California at Berkeley

Committee members present: Daniel Campbell, William Dally, Paul Franzon, William
Harrod, Jon Hiller, Sherman Karp, Dean Klein, Peter Kogge, Robert Lucas, Mark Richards, Alfred
Scarpelli, Allan Snavely, Thomas Sterling

Visitors

• Dave Koester, MITRE

• Winfried Wilcke, IBM

• Garth Gibson, Carnegie Mellon University

• Dave Aune, Seagate Technology

• Gary Grider, Los Alamos National Laboratory

• Duncan Stewart, HP Labs

• Dave Bailey, Lawrence Berkeley Laboratory

• John Shalf, Lawrence Berkeley Laboratory

• Steve Miller, NetApp

Presentations

• David Koester - Application Footprints

• Garth Gibson - Petascale Failure Data

• Gary Grider - Gaps

• Dave Aune - Storage Trends

• Dean Klein - Memory Resiliency

• Gary Grider - ASC I/O Report

• John Shalf - I/O Requirements

• Duncan Stewart - Nano-crosspoint Memory

B.8 Special Topics Meeting #4: Optical Interconnects

September 25-26, 2007, Palo Alto, CA
Host: Stanford University

Committee members present: Daniel Campbell, William Dally, Monty Denneau, Paul
Franzon, William Harrod, Jon Hiller, Sherman Karp, Stephen Keckler, Dean Klein, Peter Kogge,
Robert Lucas, Steve Scott, Mark Richards, Alfred Scarpelli, Allan Snavely, Thomas Sterling

Visitors
250

ECS Report

292
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



• Ravi Athale, MITRE

• Karen Bergman, Columbia University

• Alex Dickinson, Luxtera

• David Miller, Stanford University

• Dave Koester, MITRE

• Bill Wilson, InPhase

• Mark Beals, Massachusetts Institute of Technology

• Cheng Hengju, Intel

• Krishna Saraswat, Stanford University

• Alan Benner, IBM

• Jeff Kash, IBM

• Ahok Krishnamoorthy, Sun

• Ray Beausoleil, HP Labs

• Mootaz Elnohazy, IBM

Presentations

• David Koester - Application Scaling Requirements

• Stephen Keckler - Reliability

• Mark Beals - Photonic Integration

• Jeffrey Kash & Alan Benner - Optical/electrical Interconnect Technologies

• Bill Wilson - Holographic Archive

• Ray Beausoleil - Nanophotonic Interconnect

• Krishna Saraswat - Optics and CNT

• Keren Bergman - Photonic Interconnects

B.9 Meeting #5: Report Conclusions and Finalization Plans

October 10-11, 2007, Marina del Rey, CA
Host: University of Southern California Information Sciences Institute

Committee members present: Shekhar Borkar, Daniel Campbell, William Carlson, William
Dally, Paul Franzon, William Harrod, Jon Hiller, Sherman Karp, Stephen Keckler, Peter Kogge,
Robert Lucas, Mark Richards, Alfred Scarpelli, Allan Snavely, Katherine Yelick

Visitors

• Keren Bergman, Columbia University

• Loring Craymer, University of Southern California Information Sciences Institute

• Phil Kuekes, HP Labs

251
ECS Report

293
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



252
ECS Report

294
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

mr22
Text Box
This page intentionally left blank.



Appendix C

Glossary and Abbreviations

AMB: Advanced Memory Buffer

AMR: Adaptive Mesh Refinement

AVUS: Air Vehicle Unstructured Solver

BCH: , Bose, Chaudhuri, Hocquenghem error correcting code.

BER: Bit Error Rate

BIST: Built-In-Self-Test

bitline: The bitline receives or delivers charge from the memory cell capacitor through the memory
cell FET access device. This charge is sensed and driven by the sense amplifier.

BGA: Ball Grid Array

BER: Bit Error Rate

CAD: Computer-aided Design

CAGR: Compound Annual Growth Rate

CDR: Clock and Data Recovery

Computational Fluid Dynamics

CMOL: CMOS MOlecular Logic

CMOS: a common type of logic that employs two types of transistors whose on/off characteristics
are essentially opposite.

CMP: Chip Multi-Processor

CNT: Carbon Nano Tubes

CSP: Communicating Sequential Process model

DDR: Double Data Rate DRAM. A protocol for memory chips that has a higher bit signalling
rate than earlier types.

Digitline see bitline.
253

ECS Report

295
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



DIMM: Dual Inline Memory Module. The common form of packaging for memory devices.
DIMM’s are available for all commodity main memory types, with and without ECC for
applications from desktop computers to supercomputers.

DRAM: Dynamic Random Access Memory. A memory typically composed of a one transistor, one
capacitor memory cell. This memory is most commonly used as main memory in a computing
system.

DWDM: Dense Wavelength Division Multiplexing

DSP: Digital Signal Processor

E3SGS: Simulation and Modeling at exascale for Energy, Ecological Sustainability and Global
Security

EB: exabyte

ECC: Error Correcting Code

eDRAM: embedded Dynamic Random Access Memory

EIP: Exa Instructions Processed to completion

EIPs: Exa Instructions Processed per second

E/O: Electrical to Optical

EOS/DIS: Earth Observing System/Data Information System

FB-DIMM: Fully Buffered Dual Inline Memory Module

Fe-RAM: Ferro-electric RAM

FG: Floating Gate.

FINFET: a dual gate non-planar transistor where the major structures look like “fins” on top of
the substrate.

FIT: Failures in Time. The number of expected failures in a device over a billion hour of operation.
Testing for this is generally done by accelerated testing a million devices for a thousand hours.
Typically performed on memory devices.

flop: floating point operation

FPGA: Field Programmable Gate Array

FPNI: Field-Programmable Nanowire Interconnect

FPU: Floating Point Unit

GAS: Global Address Space

GB: giga byte

GUPS: Global Updates Per Second
254

ECS Report

296
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



HAL: Hardware Abstraction Layer

HECRTF: High End Computing Revitalization Task Force

HT: Hyper Transport

HPC: High Performance Computing

HPCS: High Productivity Computing Systems - a DARPA program

HPL: High Performance Linpack benchmark

HTMT: Hybrid Technology Multi-Threaded architecture

HVAC: Heating, Ventilating, and Air Conditioning

ILP: Instruction Level Parallelism

IMT: Interleaved Multi-Threading

IPS: Instructions Per Second

ISA: Instruction Set Architecture

JEDEC: Joint Electron Device Engineering Council. A standards committee for many commercial
commodity electronic parts.

JJ Josephson Junction

MEMS: Micro Electrical Mechanical Systems

MLC: Multi-Level-Cell. A technology for storing more than one bit in a NAND Flash cell.

MOS: see MOSFET

MOSFET: Metal-Oxide-Semiconductor Field Effect Transistor. While not totally accurate (gates
today are not implemented from metal), this isle common name for the typical transistor used
today.

MPI: Message Passing Interface

MPP: Massively Parallel Processor

MRAM: Magnetic Random Access Memory

MTJ: magnetic tunnel junctions

MTTI: Mean Time To Interrupt

MW: Mega Watt

NAS: National Academy of Science

nm: nano meter

NoC: Network on Chip
255

ECS Report

297
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



NVRAM: Non Volatile RAM

O/E: Optical to Electrical

PB: Peta Byte

PCB: Printed Circuit Board

PCRAM: Phase-Change RAM

PDE: Partial Differential Equation

PDU: Power Distribution Unit

pGAS: Partitioned global address space

PIM: Processing-In-Memory

pJ: pico joules, or 10−12 joules

PSU: Power Supply Unit

QK: Quintessential Kernel

qubit: quantum bit

RAM: Random Access Memory

RLDRAM: Reduced Latency DRAM

RMA: Reliability, Maintainability, and Availability

ROM: Read Only Memory

RRAM: Resistive RAM

RSFQ: Rapid Single Flux Quantum Device

RTL: Register Transfer Language

SCI: System Call Interface

SCM: System Capable Memory

SCP: Single Chip Package

SDRAM: Synchronous DRAM

SECDED: Single Error Correcting Double Error Detecting code

SEM: Scanning Electron Microscope

SER: Soft Error Rate. Failures in a component or system that are transient failures can be
aggregated to compute a soft error rate. SER sources include noise and ionizing radiation.

SerDes: Serializer/Deserializer

SEU: Single Event Upset
256

ECS Report

298
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



SIMD: Single Instruction, Multiple Data

SLC: Single-Level-Cell. A flash with one bit of information stored per cell.

SMT: Simultaneous Multi-Threading

SNIC: Semiconductor Nanowire InterConnect

SNR: Signal to Noise Ratio

SOC: System On a Chip

SOI: Silicon On Insulator

SONOS: Semiconductor-Oxide-Nitride-Oxide-Semiconductor memory

SPMD: Single Program Multiple Data

SRAM: static random access memory. A memory typically composed of a six transistor storage
cell. These cells can be fast and are typically used in processor caches where access time is
most critical.

SSTL: Stub Series Terminated Logic signalling standard

TEC: Thermal Electric Coolers

TIA: Trans-Impedance Amplifier - a type of optical receiver

TLB: translation lookaside buffer

TLC: Thread Level Parallelism

TMR: Triple Modular Redundancy

TSV: Through Silicon Via

UPS: Uninterruptible Power Supply

VFS: Virtual File System interface

VR: Voltage Regulator

VRT: Variable Retention Time

Vdd: Voltage drain to drain - main operation voltage for silicon circuits

VSEL: Vertical-Cavity Surface-Emitting Laser

Wordline: The signal line that drives the gates of the memory cell FET. The wordline may be
divided across several sub-arrays, but must be considered as the logical sum of its parts.
Typically a wordline activates a row of 8K memory cells.

WRF: Weather Research and Forecasting code.

257
ECS Report

299
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



258
ECS Report

300
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

mr22
Text Box
This page intentionally left blank.



Bibliography

[1] BGA-scale stacks comprised of layers containing integrated circuit die and a method for
making the same. US Patent Number 20070158805.

[2] Historical Notes about the Cost of Hard Drive Storage Space.
http://www.littletechshoppe.com/ns1625/winchest.html.

[3] Superconducting Technology Assessment. Technical report, National Security Agency Office
of Corporate Assessments, August 2005.

[4] High Productivity Computer Systems. http://www.highproductivity.org/, 2007.

[5] N.R. Adiga and et al. An Overview of the BlueGene/L Supercomputer. In ACM/IEEE
Conference on Supercomputing, November 2002.

[6] E. Adler and et al. The evolution of IBM CMOS DRAM technology. IBM J. Research and
Development, 39(1/2):pp. 167–188, January 1995.

[7] Guy AlLee, Milan Milenkovic, and James Song. Data Center Energy Efficiency.
http://download.intel.com/pressroom/kits/research/poster Data Center Energy Efficiency.pdf,
June 2007.

[8] George Almási, Cǎlin Caşcaval, nos José G. Casta Monty Denneau, Derek Lieber, José E.
Moreira, and Henry S. Warren. Dissecting Cyclops: a detailed analysis of a multithreaded
architecture. SIGARCH Comput. Archit. News, 31(1):26–38, 2003.

[9] C. J. Amsinck, N. H. Di Spigna, D. P. Nackashi, , and P. D. Franzon. Scaling constraints in
nanoelectronic random-access memories. Nanotechnology, 16, October.

[10] Ken Anderson, Edeline Fotheringham, Adrian Hill, Bradley Sissom, and Kevin Cur-
tis. High speed holographic data storage at 500 Gbit/in.2. http://www.inphase-
technologies.com/downloads/pdf/technology/HighSpeedHDS500Gbin2.pdf.

[11] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Hus-
bands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb
Williams, and Katherine A. Yelick. The Landscape of Parallel Computing Research: A View
from Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf, De-
cember 2006.

[12] Computing Research Association. Grand Research Challenges in Information Systems.
http://www.cra.org/reports/gc.systems.pdf, 2003.

[13] Semiconductor Industries Association. International Technology Roadmap for Semiconduc-
tors. 2006.

259
ECS Report

301
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



[14] I. G. Baek and et al. Multi-layer cross-point binary oxide resistive memory (OxRRAM) for
post-NAND storage application. IEDM, 2006.

[15] Gary H. Bernstein, Qing Liu, Minjun Yan, Zhuowen Sun, David Kopp, Wolfgang Porod, Greg
Snider, and Patrick Fay. Quilt Packaging: High-Density, High-Speed Interchip Communica-
tions. IEEE Trans. on Advanced Packaging, 2007.

[16] B. Black and et al. Die stacking (3d) microarchitecture. volume 39. IEEE Micro, 2006.

[17] Defense Science Board. Task Force on DoD Supercomputer Needs. http://stinet.dtic.mil/cgi-
bin/GetTRDoc?AD=ADA383826&Location=U2&doc=GetTRDoc.pdf, October 2000.

[18] Defense Science Board. Report on Joint U.S. Defense Science Board and
UK Defence Scientific Advisory Council Task Force on Defense Critical Technolo-
gies. http://www.acq.osd.mil/dsb/reports/2006-03-Defense Critical Technologies.pdf, March
2006.

[19] Shekhar Borkar. Designing reliable systems from unreliable components: the challenges of
transistor variability and degradation. IEEE Micro, 25(6):10–16, 2005.

[20] Arthur A. Bright, Matthew R. Ellavsky2, Alan Gara1, Ruud A. Haring, Gerard V. Kopc-
say, Robert F. Lembach, James A. Marcella, Martin Ohmacht1, and Valentina Salapura1.
Creating the BlueGene/L Supercomputer from Low-Power SoC ASICs. pages 188–189, San
Francisco, CA, 2005. ISSCC.

[21] R. Brightwell, K. Pedretti, and K.D. Underwood. Initial performance evaluation of the Cray
SeaStar interconnect. 13th Symposium on High Performance Interconnects, pages 51–57,
17-19 Aug. 2005.

[22] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston,
and Pat Hanrahan. Brook for GPUs: Stream Computing on Graphics Hardware. In ACM
SIGGRAPH, pages 777–786, August 2004.

[23] P. Bunyk. RSFQ Random Logic Gate Density Scaling for the Next-Generation Josephson
Junction Technology. IEEE Transactions on Applied Superconductivity, 13(2):496–497, June
2003.

[24] P. Bunyk, M. Leung, J. Spargo, and M. Dorojevets. Flux-1 RSFQ microprocessor: physical
design and test results. IEEE Transactions on Applied Superconductivity, 13(2):433–436, June
2003.

[25] J. Carlstrom and et al. A 40 Gb/s Network Processor with PISC Dataflow Architecture. In
Int. Solid-State Circuits Conf., pages 60–67, San Francisco, USA, Feb. 2004.

[26] L. Carrington, X. Gao, A. Snavely, , and R. Campbell. Profile of AVUS Based on Sampled
Memory Tracing of Basic Blocks. Users Group Conference on 2005 Users Group Conference,
jun,.

[27] Tien-Hsin Chao. Holographic Data Storage. http://www.thic.org/pdf/Jan01/NASAJPL.t-
schao.010116.pdf.

[28] Y. Chen, G. Y. Jung, D. A. A. Ohlberg, X. M. Li, D. R. Stewart, J. O. Jeppesen, K. A.
Nielsen, J. F. Stoddart, and R. S. Williams. Nanoscale molecular-switch crossbar circuits.
Nanotechnology, 14:462–468, April 2003.

260
ECS Report

302
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



[29] Y. C. Chen and et al. An Access-transistor-free (OT/1R) non-volatile resistance random
access memory (RRAM) using a novel threshold switching, self-rectifying chalcogenide device.
IEDM Report 37.4.1, 2003.

[30] H. Cho, P. Kapur, and K.C. Saraswat. Performance Comparison Between Vertical-Cavity
Surface-Emitting Laser and Quantum-Well Modulator for Short-Distance Optical Links.
IEEE Photonics Technology Letters, 18(3):520–522, February 2006.

[31] UPC Consortium. UPC language specifications v1.2. Technical report, Lawrence Berkeley
National Lab, 2005.

[32] Livermore Software Technology Corporation. Getting Started with LS-DYNA.
http://www.feainformation.com/m-pdf/IntroDyna.pdf, 2002.

[33] A. DeHo, S. C. Goldstein, P. J. Kuekes, and P. Lincoln. Nonphotolithographic nanoscale
memory density prospects. IEEE Transactions on Nanotechnology, 4:215–228, March 2005.

[34] A. Dehon. Array-based architecture for fet-based, nanoscale electronics. IEEE Trans. Nan-
otechnol., 2(1):23–32, 2003.

[35] A. DeHon. Design of programmable interconnect for sublithographic programmable logic
array. pages 127–137, Monterey, CA, February 2005. FPGA.

[36] A. DeHon. Nanowire-based programmable architecture. ACM J. Emerg. Technol. Comput.
Syst., 1(2):109–162, 2005.

[37] A. DeHon and K. K. Likharev. Hybrid cmos/nanoelectronic digital circuits: Devices, archi-
tectures, and design automation. pages 375–382, San Jose, CA, November 2005. ICCAD.

[38] Dell. Data Center Efficiency in the Scalable Enterprise.
http://www.dell.com/downloads/global/power/ps1q07-20070210-CoverStory.pdf, Febru-
ary 2007.

[39] Lisa Dhar, Arturo Hale, Howard E. Katz, Marcia L. Schilling, Melinda G. Schnoes, and
Fred C. Schilling. Recording media that exhibit high dynamic range for digital holographic
data storage. Optics Letters, 24(7):487–489, 1999.

[40] DoD. White Paper DoD Research and Development Agenda For High Pro-
ductivity Computing Systems. http://www.nitrd.gov/subcommittee/hec/hecrtf-
outreach/bibliography/20010611 high productivity computing s.pdf, June 2001.

[41] DoD. Report on High Performance Computing for the National Security Community.
http://www.nitrd.gov/subcommittee/hec/hecrtf-outreach/bibliography/200302 hec.pdf,
July 2002.

[42] Mattan Erez. Merrimac – High-Performance, Highly-Efficient Scientific Computing with
Streams. PhD thesis, Stanford University, Stanford, California, November 2005.

[43] Mattan Erez, Nuwan Jayasena, Timothy J. Knight, and William J. Dally. Fault Tolerance
Techniques for the Merrimac Streaming Supercomputer. In SC05, Seattle, Washington, USA,
November 2005.

261
ECS Report

303
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



[44] John Feo, David Harper, Simon Kahan, and Petr Konecny. ELDORADO. In CF ’05: Pro-
ceedings of the 2nd conference on Computing frontiers, pages 28–34, New York, NY, USA,
2005. ACM.

[45] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Pub., 1999.

[46] Richard Games. Survey and Analysis of the National Security High Performance
Computing Architectural Requirements. http://www.nitrd.gov/subcommittee/hec/hecrtf-
outreach/bibliography/20010604 hpc arch survey analysis f.pdf, June 2001.

[47] G. Gao, K. Likharev, P. Messina, and T. Sterling. Hybrid Technology Multithreaded Archi-
tecture. In 6th Symp. on Frontiers of Massively Parallel Computation, pages 98–105, 1996.

[48] A. Gara and et al. Overview of the Bluegene/L system architecture. IBM J. of Reearch and
Development, (2/3):195–212, 2005.

[49] A. Gayasen, N. Vijaykrishnan, and M. J. Irwin. Exploring technology alternatives for nano-
scale fpga interconnects. pages 921–926, Anaheim, CA, June 2005. DAC.

[50] Garth Gibson. Reflections on Failure in Post-Terascale Parallel Computing. In Int. Conf. on
Parallel Processing.

[51] N. E. Gilbert and M. N. Kozicki. An embeddable multilevel-cell solid electrolyte memory
array. EEE Journal of Solid-State Circuits, 42:1383–1391, June 2007.

[52] S. C. Goldstein and M. Budiu. Nanofabrics: Spatial computing using molecular electronics.
pages 178–189, Goteborg, Sweden, 2001. ISCA.

[53] S. C. Goldstein and D. Rosewater. Digital logic using molecular electronics. page 12.5, San
Francisco, CA, February 2002. ISSCC.

[54] S. Graham and et al. Getting Up to Speed: The Future of Supercomputing. National Academies
Press, 2004.

[55] Jim Gray. Building PetaByte Servers. http://research.microsoft.com/g̃ray/talks/ Build-
ing%20Petabyte%20Databases%20(CMU).ppt.

[56] YJ. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno,
Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H. R. Tseng, J. F. Stoddart, and J. R. Heath.
A 160-kilobit molecular electronic memory patterned at 10(̂11) bits per square centimetre.
Nature, 445:414–417, January 25 2005.

[57] Michael Gschwind. Chip multiprocessing and the cell broadband engine. In CF ’06: Pro-
ceedings of the 3rd conference on Computing frontiers, pages 1–8, New York, NY, USA, 2006.
ACM.

[58] D. Guckenberger, J.D. Schaub, D. Kucharski, and K.T. Komegay. 1 V, 10 mW 10 Gb/s CMOS
Optical Receiver Front-End. In 2005 IEEE Radio Frequency Integrated Circuits Symposium,
page 309.

[59] P. Kapur H. Cho, K-H Koo and K.C. Saraswat. Performance Comparison between Cu/Low-L,
Carbon Nanotube, and Optics for On-chip Global Interconnects, 2007. manuscript.

262
ECS Report

304
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



[60] Mary Hall, Peter Kogge, Jeff Koller, Pedro Diniz, Jacqueline Chame, Jeff Draper, Jeff La-
Coss, John Granacki, Jay Brockman, Apoorv Srivastava, William Athas, Vincent Freeh,
Jaewook Shin, and Joonseok Park. Mapping irregular applications to DIVA, a PIM-based
data-intensive architecture. In Supercomputing ’99: Proceedings of the 1999 ACM/IEEE
conference on Supercomputing (CDROM), page 57, New York, NY, USA, 1999. ACM.

[61] Mark W. Hart. Step−and−Flash Imprint Lithography for Storage−Class Mem-
ory. http://www.molecularimprints.com/NewsEvents/tech articles/new articles/
EIPBN2007 IBMv2.pdf, 2007.

[62] Hisao Hayakawa, Nobuyuki Yoshikawa, Shinichi Yorozu, and Akira Fujimaki. Superconduct-
ing Digital Electronics. Proc. of the IEEE, 92(10), October 2004.

[63] P. Hazucha, T. Karnik, J. Maiz, S. Walstra, B. Bloechel, J. Tschanz, G. Dermer, S. Hareland,
P. Armstrong, and S. Borkar. Neutron Soft Error Rate Measurements in a 90-nm CMOS
Process and Scaling Trends in SRAM from 0.25-mm to 90-nm Generation. In International
Electron Devices Meeting, pages 21.5.1–21.5.4, December 2003.

[64] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams. A defect-tolerant computer
architecture: Opportunities for nanotechnology. Science, 280:1716–1721, June 1998.

[65] C. A. R. Hoare. Communicating sequential processes. In Communications of the ACM,
volume 21, pages 666–677, 1978.

[66] L. Hochstein, T. Nakamura, V.R. Basili, S. Asgari, M.V. Zelkowitz, J.K. Hollingsworth,
F. Shull, J. Carver, M. Voelp, N. Zazworka, , and P. Johnson. Experiments to Understand
HPC Time to Development. Cyberinfrastructure Technology Watch Quarterly, Nov. 2006.

[67] T. Hogg and G. S. Snider. Defect-tolerant adder circuits with nanoscale crossbars. IEEE
Trans. Nanotechnol., 5(2):97–100, 2006.

[68] T. Hogg and G. S. Snider. Defect-tolerant logic with nanoscale crossbar circuits. JETTA,
23(2-3):117–129, 2007.

[69] D. Hopkins and et.al. Circuit techniques to enable a 430 gb/s/mm/mm proximity communi-
cation. In IEEE International Solid State Circuits Conference, pages 368–369, 2007.

[70] H.Tanaka, M.Kido, K.Yahashi, M.Oomura, and et al. Bit cost scalable technology with punch
and plug process for ultra high density flash memorye. pages 14–15. IEEE Symp. on VLSI
technology, 2007.

[71] Endicott Interconnect. HyperBGA Technology. http://eitnpt1.eitny.com/contentmanager/
literature/HYPERBGA.pdf.

[72] Mary Jane Irwin and John Shen, editors. Revitalizing Computer Architecture Research. Com-
puting Research Association, December 2005.

[73] iSuppli. isuppli market tracker, q3. http://www.isuppli.com/catalog/detail.asp?id=8805.

[74] L. Jiang and et.al. Close-loop electro-osmotic micromechannel coolings system for VLSI
circuits. IEEE Trans. CPMT, Part A, 25:347–355, September 2002.

263
ECS Report

305
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



[75] Bill Joy and Ken Kennedy. Information Technology Research: Investing in Our Future.
National Coordination Office for Computing, Information, and Communications, Arlington,
VA, February 1999.

[76] G. Y. Jung, S. Ganapathiappan, D. A. A. Ohlberg, D. L. Olynick, Y. Chen, W. M. Tong, and
R. S. Williams. Fabrication of a 34 x 34 crossbar structure at 50 nm half-pitch by UV-based
nanoimprint lithography. Nano Letters, 4:1225–1229, July 2004.

[77] G. Y. Jung, E. Johnston-Halperin, W. Wu, Z. N. Yu, S. Y. Wang, W. M. Tong, Z. Y. Li, J. E.
Green, B. A. Sheriff, A. Boukai, Y. Bunimovich, J. R. Heath, and R. S. Williams. Circuit
fabrication at 17 nm half-pitch by nanoimprint lithography. Nano Letters, 6:351–354, March
2006.

[78] P. Kapur and K.C. Saraswat. Optical Interconnections for Future High Performance Inte-
grated Circuits. Physica E, 16:620–627, 2003.

[79] B. Keeth and R. Baker. DRAM Circuit Design: A Tutorial. IEEE Press, 2000.

[80] T. Kgil and et al. Picoserver: Using 3d stacking technology to enable a compact energy
efficient chip multiprocessor. ASPLOS, 2006.

[81] J. Kim, W. Dally, B. Towles, and A. Gupta. Microarchitecture of a high-radix router. In
IProceedings 32th Annual Int. Symp. on Computer Architecture(ISCA), pages 420–431, June
2005.

[82] J.S. Kim, W.H. Cha, K.N. Rainey, S. Lee, and S.M. You. Liquid cooling module using FC-72
for elecrtronics cooling. In ITHERM ’06, pages 604–611, May 2006.

[83] Graham Kirsch. Active Memory: Micron’s Yukon. In IPDPS ’03: Proceedings of the 17th
International Symposium on Parallel and Distributed Processing, page 89.2, Washington, DC,
USA, 2003. IEEE Computer Society.

[84] David Koester. Exascale Study Application Footprints.
http://info.mitre.org/infoservices/selfserve/public release docs/2007/07-1449.pdf, 2007.

[85] P. Kogge. The EXECUBE Approach to Massively Parallel Processing. In Int. Conf. on
Parallel Processing, Chicago, Aug. 1994.

[86] P. Kogge. An Exploration of the Technology Space for Multi-Core Memory/Logic Chips for
Highly Scalable Parallel Systems. In IEEE Int. Workshop on Innovative Architectures, pages
55–64, Oahu, HI, Jan. 2005.

[87] J. Koomey. Estimating Total Power Consumption By Servers In The U.S. And The World,
February 2007. Lawrence Berkeley National Laboratory, Final Report.

[88] Christoforos Kozyrakis and David Patterson. Vector vs. superscalar and VLIW architec-
tures for embedded multimedia benchmarks. In MICRO 35: Proceedings of the 35th annual
ACM/IEEE international symposium on Microarchitecture, pages 283–293, Los Alamitos,
CA, USA, 2002. IEEE Computer Society Press.

[89] P. J. Kuekes, G. S. Snider, and R. S. Williams. Crossbar nanocomputers. Sci. Am., 293(5):72–
80, 2005.

264
ECS Report

306
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



[90] Sandia National Labs. Photo of Red Storm. http://www.sandia.gov/NNSA/ASC/images/
platforms/RedStorm-montage.jpg.

[91] J. H. Lee, X. Ma, D. B. Strukov, and K. K. Likharev. Cmol. pages 3.9–3.16, Palm Springs,
CA, May 2005. NanoArch.

[92] J.D Lee, S.H. Hur, and J.D. Choi. Effects of floating-gate interference on NAND flash memory
cell operation. IEEE Electron. Device Letters, 23(5):pp. 264–266, May 2002.

[93] Ana Leon, Jinuk Shin, Kenway Tam, William Bryg, Francis Schumacher, Poonacha Konge-
tira, David Weisner, and Allan Strong. A Power-Efficient High-Throughput 32-Thread
SPARC Processor. pages 98–99, San Francisco, CA, 2006. ISSCC.

[94] K. Likharev and D. Strukov. CMOL: Devices, circuits, and architectures, pages 447–478.
Springer, 2005.

[95] R. J. Luyken and F. Hofmann. Concepts for hybrid CMOS-molecular non-volatile memories.
Nanotechnology, 14:273–276, February 2003.

[96] X. Ma, D. B. Strukov, J. H. Lee, and K. K. Likharev. Afterlife for silicon: Cmol circuit
architectures. pages 175–178, Nagoya, Japan, July 2005. IEEE Nanotechnol.

[97] Junichiro Makino, Eiichiro Kokubo, and Toshiyuki Fukushige. Performance evaluation and
tuning of GRAPE-6 towards 40 real Tflops. ACM/IEEE SC Conference, 2003.

[98] M. Mamidipaka and N. Dutt. eCACTI: An Enhanced Power Estimation Model for On-chip
Caches, 2004. Center for Embedded Computer Systems (CESC) Tech. Rep. TR-04-28.

[99] J. Mankins. Technology Readiness Levels. http://www.hq.nasa.gov/office/codeq/trl/trl.pdf,
April 1995.

[100] John Markoff. Pentagon Redirects Its Research Dollars; University Scientists Concerned by
Cuts in Computer Project. New York Times, pages section C, page 1, column 2, April 2005.

[101] M. Masoumi, F. Raissi, M. Ahmadian, and P. Keshavarzi. Design and evaluation of ba-
sic standard encryption algorithm modules using nanosized complementary metal-oxide-
semiconductor-molecular circuits. Nanotechnology, 17(1):89–99, 2006.

[102] N. Nakajimaand F. Matsuzaki, Y. Yamanashi, N. Yoshikawa, M. Tanaka, T. Kondo, A. Fu-
jimaki, H. Terai, , and S. Yorozu. Design and implementation of circuit components of the
SFQ microprocessor, CORE 1. 9th Int. Superconductivity Conf., 2003.

[103] P. Mehrotra and P. Franzon. Optimal Chip Package Codesign for High Performance DSP.
IEEE Trans. Advanced Packaging, 28(2), May 2005.

[104] S.E. Michalak, K.W. Harris, N.W. Hengartner, B.E. Takala, and S.A. Wender. Predicting
the number of fatal soft errors in Los Alamos National Laboratory’s ASC Q supercomputer.
IEEE Transactions on Device and Materials Reliability, 5(3):329–335, September 2005.

[105] John Michalakes, Josh Hacker, Richard Loft, Michael O. McCracken, Allan Snavely,
Nicholas J. Wright, Tom Spelce, Brent Gorda, and Robert Walkup. WRF Nature Run.
Int. Conf. for High Performance Computing, Networking, and Storage, nov 2007.

265
ECS Report

307
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



[106] Micron. Micron system power calculator. http://www.micron.com/support/designsupport/
tools/powercalc/powercalc.aspx.

[107] N. Miura, H. Ishikuro, T. Sakurai, and T. Kuroda. A 0.14 pj/bit inductive coupling inter-chip
data transceiver with digitally-controlled precise pulse shaping. In IEEE International Solid
State Circuits Conference, pages 358–608, 2007.

[108] Jos Moreira, Michael Brutman, Jos Castaos, Thomas Engelsiepen, Mark Giampapa, Tom
Gooding, Roger Haskin, Todd Inglett, Derek Lieber, Pat McCarthy, Mike Mundy, Jeff Parker,
and Brian Wallenfelt. Designing a Highly-Scalable Operating System: The Blue Gene/L
Story. ACM/IEEE SC Conference, 2006.

[109] R. Murphy, A. Rodrigues, P. Kogge, , and K. Underwood. The Implications of Working Set
Analysis on Supercomputing Memory Hierarchy Design. Cambridge, MA, 2005. International
Conference on Supercomputing.

[110] Umesh Nawathe, Mahmudul Hassan, Lynn Warriner, King Yen, Bharat Upputuri, David
Greenhill, Ashok Kumar, and Heechoul Park. An 8-core, 64-thread, 64-bit, power efficient
SPARC SoC. San Francisco, CA, 2007. ISSCC.

[111] John Nickolls. GPU Parallel Computing Architecture and the CUDA Programming Model.
In HotChips 19, August 2007.

[112] R. Numrich and J. Reid. Co-Array Fortran for parallel programming. In ACM Fortran Forum
17, 2, 1-31., 1998.

[113] Y. Okuyama, S. Kamohara, Y. Manabe, T. Kobayashi K. Okuyamaand K. Kubota, and
K. Kimura. Monte carlo simulation of stress-induced leakage current by hopping conduction
via multi-traps in oxide. pages 905–908. IEEE Electron. Devices Meeting, December 1998.

[114] A.K. Okyay, D. Kuzum, S. Latif, D.A.B. Miller, and K.C. Saraswat. CMOS Compatible
Silicon-Germanium Optoelectronic Switching Device, 2007. Manuscript.

[115] A.J. Oliner, R.K. Sahoo, J.E. Moreira, and M. Gupta. Performance implications of peri-
odic checkpointing on large-scale cluster systems. In International Parallel and Distributed
Processing Symposium, April 2005.

[116] D. R. Stewart P. J. Kuekes and R. S. Williams. The crossbar latch: Logic value storage,
restoration, and inversion in crossbar circuits. J. Appl. Phys., 97(3):034301, 2005.

[117] R. Palmer, J. Poulton, W.J. Dally, J. Eyles, A.M. Fuller, T. Greer, M. Horowitz, M.Kellan,
F. Quan, and F. Zarkesshvari. A 13 mw 6.25 gb/s transceiver in 90 nm cmos for serial chip-to-
chip communication. In IEEE International Solid State Circuits Conference, pages 440–614,
2007.

[118] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. HPL - A Portable Implemen-
tation of the High-Performance Linpack Benchmark for Distributed-Memory Computers.
http://www.netlib.org/benchmark/hpl/, 2004.

[119] Daniel Reed, editor. The Roadmap for the Revitalization of High-End Computing. Computing
Research Association, 2003.

266
ECS Report

308
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



[120] K. Reick, P.N. Sanda, S. Swaney, J.W. Kellington, M. Floyd, and D. Henderson. Fault
Tolerant Design of the IBM Power6 Microprocessor. In HotChips XIX, August 2007.

[121] J. R. Reimers, C. A. Picconnatto, J. C. Ellenbogen, , and R. Shashidhar, editors. Molecular
Electronics III, volume 1006. Ann. New York Acad. Sci.

[122] M. M. Ziegler C. A. Picconatto S. Das, G. Rose and J. E. Ellenbogen. rchitecture and simu-
lations for nanoprocessor systems integrated on the molecular scale, pages 479–515. Springer,
2005.

[123] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim, Jaehyuk
Huh, Nitya Ranganathan, Doug Burger, Stephen W. Keckler, Robert G. McDonald, and
Charles R. Moore. TRIPS: A polymorphous architecture for exploiting ILP, TLP, and DLP.
ACM Trans. Archit. Code Optim., 1(1):62–93, 2004.

[124] B. Schroeder and G.A. Gibson. A Large-scale Study of Failures in High-performance-
computing Systems. In International Conference on Dependable Systems and Networks
(DSN), pages 249–258, June 2006.

[125] B. Schroeder and G.A. Gibson. Disk Failures in the Real World: What Does an MTTF of
1,000,000 Hours Mean to You? In USENIX Conference on File and Storage Technologies
(FAST), February 2007.

[126] Roy Schwitters and et al. Report on High Performance Computing for the National Security
Community. http://fas.org/irp/agency/dod/jason/asci.pdf, October 2003.

[127] A. Shcham and K. Bergman. Building Ultralow-Latency Interconnection Networks Using
Photonic Integration. IEEE Micro, 27(4):6–20, July-August 2007.

[128] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi. Modeling the Effect of
Technology Trends on Soft Error Rate of Combinational Logic. In International Conference
on Dependable Systems and Networks (DSN), pages 389–398, June 2002.

[129] Paul H. Smith, Thomas Sterling, and Paul Messina. Enabling Technologies for Petaflops
Computing. MIT Press, 2005.

[130] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha. A Frame-
work for Application Performance Modeling and Prediction. pages 112–123, Baltimore, MD,
November 2002. ACM/IEEE Conference on Supercomputing.

[131] A. Snavely, M. Tikir, L. Carrington, and E. Strohmaier. A Genetic Algorithms Approach
to Modeling the Performance of Memory-bound Computations. Reno, NV, November 2007.
ACM/IEEE Conference on Supercomputing.

[132] Allan Snavely, Larry Carter, Jay Boisseau, Amit Majumdar, Kang Su Gatlin, Nick Mitchell,
John Feo, and Brian Koblenz. Multi-processor performance on the Tera MTA. In Supercom-
puting ’98: Proceedings of the 1998 ACM/IEEE conference on Supercomputing (CDROM),
pages 1–8, Washington, DC, USA, 1998. IEEE Computer Society.

[133] G. Snider. Computing with hysteretic resistor crossbars. Appl. Phys. A-Mater. Sci. Process.,
80(6):1165–1172, 2005.

267
ECS Report

309
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



[134] G. Snider, P. Kuekes, T. Hogg, and R. S. Williams. Nanoelectronic architectures. Appl. Phys.
A-Mater. Sci. Process., 80(6):1183–1195, 2005.

[135] G. Snider, P. Kuekes, and R. S. Williams. Cmos-like logic in defective, nanoscale crossbars.
Nanotechnology, 15(8):881–891, 2004.

[136] G. S. Snider and P. J. Kuekes. Nano state machines using hysteretic resistors and diode
crossbars. IEEE Trans. Nanotechnol., 5(2):129–137, 2006.

[137] G. S. Snider and R. S. Williams. Nano/cmos architectures using a field-programmable
nanowire interconnect. Nanotechnology, 18(3):035204, 2007.

[138] L. Spainhower and T. A. Gregg. IBM S/390 Parallel Enterprise Server G5 fault tolerance: A
historical perspective. IBM Journal of Research and Development, 43(5/6):863–874, 1999.

[139] M. Stan, P. D. Franzon, S. C. Goldstein, J. C. Lach, and M. M. Ziegler. Molecular electron-
ics: From devices and interconnect to circuits and architecture. Proc. IEEE, 91:1940–1957,
November 2003.

[140] Thomas Sterling. HTMT-class Latency Tolerant Parallel Architecture for Petaflops-
scale Computation. http:www.cs.umd.edu/users/als/NGS07/Presentations/ 8am-Sunday-
Session/GaoSterling.pdf, 1999.

[141] D. B. Strukov and K. K. Likharev. Prospects for terabit-scale nanoelectronic memories.
Nanotechnology, 16:137–148, January 2005.

[142] D. B. Strukov and K. K. Likharev. Defect-tolerant architectures for nanoelectronic crossbar
memories. Journal of Nanoscience and Nanotechnology, 7:151–167, January 2007.

[143] F. Sun and T. Zhang. Defect and transient fault-tolerant system design for hybrid CMOS/-
nanodevice digital memories. IEEE Transactions on Nanotechnology, 6:341–351, May 2007.

[144] T. Sunaga, P. Kogge, and et al. A Processor In Memory Chip for Massively Parallel Embedded
Applications. In IEEE J. of Solid State Circuits, pages 1556–1559, Oct. 1996.

[145] D. Tarjan, S. Thoziyoor, and N. P. Jouppi. CACTI 4.0, 2006. HP Labs Tech. Rep. HPL-
2006-86.

[146] Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben Green-
wald, Henry Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind Saraf, Nathan Shnid-
man, Volker Strumpen, Matt Frank, Saman Amarasinghe, and Anant Agarwal. Evalua-
tion of the Raw Microprocessor: An Exposed-Wire-Delay Architecture for ILP and Streams.
SIGARCH Comput. Archit. News, 32(2):2, 2004.

[147] IBM Blue Gene team. Overview of the IBM Blue Gene/P project. IBM J. RES. & DEV,
52(1/2):199–220, 2008.

[148] J. Tour. Molecular Electronics. World Scientific, Singapore, 2003.

[149] S. Vangal and et al. An 80-Tile 1.28 TFLOPS Network-on-chip in 65 nm CMOS. pages
98–99, San Francisco, CA, 2007. ISSCC.

[150] S. Vangal and et.al. An 80-tile 1.28 tflops network-on-chip in 65 nm cmos. In IEEE Interna-
tional Solid State Circuits Conference, pages 587–589, 2007.

268
ECS Report

310
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



[151] Michael J. Voss and Rudolf Eigenmann. High-Level Adaptive Program Optimization with
ADAPT. pages 93–102. Proc. of PPOPP’01, ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2001.

[152] David Wallace. Compute Node Linux: Overview, Progress to Date and Roadmap.
http://www.nccs.gov/wp-content/uploads/2007/08/wallace paper.pdf, 2007.

[153] T. Wang, Z. Qi, and C. A. Moritz. Opportunities and challenges in application-tuned circuits
and architectures based on nanodevices. pages 503–511, Italy, April 2004. CCF.

[154] W. Wang, M. Liu, and A. Hsu. Hybrid nanoelectronics: Future of computer technology. J.
Comp. Sci. Technolog., 21(6):871–886, 2006.

[155] J. Weinberg, M. O. MCracken, A. Snavely, and E. Strohmaier. Quantifying Locality In The
Memory Access Patterns of HPC Applications. Seattle, WA, November 2005. SC.

[156] M. H. White, D. Adams, and J. Bu. On the go with sonos. In IEEE Circuits and Devices,
volume 16, page 22, 2000.

[157] Wikipedia. Cray X-MP.

[158] S. Wilton and N. P. Jouppi. An Enhanced Access and Cycle Time Model for On-Chip Caches,
1994. DEC WRL Tech. Rep. 93/5.

[159] V. Yalala, D. Brasili, D. Carlson, A. Huges, A. Jain, T. Kiszely, K. Kodandapani, A. Varad-
harajan, and T. Xanthopoulos. A 16-Core RISC Microprocessor with Network Extensions.
pages 100–101, San Francisco, CA, 2006. ISSCC.

[160] Katherine Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind Krish-
namurthy, Paul Hilfinger, Susan Graham, David Gay, Phillip Colella, and Alexander Aiken.
Titanium: A High-Performance Java Dialect, journal = Concurrency: Practice and Experi-
ence. 10:825–836, 1998.

[161] H.Y. Zhang, D. Pinjala, and T. Poi-Siong. Thermal Management of high power dissipation
eletronic packages: from air cooling to liquid cooling. In EPTC 2003, pages 620–625, 2003.

[162] L. Zhang, J. Wilson, R. Bashirulla, L. Luo, J. Xu, and P. Franzon. A 32gb/s on-chip bus
with driver pre-emphasis signaling. In IEEE Custom Integrated Circuits Conference, pages
773–776, 2006.

[163] M. M. Ziegler, C. A. Picconatto, J. C. Ellenbogen, A. Dehon, D. Wang, Z. H. Zhong, and
C. M. Lieber. Scalability simulations for nanomemory systems integrated on the molecular
scale. Molecular Electronics III, 1006:312–330, 2003.

[164] M. M. Ziegler and M. R. Stan. Cmos/nano co-design for crossbar-based molecular electronic
systems. IEEE Trans. Nanotechnol., 2(4):217–230, 2003.

269
ECS Report

311
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Index

3D packaging, 131
3D stacking, 122

fused multiply-add, 57

activate, 117
activity factor, 135
adaptive mesh refinement, 66, 71
Advanced Memory Buffer, 30
aggressive strawman, 128, 175
air conditioner, 144
Air Vehicle Unstructured Solver, 66, 71, 75, 77,

78
air-cooling, 164
AIX, 36
AMB, see Advanced Memory Buffer
AMD K8, 28
Amdahl’s Law, 65, 227
AMR, see adaptive mesh refinement
anti-fuse, 109
application performance, 7
applicationa

cross-class, 11
applications

Category I, 71, 72, 75, 79
Category II, 71, 72, 79, 80
Category III, 71, 72, 75, 79
Category IV, 72

archival storage, 73, 127, 212
array multi-core, 29
ASCI, 23
ASCI Red, 17
aspect ratio, 106
asynchronous, 44
automatic parallelization, 40
autotuners, 26
Azul, 29

Backus, 62
balanced design, 6
Ball Grid Arrays, 140

bandwidth, 6, 113
bisection, 6, 69
checkpoint, 6
I/O, 6
local memory, 6
on-chip, 6
ratio, 7
requirements, 72

BCH code, 108
Beowulf, 34, 40
Berkeley, 25
BGA, 140
bisection bandwidth, 6, 69, 74
Bit Error Rate, 131, 217
bit-line, 106, 116

capacitance, 106
Brook-GPU, 28
BTBB, 152
bulk silicon, 93
bussed interconnect, 130
bytes to flops ratio, 7

C*, 40
C++, 152
CACTI, 119
CAF, 45
capability computing, 7, 13, 79, 80
capacity computing, 7, 12, 79
Carbon Nanotubes, 137
Cascade, 46
Catamount, 36, 37
Catamount System Libraries, 38
Category I applications, 71, 72, 75, 79
Category II applications, 71, 72, 75, 79, 80
Category III applications, 71, 72, 75, 79
Category IV applications, 72, 75
Cell, 38
cell modeling, 80
cell power, 116, 119
CFD:, 253

270
ECS Report

312
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



chalcogenide glass, 108
challenges, 2, 209

concurrency, 214
energy, 209
locality, 214
memory, 212
power, 209
resiliency, 217
storage, 212

channel, 182
Chapel, 46, 152
charge pumps, 118
checkpoint, 149, 184

bandwidth, 6
in Blue Gene/L, 149
rollback, 71, 149

chip junction temperature, 142
chip level multi-processing, 28
chip-level reliability, 147
Cilk, 43, 152
circuit switched network, 136
circuit switching, 132
clock, 55, 56
Clock and Data Recovery, 134
CM-2, 40, 41
CMFortran, 40
CMOL, 100
CMP, 29
CNL, 37
CNT, 137
Co-Array Fortran, 40, 45, 152
collective network, 172
collectives, 44
communicating sequential processes, 39
Compaq Himalaya, 149
computational fluid dynamics, 69, 71
computational rates, 5
compute card, 170
compute chip, 170
compute node, 172
Compute Node Linux, 37
concurrency, 57
concurrency challenge, 2, 214
configurable logic, 137
constant field scaling, 49
constant voltage scaling, 49
consumer-class disks, 122
core, 175, 178

CORE-1, 101
COTS architectures, 23
Cray

Black Widow, 132
MTA, 30
XMP, 63
XMT, 30
XT, 31
XT3, 38
XTn, 39

criticality, 219
cross-class applications, 11
crossbar, 100, 132
crosspoint memory array, 120
crosspoints, 137
cryostat coolers, 101
CSP, 39
cubic scaling, 27
CUDA, 28, 152
current flow, 127
custom architectures, 23
Cyclops, 29, 31

data center system, 8
data center systems, 12, 13
Data parallel languages, 40
dataflow, 39
Datastar, 63
DDR, 113, 115
DDR2, 29, 113, 115
DDR3, 113, 115
Defense Science Board, 21
Delay Locked Loop, 130
delivered power, 32
departmental systems, 9, 14, 80
dependability, 26
device resiliency scaling, 147
die stacking, 115
die thinning, 115
dielectric breakdown, 147
DIMM, 29, 172
direct chip-chip interconnect, 131
direct immersion cooling, 143
disk

transfer time, 125
capacity, 123
consumer, 122
drive reliability, 145

271
ECS Report

313
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



enterprise, 123
handheld, 123
seek time, 125
storage, 184
technology, 122
transfer rate, 125

dissipated power, 32, 88
distributed memory, 199
DIVA, 31
DLL, 130
DNA, 97
domino logic, 97
dragonfly topology, 182
DRAM, 106, 110, 212

activate mode, 117
capacitor, 116
chip architecture, 118
embedded, 107
fast cycle, 107
idle mode, 117
latency, 30
modes, 116
power, 115, 116
precharge mode, 117
read mode, 117, 118
reduced latency, 107
refresh mode, 117
reliability, 109
SER, 111
stacking, 115
Voltage Scaling, 116
write mode, 117, 118

E/O conversion, 192
E3 Initiative, 202
E3SGS, 20
Earth Simulator, 31, 41
earthquake modeling, 79
ECC, 111, 112, 147
efficiency, 32, 54
EIP, 153
EIPs, 153
electrical anti-fuses, 109
electro-migration, 142, 147
embarrassingly parallel, 72
embedded DRAM, 107
embedded systems, 10, 14, 34, 80
enabling technologies, 23

encoding for resiliency, 147
endurance, 108
energy, 210

and power challenge, 209
challenge, 2
efficiency, 95
per cycle, 88
per operation, 88, 89, 178, 210
scaling, 27, 178

enterprise-class disks, 123
environments, 198
EOS/DIS, 74
Exa Instructions Processed per second, 153
exa-sized systems, 8
exaflop, 9
exaflops, 9
Exascale, 9
EXECUBE, 29, 31
execution model, 39
executive, 37
external cooling mechanisms, 142

fail-over, 149
failure rate, 110, 145
Failures in time, 110
Fast Cycle DRAM, 107
fault recovery, 149
FB-DIMM, 30, 164
Fe-RAM, 120
featherweight supercomputer, 24
feature size, 47, 104
FeRAM, 120
ferro-electric RAM, 120
FG NAND, 109
field programmable gate array, 98, 100
field-programmable nanowire interconnect, 100
file storage, 73, 162, 212
fine line technologies, 141
FINFET, 94
FIT, 110, 145
Flash memory, 107, 213
flash rewrites, 213
floating point unit, 175, 176
floating trap layer, 108
flop, 176
flops, 5
FLUX-1, 101
flying bits, 111

272
ECS Report

314
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Fortress, 47
FPNI, 100
FPU power, 210
front-side bus, 30
full swing signaling, 130
fully depleted, 94
fully depleted SOI, 93
fuse, 112

gap, 219
GASNet, 47
gate

capacitance, 92
dielectric, 92
leakage, 92
oxide, 92

ghost node, 59
ghost region, 41
gigascale, 9, 17
global channel, 183
global interconnect, 72
GPFS, 38
GPU, 28, 152
Grape, 7
graphs, 71
grid, 10
group, 175, 183
GUPS, 82, 212

HAL, 37
handheld-class disks, 123
hard failures, 147
Hardware Abstraction Layer, 37
heating, ventilating, and air conditioning, 32
heatsink, 165
HECRTF, 23
helper flip-flop, 118
hierarchial multi-core, 29
high performance CMOS, 89
High performance Linpack benchmark, 9
High Productivity Computing Systems, 17, 20,

22, 198
high radix routers, 132
high-end computing, 9
high-K gate dielectric, 92
high-performance computing, 9
Holographic memory, 126
HPC, 9

HPCMO test case, 63
HPF, 39–41
HPL, 9, 69, 75, 77
HPUX, 36
hurricane forecast, 78
HVAC, 32
hybrid logic, 97
hybrid technology, 100
Hybrid Technology Multi-Threaded, 17, 100
HYCOM, 72
Hycom, 66
HyperBGA, 140

I/O bandwidth, 6
IBM

Blue Gene, 31, 38, 39, 63, 170
Blue Gene/L, 63, 149
Cell, 30
Cyclops, 29
G5, 149
Power, 39
Power 4, 63
Power 6, 34
Power6, 149

ILP, 56
imprint lithography, 121
Infiniband, 31
innovation trends in programming languages, 151
instruction level parallelism, 56
instructions per second, 5
interconnect, 3, 127

bus, 130
direct chip-chip, 131
energy loss, 127
off-chip wired, 130
on-chip and wired, 130
studs, 141
switched, 132
time loss, 127

internal cooling mechanisms, 142
intrinsic delay, 89
ionizing radiation, 111
IPS, 5
Irvine Sensors, 141
Itanium, 29, 34
ITRS, 47

JAVA, 47
273

ECS Report

315
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Java, 152
JEDEC, 113
JJ, 100
John Backus, 62
Josephson Junction, 100

Kiviat diagrams, 61

L1 cache, 29
LAPI, 47
laser drilled vias, 141
laser-trimmed fuses, 109
latency, 113, 127
latency requirements, 72
Level 1 Packaging, 139
Level 1 packaging, 140
Level 2 Packaging, 139
Level 2 packaging, 141
Level 3 Packaging, 139
life cycle of programming languages, 152
lightweight kernel, 199
link card, 172
Linpack, 53
Linux, 36
liquid cooling, 166, 173
Lisp, 40
list search, 82
Little’s Law, 72, 77
load balancing, 199
Loadleveler, 38
local channel, 183
local memory bandwidth, 6
locales, 46
locality, 68, 69, 75
locality challenge, 2, 214
locality clusters, 72
locality-aware architectures, 226
logic

hybrid, 97
low power, 89
nonsilicon, 97

low operating power CMOS logic, 89
low swing interconnect, 130
low voltage signaling, 180
LS-DYNA, 10
Lustre, 38
Luxterra, 135

Mach-Zender modulator, 134

macrokernel, 37
magnetic disks, 122
magnetic RAM, 120
Magnetic Random Access Memory, 109
magnetic tunnel junctions, 109
main memory, 5, 212
main memory power, 211
mantle physics, 79
manycore, 24, 26, 28
Maspar, 40, 41
Maui scheduler, 38
mean time to interrupt, 145
membrane modeling, 79
memory, 212

bandwidth, 113, 115
bank, 118, 157
capacity, 59
cell power, 116
challenge, 2, 212
consistency, 152
contoller, 30
footprint, 72
hierarchy, 103
intensive applications, 66
latency, 113
main, 5
management, 36
mat, 118
module, 115
packaging, 114
power, 115, 119
requirements, 72
socket reliability, 111
sub-bank, 118
wall, 18, 35, 103, 216

Merrimac, 178
message passing, 39, 172
metadata, 73, 127
metrics, 5
micro-FBGA, 115
micro-FBGA package, 115
microkernel, 37
Middleware, 38
midplane, 172
minimal routing, 183
MLC, 107
MODFET, 135
module level cooling, 142

274
ECS Report

316
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



molecular logic, 97
molecular switches, 100
Moore’s Law, 63, 65
MPI, 39, 44, 152
MPI-2, 44
MPICH, 44
MRAM, 102, 109, 120
MTJ, 109
MTTI, 145
multi-core, 24, 25, 28, 31, 91
multi-level cell, 107
multi-threading, 28, 30, 43
multiple drug interactions, 79
mux/demux, 121
Myrinet, 31

NAND flash, 107
NAND memory, 109
Nano-enabled Programmable Crosspoints, 137
nanomemory, 213
nanopositioners, 135
nanowire, 100
national security applications, 22
nature run, 79
new applications, 13
Niagara, 29, 30, 34
NoC, 192, 193
node, 164, 172, 175, 181
non silicon logic, 97
non-minimal routing, 184
non-volatile memory, 107, 120
nonvolatile switches, 98
north bridge, 30
NT, 37
NVRAM, 120

O/E conversion, 192
object-oriented programming, 152
OCM, 196
off-chip wired interconnect, 130
on-chip

access, 179
bandwidth, 6
data transport, 180
interconnect, 28
wired interconnect, 130

open row, 120
OpenMP, 40, 42

OpenMPI, 44
operating environment, 35, 150, 198
Opteron, 34
optical

alignment, 135
circuit switch, 136
interconnection, 191
logic, 97
modulators, 134, 136
MOSFETs, 136
packet switch, 136
router, 192

optical receiver, 135
optically connected modules, 196
OS kernels, 151
out of core algorithms, 73
out of order execution, 28
overall concurrency, 55
Overflow, 69

p-threads, 151
packaging, 114, 139

Level 1, 139, 140
Level 2, 139, 141
Level 3, 139

packet switched network, 136
packet switching, 132
page-oriented memory, 126
pages, 36
parallelism, 25, 54, 55
parity, 147
partially depleted, 94
partially depleted SOI, 93
Partitioned Global Address Space, 45
PBS, 38
PCB, 141
PCRAM, 108, 120
PDE, 71
PDU, 32, 33
peak bandwidth, 127
peak performance, 17
persistent storage, 6
persistent surveillance, 11, 25
peta-sized systems, 8
petaflops, 17
Petascale, 9, 17, 80
PGAS, 45
pGAS, 32, 40, 152, 172, 206

275
ECS Report

317
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



phase change memory, 108
phase change RAM, 120
Phased Locked Loop, 130
photonic interconnect, 192
photonics, 23
physical attributes, 6
PIM, 31
pipelined multi-core, 29
pipelining, 113, 114
PITAC, 21
PLA, 100
PLL, 130
point-to-point interconnect, 130
popular parallel programming, 24
POSIX API, 43
power, 88, 210

challenge, 2
delivered, 32
density, 88, 89
distribution, 149
efficiency, 32
wall, 35, 53

Power Distribution Unit, 32
Power Supply Unit, 32
power-adaptive architectures, 227
precharge, 117
Printed Circuit Board, 141
process control thread, 37, 38
process management, 36
Processing In Memory, 31
processor channel, 183
processor chip, 175
program synchronization, 152
programmable crosspoints, 137
programmable logic array, 100
programmable redundancy, 109
programming languages

innovative path, 151
life cycle, 152
road map, 152
standardization path, 152
standardization trends, 152

programming model, 38
property checking for resiliency, 148
protein folding, 79
prototyping phase, 3
PSU, 32
PThreads, 43

Pthreads, 152
PVFS, 38

Q. Kernel, 37
QCA, 97
Quadrics, 31
quantum cellular automata, 97
quantum computing, 97
quantum well modulators, 136
quilt packaging, 181
quintessential kernel, 37

RA, 69
rack, 175, 182, 184
radar plots, 61
radiation hardness, 100, 109, 111
Random Access, 69
Rapid Single Flux Quantum, 100, 222
RAW, 29, 31
read-write cycles, 108
real-time, 7, 13
recommendations, 2
red shift, 62
Red Storm, 9, 31, 36, 164
Reduced Latency DRAM, 107
reduced latency DRAM, 113
reductions, 42
redundancy, 112
Reed-Solomon code, 108
refresh time, 110
register files, 97
reliability, 110, 112

DRAM, 109
socket, 111

Reliability, Maintainability, and Availability, 111
remote memory accesses, 5
replication for resiliency, 148
research agenda, 3
research thrust areas, 218
resiliency, 144, 217

encoding, 147
sparing, 148
causes, 147
challenge, 2, 217
property checking, 148
replication, 148
scrubbing, 148
techniques, 147

276
ECS Report

318
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



resistive memory, 137
resistive RAM, 120
retention time, 110, 112, 114
RFCTH, 69
ring modulator, 134
RLDRAM, 113
RMA, 111
Rmax, 53
road map for programming languages, 152
roll-back, 149
router chip, 183, 184
routers, 132
Rpeak, 53
RRAM, 120

Sandia National Labs, 9
SATA, 184
scheduler, 36
SCI, 36
SCM, 222
SCP, 141
scratch storage, 6, 73, 162, 212
scrubbing for resiliency, 148
SDRAM, 115
Seastar, 31
SECDED, 147
seek time, 125
seek times, 214
sense-amp, 106, 111, 118
SER, 106, 111

DRAM, 111
SRAM, 111

SERDES, 130, 220
server blades, 18
server systems, 17
SEU, 145, 147, 218
shared memory model, 41
signal to noise ratio, 131
signalling on wire, 130
signalling rate, 127
silicon carrier, 140, 141
Silicon on Insulator, 93, 94
silicon photonic integration, 134
SIMD, 39–41, 152, 179
Single Chip Package, 141
single event upset, 145, 147, 218
single mode waveguides, 134
slab allocator, 36

SLC Flash, 108
slice, 3
SMP, 31, 34
SNIC, 222
SNR, 131
socket, 145, 165
soft error rate, 106, 111
SOI, 92–94, 134
Solaris, 36
solder bump, 144
SONOS memory, 108, 109
sparing for resiliency, 148
spatial locality, 68
speedup, 61
spintronics, 23
SPMD, 45
sPPM, 80
SRAM, 97, 106
SRAM SER, 111
SSTL, 30
stacked cell DRAM, 106
static RAM, 97, 106
storage

capacity, 5
challenge, 2, 212
persistent, 6
scratch, 6

Storm-1, 30
strained silicon, 92
strawman-aggressive, 175
STREAM, 69
stream processors, 30
structured grids, 71
sub-threshold leakage, 92, 93
sub-threshold slope, 93, 94
Sun Niagara, 29, 30, 132
super-cores, 192
super-pipelining, 89
supercomputing, 9, 31
superconducting, 23
supply voltage scaling, 94
sustainable bandwidth, 127
sustained performance, 17, 150
switched interconnect, 130, 132
synchronous, 44
system architecture phase, 3
System Call Interface, 36
systolic, 39

277
ECS Report

319
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



taper, 179
TEC, 136, 142
technology demonstration phase, 3
temperature, 147
temporal locality, 68
tera-sized systems, 8
teraflop, 17
teraflops, 17
Teraflops Research Chip, 29, 31
Terascale, 9, 14, 17
thermal electric coolers, 136
thermal electric cooling, 142
thermal resistance, 142
thermal stress, 147
thread level concurrency, 55, 56
threads, 43, 199
threshold voltage, 92, 95, 147
Through Silicon Vias, 131, 140
through wafer vias, 115
thrust areas, 218
tipping point, 20
Titanium, 152
TLC, 55, 56
TMR, 149
Top 500, 53
top 500, 53
total concurrency, 57
transactional memory, 29, 152
transfer rate, 125
transfer time, 125
transistor density, 88
transport model, 92
trench cell DRAM, 106
tri-gate transistors, 94
triple modular redundancy, 149
TRIPS, 31
Turing lecture, 62
two phase cooling, 143

UltraSparc, 34
Unified Parallel C, 45
Uninterruptible Power Supply, 32
unstructured grids, 71
UPC, 40, 45, 152
UPS, 32, 33
upscaling, 13

variability, 147

Variable Retention Time, 111
VCSEL, 134
Vdd, 89
vector, 40
vertical-cavity surface-emitting laser, 134
via, 115
Virtual File System interface, 36
virtualization, 151
visualization, 74
VLIW, 179
Voltage Regulator, 32
von Neumann, 35
von Neumann bottleneck, 62
VR, 32
VRT, 111, 112

weak scaling, 71, 77
wearout, 147
Windows NT, 37
Windows Server 2003, 37
wordline, 118
working sets, 72
WRF, 63, 66, 69, 71, 75, 77–79

X10, 47, 152
X10q, 29
Xelerator X10q, 29
Xeon, 34

YARC router, 132
YUKON, 31

zettaflops, 20
ZPL, 46

278
ECS Report

320
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

 

APPENDIX B 

FINAL REPORT OF EXASCALE COMPUTING SOFTWARE STUDY 

 

321
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1

ExaScale Software Study: 
Software Challenges in 
Extreme Scale Systems 

Saman Amarasinghe 
Dan Campbell 
William Carlson 
Andrew Chien 
William Dally 
Elmootazbellah Elnohazy 
Mary Hall 
Robert Harrison 
William Harrod 
Kerry Hill 
Jon Hiller 
Sherman Karp 
Charles Koelbel 
David Koester 
Peter Kogge 
John Levesque 
Daniel Reed 
Vivek Sarkar, Editor & Study Lead 
Robert Schreiber 
Mark Richards 
Al Scarpelli 
John Shalf 
Allan Snavely 
Thomas Sterling 

September 14, 2009 

This work was sponsored by DARPA IPTO in the ExaScale Computing Study with Dr. William 
Harrod as Program Manager; AFRL contract number FA8650-07-C-7724. This report is 
published in the interest of scientific and technical information exchange and its publication does 
not constitute the Government’s approval or disapproval of its ideas or findings

NOTICE

Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U.S. Government. 
The fact that the Government formulated or supplied the drawings, specifications, or other data 
does not license the holder or any other person or corporation; or convey any rights or permission 
to manufacture, use, or sell any patented invention that may relate to them. 

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED. 

ECSS Report

322
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

mr22
Rectangle

mr22
Text Box
The views expressed are those of the authors and do not reflect theofficial policy or position of the Department of Defense or the U.S. Government.APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



Exascale Software Study: Software Challenges in
Extreme Scale Systems

ECSS Report

323
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

DISCLAIMER

The material in this document reflects the thoughts and opinions of the participants only, and not
those of any of the universities, corporations, or other institutions to which they are affiliated.

The views, opinions, and/or findings contained in this article are those of the author(s) and
should not be interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the Department of Defense.

September 14, 2009 i

ECSS Report

324
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

FOREWORD

This document reflects the thoughts of a group of highly talented individuals from universities,
industry, and government research labs on the software challenges that will need to be addressed
for the Extreme Scale systems that are anticipated in the 2015 – 2020 time-frame. It was drawn
from a study conducted over a series of seven meetings held from June 2008 to February 2009. The
goal of the study was to examine the state of the art, identify key challenges, and outline elements
of a technical approach that can address the challenges without prescribing specific solutions. The
report was assembled from input provided by study participants and guests over this short period
of time. As such, all inconsistencies reflect either misunderstandings by the editor or areas where
there were difference of opinion among members of the team. There was, however, unanimous
agreement about the key challenges that surfaced from the study, and the criticality of addressing
the software challenges in conjunction with hardware challenges when developing future Extreme
Scale systems.

I am honored to have been part of this study, and wish to thank the study members and guests
for their dedication to the field of parallel software and systems, and for all their hard work in
contributing to the study.

Vivek Sarkar, Editor and Study Lead
Rice University
September 14, 2009.

September 14, 2009 ii

ECSS Report

325
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Contents

1 Executive Summary 1

2 Exascale Hardware Characterization 3
2.1 Strawmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The Aggressive Strawman Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 The Summary Extrapolations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Extreme Scale Software Execution Models and Metrics 10
3.1 Execution Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Challenges in Developing Applications for Extreme Scale Systems 16
4.1 Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Application Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Emerging Extreme Scale Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 “Traditional” HPC Applications at Exascale . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Coupled Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Exascale Data Intensive and Data Mining Applications . . . . . . . . . . . . . . . . . 25
4.7 Real-time Departmental Extreme Scale Applications . . . . . . . . . . . . . . . . . . 29
4.8 Framework Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.9 Footprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.10 Two Illustrative Graph Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Challenges in Expressing Parallelism and Locality in Extreme Scale Software 45
5.1 Application Programming for Extreme Scale Require Fundamental Breakthroughs . 45
5.2 Portable Expression of Massive Parallelism . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Portable Expression of Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Portable Expression of Synchronization with Dynamic Parallelism . . . . . . . . . . 50
5.5 Support for Composable and Scalable Parallel Programs with Algorithmic Choice . . 51
5.6 Managing Heterogeneity in a Portable Manner . . . . . . . . . . . . . . . . . . . . . 51

6 Challenges in Managing Parallelism and Locality in Extreme Scale Software 53
6.1 Operating System Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Runtime Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Compiler Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Library Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

iii

ECSS Report

326
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

7 Challenges in Supporting Extreme Scale Tools 67
7.1 History of Tools and Development Environments . . . . . . . . . . . . . . . . . . . . 67
7.2 Overview of Extreme Scale Development Environment Challenges . . . . . . . . . . . 68
7.3 Enabling Technologies for Exascale Tools . . . . . . . . . . . . . . . . . . . . . . . . 70
7.4 Scenarios for Interaction with Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Technical Approach 78
8.1 Software-Hardware Interfaces in an Extreme Scale System . . . . . . . . . . . . . . . 78
8.2 Opportunities for Software-Hardware Co-Design . . . . . . . . . . . . . . . . . . . . 81
8.3 Deconstructed Operating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.4 Global OS and Self-Aware Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.5 Silver: An Example Execution Model and Technical Approach for Extreme Scale

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9 Conclusions 95

A Additional Extreme Scale Software Ecosystem Requirements 97
A.1 Real-time and Other Specialized Requirements in Embedded Software . . . . . . . . 97
A.2 Tools and Development Environments . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B Definitions of Seriality, Speedup, and Scalability 105
B.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.2 Approximate Inter-relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.3 Algorithmic Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.4 Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.5 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.6 More Nuanced Views of Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
B.7 Memory and Bandwidth Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B.8 Relevance to Exascale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C CUDA as an Example Execution Model 127

D Extreme Scale Software Study Group Members 130
D.1 Committee Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
D.2 Biographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

E Extreme Scale Software Study Meetings, Speakers, and Guests 139

September 14, 2009 iv

ECSS Report

327
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Chapter 1

Executive Summary

This report presents the findings and recommendations of the Exascale Software Study con-
ducted from June 2008 to February 2009. A characterization of Extreme Scale systems can be
found in the recent report on “Technology Challenges in Achieving Exascale Systems” [62]. This
characterization identifies three distinct classes of systems:

• Data-center-sized Exascale systems, capable of delivering 1 ExaFlops or 1 ExaOps1,
which is 1,000× the capability of currently emerging Petascale data-center-sized systems.

• Departmental-sized Petascale systems that allow the capabilities of a Petascale system
to be shrunk in size and power to fit within a few racks, allowing widespread deployment.

• Embedded Terascale systems that reduce Terascale capability to a few chips and a few
ten’s of watts, thereby enabling deployment in a range of embedded environments.

Since the first system class listed above achieves Exascale performance, the terms Exascale and
Extreme Scale are often interchangeably in the community and in this report. However, whenever
possible, we prefer to use Extreme Scale to refer to systems across all three classes and Exascale
specifically for the largest data-center sized system class.

The focus of this study is on software challenges for Extreme Scale systems. The scope of
software considered spans the spectrum of operating systems; runtimes for scheduling, memory
management, communication, performance monitoring, power management, and resiliency; com-
putational libraries; compilers; programming languages; and application frameworks. Though there
are significant differences in the software requirements for the three classes of Extreme Scale systems,
all of them share some critical challenges: they will be built using massive multi-core processors
with 100’s of cores per chip, their performance will be driven by parallelism and constrained by
energy, and they will be subject to frequent faults and failures. Thus, the three key challenges for
Extreme Scale software are Concurrency, Energy Efficiency and Resiliency. This study addresses
the Concurrency and Energy Efficiency challenges, whereas the third challenge is addressed by a
companion study on Exascale Resiliency. Development of Extreme Scale algorithms and applica-
tions as well as development of Extreme Scale hardware are outside of the scope of this study.
However, identification of opportunities for software-hardware co-design, as well interfaces between
applications and system software and between system software and hardware, are very much in
scope.

The concurrency challenge is manifest in the need for software to expose at least 1000× more
concurrency in applications for Extreme Scale systems, relative to current systems. It is further

1Following common usage, “ops” refers to operations per second in this report unless otherwise specified.

1

ECSS Report

328
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

exacerbated by the projected memory-computation imbalances in Extreme Scale systems, with
Bytes/Ops ratios that may drop to values as low as 10−2 where Bytes and Ops represent the main
memory and computation capacities of the system respectively. These ratios will result in 100×
reductions in memory per core relative to Petascale systems, with accompanying reductions in
memory bandwidth per core. Thus, a significant fraction of software concurrency in Extreme Scale
systems must come from exploiting more parallelism within the computation performed on a single
datum i.e., from strong scaling or from the “new-era” weak scaling discussed in Chapter 4. Strong
scaling often involves more frequent communication and synchronization than weak scaling, which
in turn contributes to the energy efficiency challenge since data movement and synchronization
are major contributors to energy costs in Extreme Scale systems. Another major obstacle to
achieving a large degree of concurrency arises from the serialization bottlenecks in current system
software approaches to communication and synchronization. A new software stack can reduce these
overheads by orders of magnitude, especially with software-hardware co-design, thereby making it
possible to achieve the parallel efficiency needed for Extreme Scale systems.

The energy efficiency challenge is critical also because all three classes of Extreme Scale systems
will be expected to deliver their 1000× improvements in computation capability while essentially
remaining within the power budgets of current systems. An aggressive hardware design for data-
center-sized systems will need at least 60MW of power to achieve an Exa-op level of performance,
under highly idealized zero-overhead assumptions for software [62]. When current software over-
heads are taken into account, it is clear that the Exascale capability cannot be achieved without a
significant redesign of the system software stack.

As discussed in this report, current software approaches will be inadequate in enabling future
Grand Challenge applications on Extreme Scale systems. Instead, the potential for a 1000× increase
in computation capability offered by each class of Extreme Scale system will only be achievable
through radical re-design of the underlying execution model and system software and hardware.
Current execution models and system designs won’t work at Extreme Scale because of their sequen-
tial foundations and their inherent energy inefficiencies. In addition, any attempt to use current
execution models at Extreme Scale will result in prohibitively large costs in programmability. Re-
cent trends in High Productivity Computing Systems (HPCS) have demonstrated reductions in
the human effort required to develop high-productivity software for current Petascale systems, but
they do not address the requirements of Extreme Scale architectures such as energy-constrained
many-core parallelism and heterogeneous processors. Also, while there is some overlap between
system software requirements for Extreme Scale and those for large scale commercial data centers,
there are also significant differences. Commercial system software for Cloud Computing is primar-
ily focused on optimizing throughput capacity of independent jobs, whereas system software for
Extreme Scale must be capable of delivering a 1000× increase in parallelism to a single job.

This report recommends a technical approach for developing new software stacks for future
Extreme Scale systems that includes new execution models and metrics (Chapter 3), with a focus
on new implementations of grand challenge applications (Chapter 4) either developed from scratch
or scaled up from existing Petascale applications. An Extreme Scale software stack must enable
parallelism and locality to be expressed at the finest granularities possible so as to support forward
scalability (Chapter 5), low overhead management of parallelism and locality (Chapter 6), and
integration with future tools (Chapter 7). Finally, the new software stacks must tightly integrated
with new Extreme Scale hardware via a rich set of hardware API interfaces in support of software-
hardware co-design (Chapter 8). A 12-page abbreviated version of this report is available in [120].

September 14, 2009 Page 2

ECSS Report

329
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Chapter 2

Exascale Hardware Characterization

The objectives of the prior exascale systems study [62]. were to understand the course of mainstream
computing technology, and determine whether or not it would allow a 1,000X increase in the
computational capabilities of computing systems by the 2015 time frame. As mentioned earlier,
the focus was on the technology to address three classes of systems: data center, departmental,
and embedded.

This chapter summarizes the hardware configurations from which the challenges were identified,
and upon which much of the software discussion in this report is premised. As a summary, Table
2.1 lists the characteristics of the “aggressive strawman” which drove many of the prior reports
conclusions. While the prior study focused on Flops as a primary measure of computation, most
of the issues discussed in this chapter are also applicable to benchmarks that are not floating-point
intensive.

2.1 Strawmen

To understand these challenges, we not only surveyed the technology space, but also did an extrap-
olation from three different baselines of potential approaches for achieving the data center scaled
system. These “strawmen” included:

• An evolutionary approach, termed a “heavyweight strawman” that assumed machines that
used commodity high performance microprocessors on relatively large, high heat dissipating,
circuit boards, with separate routing and memory chips. A few dozen such cards would make
up a computing “rack.” Examples of such systems today include the Red Storm machine and
its commercial XT derivatives from Cray, Inc.

• A second evolutionary approach, termed a “lightweight strawman” that assumed customized,
lower power, microprocessors that permitted integration of a complete memory plus processing
node on a small circuit card that could be stacked by the thousands into bigger systems. The
IBM Blue Gene series is typical of this class today.

• A “clean sheet of paper” approach, termed the “aggressive strawman,” that still assumed
silicon for its base technology, but one where the transistor parameters could be adjusted for
maximum delivered performance per unit of energy consumed.

Table 2.2 lists some of the salient characteristics of both the two strawmen based on today’s
machine architectures, and the aggressive strawman system as it might exist in 2015. In this table,

3

ECSS Report

330
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Exascale System Class
Characteristic Exaflops

Data Cen-
ter

20 MW
Data Cen-
ter

Department Embedded
A

Embedded
B

Top-Level Attributes
Peak Flops (PF) 9.97E+02 303 1.71E+00 4.45E-03 1.08E-03
Cache Storage (GB) 3.72E+04 11,297 6.38E+01 1.66E-01 4.03E-02
DRAM Storage (PB) 3.58E+00 1 6.14E-03 1.60E-05 1.60E-05
Disk Storage (PB) 3.58E+03 1,087 6.14E+00 0 0
Total Power (KW) 6.77E+04 20,079 116.06 0.290 0.153

Normalized Attributes
GFlops/watt 14.73 14.73 14.73 15.37 7.07
Bytes/Flop 3.59E-03 3.59E-03 3.59E-03 3.59E-03 1.48E-02
Disk Bytes/DRAM Bytes 1.00E+03 1.00E+03 1.00E+03 0 0
Total Concurrency (Ops/
Cycle)

6.64E+08 2.02E+08 1.14E+06 2968 720

Off-chip Memory Band-
width (B/sec per flops)

0.0025 0.0025 0.0025 0.0025 0.01

Off-chip Network Band-
width (B/sec per flops)

0.0008 0.0008 0.0008 0.0008 0.0032

Component Count
Cores 1.66E+08 50,432,256 2.85E+05 742 180
Microprocessor Chips 223,872 67,968 384 1 1
Router Chips 223,872 67,968 384 0 0
DRAM Chips 3,581,952 1,087,488 6,144 16 16
Total Chips 4,029,696 1,223,424 6,912 17 17
Total Disk Drives 298,496 90,624 512 0 0
Total Nodes 223,872 67,968 384 1 1
Total Groups 18,656 5,664 32 0 0
Total racks 583 177 1 0 0

Connections
Chip Signal Contacts 8.45E+08 2.57E+08 1.45E+06 2,752 2,752
Board connections 1.86E+08 5.65E+07 3.19E+05 0 0
Inter-rack Channels 2.35E+06 7.14E+05 8,064 0 0

Table 2.1: Exascale class system characteristics derived from aggressive design.

September 14, 2009 Page 4

ECSS Report

331
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Heavyweight Lightweight Aggressive
Strawman Strawman Strawman
based on based on (in 2015

XT4 (today) BG/P (today) technology)
Cores per socket 2 4 742
Sockets per node 4 1 12
Nodes per rack 24 1024 32

Racks per system 120 16 583
Cores per system 23,040 65,536 166,113,024

Sockets per system 11,520 16,384 223,872
Nodes per system 2,880 16,384 18,656

Flops per cycle per core 2 4 4
Clock (GHz) 2.6 0.85 1.55

GFlops per second per core 5.2 3.4 6.2
GFlops per second per socket 10.4 13.6 4,600
GFlops per second per node 41.6 13.6 55,205
GFlops per second per rack 998.4 13,926.4 1,766,554

GFlops per second per system 119,808.0 222,822.4 1,029,900,749
GBytes per core 2 0.5 0.0216

GBytes per socket 4 2 16
GBytes per node 16 2 192
GBytes per rack 384 2,048 6,144

Gbytes per system 46,080 32,768 3,581,952
Bytes per flop per second 0.3846 0.1471 0.0035

Table 2.2: Characteristics of hardware baselines.

a “core” is a processor capable of independent execution of a program thread, a “socket” is a
single microprocessor chip, a “node” is a combination of processing, memory, and routing capable
of complete program execution, and a “rack” is a refrigerator-sized enclosure that contains some
number of nodes.

2.2 The Aggressive Strawman Architecture

The aggressive strawman was an attempt to see how far we could push if we started with a clean
sheet of paper, especially to maximize gigaflops per watt. Figure 2.1 summarizes the resulting
architecture of such a system. We assume a 2013 technology node of 32 nm silicon as a baseline for
the projection, but with an alternative set of process parameters that permits much more aggressive
voltage scaling than would be possible with “logic as usual” in the same time frame.

Figure 2.1 starts with a Floating Point Unit (FPU) along with its register files and amortized
instruction memory. Four FPUs along with instruction fetch and decode logic and an L1 data
memory forms a core. We combine 742 such cores on a 4.5Tflops, 150W active power (215W total)
processor chip. This chip along with 16 1GB DRAMs forms a Node with 16GB of memory
capacity. Together this combination by itself corresponds to an aggressive embedded exascale
system. Using alternative silicon process parameters allows us to project about a factor of three in
energy savings per flop over the conventional process.

The final three groupings correspond to the three levels of bigger system interconnection. 12
September 14, 2009 Page 5

ECSS Report

332
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

…..

PROC.
CHIP

InterconnectInterconnect

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

Interconnect

L2 M L2 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1

Interconnect

L2 L2

DRAM 0

DRAM 15

.

.

.

.

.

16
 D

R
A

M
 IN

T
E

R
FA

C
E

S

12 ROUTER 
INTERFACES

0 11

PROC.
CHIP

InterconnectInterconnect

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

Interconnect

L2 M L2 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1

Interconnect

L2 L2

DRAM 0

DRAM 15

.

.

.

.

.

16
 D

R
A

M
 IN

T
E

R
FA

C
E

S

12 ROUTER 
INTERFACES

0 11

PROC.
CHIP

InterconnectInterconnect

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

Interconnect

L2 M L2 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1

Interconnect

L2 L2

DRAM 0

DRAM 15

.

.

.

.

.

16
 D

R
A

M
 IN

T
E

R
FA

C
E

S

12 ROUTER 
INTERFACES

0 11

PROC.
CHIP

InterconnectInterconnect

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

Interconnect

L2 M L2 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1 M

FPU FPU FPU FPU

Regs Regs Regs Regs

L1 M
L1

Interconnect

L2/L3 L2/L3

DRAM 0

DRAM 15

.

.

.

.

.

16
 D

R
A

M
 IN

T
E

R
FA

C
E

S

12 ROUTER 
INTERFACES

0 110

11

ROUTERforN/W
0

0

52

. . . . ROUTERforN/W
11

0

52

. . . .

1 Group

1 Cabinet Contains 32 Groups on 12 Networks

Interconnect for intra and extra Cabinet Links

Figure 2.1: Aggressive strawman architecture.

nodes plus 12 separate routing chips form a group, 32 groups are packaged in a rack, and 583
racks are required to achieve a peak of 1 exaflops. We also assume 16 disk drives per group for
secondary storage (192 TB in 2015), or an equivalent 512 drives (6.1 PB) per rack.

One rack by itself corresponds to over a petaflop, and thus corresponds to a departmental
exascale system.

2.2.1 Adaptively Balanced Node

One of the concerns with the original strawman baseline of column C of Table 2.2 was that the
bandwidth from the 742-core chip to the local memory was on the order of 0.0025 bytes per flop,
and 0.00076 bytes per flop to off node memory. This is orders of magnitude less that what is
typically considered desirable, but all that could be supported if one wanted in some sense to spend
about equal power across processing, memory access, and interconnect.

To possibly overcome this on an application-by-application basis, the prior report [62] also
proposed in Section 7.3.7 an adaptive node design i.e., a design that would support the maximum
dissipative power to be spent in either processing, memory, or interconnect by themselves, and then
allow some power-adaptive mechanisms to select what mix of all three does best for a particular
application or application phase, and without exceeding the power dissipation limits of the chips.

The resulting design point would hold 1060 cores which when all at full speed would consume
the total chip power, and provide 6.4 Tflops per chip, with no memory or network bandwidth.
Alternatively, this adaptive design also widened the memory interfaces to provide an order of
magnitude more bandwidth, if all one wanted to do was access memory. For applications which
need some of both processing and memory bandwidth, intermediate points could be chosen that
are balanced from a performance perspective, and utilize the available power capabilities to best
efficiency.

September 14, 2009 Page 6

ECSS Report

333
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

G
Fl

op
s

Top 10 Rmax

Rmax Leading Edge

Rpeak Leading Edge

Exascale Goal

Aggressive Strawman - 20MW

Evolutionary Light Simplistically Scaled Power Unconstrained

Evolutionary Light Simplistically Scaled 20MW Constrained

Evolutionary Heavy Simplistically Scaled Power Unconstrained

Evolutionary Heavy Simplistically Scaled 20MW Constrained

Evolutionary Light Fully Scaled Power Unconstrained

Evolutionary Light Fully Scaled 20MW Constrained

Evolutionary Heavy Fully Scaled Power Unconstrained

Evolutionary Heavy Fully Scale 20MW Constrained

The Exascale Challenge

Figure 2.2: Exascale goals — Linpack.

September 14, 2009 Page 7

ECSS Report

334
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1/1/92 1/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

R
m

ax
 G

flo
ps

 p
er

 W
at

t

Historical Top 10 Top System Trend Line

Exascale Goal Aggressive Strawman Light Node Simplistic

Heavy Node Simplistic Light Node Fully Scaled Heavy Node Fully Scaled

CAGR = 1.44

Figure 2.3: The power challenge for an Exaflops Linpack.

2.3 The Summary Extrapolations

2.3.1 Power

Figure 2.2 is a copy of Figure 8.1 from the original report, and summarizes the results of extrapo-
lating the performance of both of the two “today” baselines from Table 2.2 through the expected
evolution of technology, assuming nothing out of the ordinary happens i.e., no “clean sheet” op-
portunities.

There are four lines associated with each of the conventional strawmen: one that assumed no
maximum power constraint other than some maximum number of racks at some maximum feasible
power per rack, one where the maximum power is limited to 20 MW (the original target power),
one labeled “simplistically scaled” where the energy per bit moved or accessed from memory scales
down with technology, and one labeled “fully scaled” where such energies do not change. The third
is highly optimistic; the fourth pessimistic. We expect reality to lie somewhere in between these
two curves.

There is also a point in 2015 at 1 exaflops representing the study’s goal, and a point below it
representing the aggressive strawman if power was limited to 20 MW.

The results indicate the severity of the performance and power problem. None of the design
points studied reached the exaflops level of performance for 20 MW. Further, only two design points
reach the desired exaflops performance — the aggressive design in 2015 at a cost of 67 MW, and
an optimistic (unrealistic) extrapolation of the lightweight node strawman around 2020. Figure 2.3
(a copy of Figure 8.3 from the report) presents the same extrapolations with “Gflops per watt” as
the y-axis. In the 2015 timeframe everything other than the aggressive design is off by one to three
orders of magnitude, and the aggressive design itself is still off by a factor of 3.

September 14, 2009 Page 8

ECSS Report

335
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

To
ta

l C
on

cu
rr

ec
nc

y

Top 10 Top System Top 1 Trend

Historical Exa Strawman Evolutionary Light Node

Evolutionary Heavy Node

Figure 2.4: The overall concurrency challenge.

2.3.2 Concurrency

Figure 2.4 documents another relevant part of the study — an estimate of the concurrency seen
in the various strawmen. Here, concurrency is defined as the number of operations (flops in this
case) that must be started in each and every cycle by a program over the entire duration of an
application in order to achieve exaflops performance. Again, the numbers are enormous, reaching
a billion for the only two points that reach an exaflops. This is at least three orders of magnitude
larger than the degree of concurrency exhibited by any machine today.

2.3.3 Memory and Bandwidth

A rule of thumb is that a supercomputer needs about a byte of memory capacity and a byte per
second of memory bandwidth for each flop executed per second. Today’s top machines are in the
0.1 to 0.3 range for both. As is listed in Table 2.2, the memory capacity of the aggressive design is
considerably smaller, as is the bandwidth to memory as discussed in Section 2.2.1.

There are no obvious ways of fixing either gap with current technology and within any sort
of acceptable power budget. Later in the report, we discuss techniques (such as “new-era” weak
scaling in Chapter 4) that can tolerate this new imbalance between memory and computation.

September 14, 2009 Page 9

ECSS Report

336
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Chapter 3

Extreme Scale Software Execution
Models and Metrics

3.1 Execution Models

Before discussing the potential challenges of extreme scale computing, and potential solutions to
those challenges, it is appropriate to define the environment in which programs that perform such
computation will find themselves. This chapter introduces the concept of an “execution model”
as the basis on which extreme computation must be specified, along with several examples. It
then defines several general metrics by which extreme scale systems are likely to be measured and
evaluated. Later chapters will elaborate on these metrics.

3.1.1 Models of Computation

A model of computation is a paradigm for organizing and carrying out computation across all
levels of the computer system stack from programming models and languages through compilers
and runtime systems to operating systems and system and micro architectures. It provides the
conceptual scaffolding for deriving each of these system elements in the context of and consistent
with all of the others. This paradigm suggests a decision chain to which each layer contributes that
ultimately determines when, where, and how every operation of a computation is performed. An
execution model is not a programming language although it may strongly influence the underlying
programming model semantics of which the language is a representation. It is not a computer
architecture although it establishes the needs for low level mechanisms the architectures must
support and provides the governing principles that guide the structures and actions of a computer
architecture in the performance of a computation. And, it is not a virtual machine isolating the
abstractions above it from the implementation details below because it cross-cuts all layers from
programming language to architecture influencing all aspects of the operation of all system layers
in concert.

Models of computation serve as the continuum medium of existence and evolution for the sub-
domain of computing systems, perhaps most predominant in high-performance computing. The
evolution of high-performance computing over the previous six decades has been marked by dra-
matic phase changes delineating sometimes overlapping major epochs in how we reason about high
performance computations. Driven by advances in underlying enabling technologies and the oppor-
tunities and challenges they present to the design and implementation of HPC systems, execution
models have been changed to enable their most effective application by exploiting those opportuni-

10

ECSS Report

337
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Execution Model Device trend Architecture trend System Software trend
Von Neumann SSI devices Scalar instrs. Scalar compilers

Vector Parallelism MSI devices Vector instrs. Vectorizing Compilers
Shared-Mem. Parallelism VLSI microprocessors Cache coherence Multithreaded OS and runtime

CSP with Bulk-Sync. Parallelism VLSI microprocessors Interconnects Message-passing libraries (MP

Table 3.1: Examples of Past Successful Execution Models

ties while simultaneously addressing their challenges. During each epoch, incremental technology
advances have been incorporated with incremental modifications to architecture, operating systems,
and compilers largely keeping the programming model essentially invariant along with the foun-
dation model of computation. However, past a critical threshold, continued optimizations become
untenable and a metamorphosis catalyzes the emergence and adoption of a new model of compu-
tation inaugurating new opportunities, design points, and performance as well as other operational
properties.

Examples of models of computation over the history of HPC include the Aiken Harvard model,
the von Neumann model, the vector model, the SIMD array model, the dataflow model, the sys-
tolic model, the communicating sequential processes model (CSP), and the multithreaded shared
memory model. Not all execution models (e.g., dataflow) proved commercially successful at the
programmer-visible level (although models like dataflow did migrate into the CPU’s microarchitec-
ture in the form of “out of order” execution). Others, such as SIMD, have impacted in multiple
forms again and again. Successful execution models have primitives that are well matched with
device, architecture, and software technology trends, as illustrated in Table 3.1.

The most recent MPI epoch is remarkable in its longevity and continuity over more than two
orders of magnitude in multiple dimensions of enabling technologies and metrics (flops, bytes ca-
pacity, bps data transfer). This is perhaps most readily apparent by the concerns about continued
support of legacy MPI code base; a concern never previously realized for any other current parallel
programming methodology. But that very duration has stretched the gap to the breaking point.
The current model of computation, CSP with Bulk-Synchronous Parallelism, is no longer capable
of supporting the most effective exploitation of current and future generations of implementation
technologies, addressing the many new challenges they impose (such as massive concurrency with
asynchrony), or facilitating the scale of computation to the ExaFlops performance regime that is
required within a decade’s time. Past methods of extending delivered performance are no longer
tenable. Power constraints, now perhaps the most dominant challenge, are inhibiting continued
growth of clock rates, once a major source of performance improvement. Multicore components
have almost universally replaced single processor devices imposing an entirely new level of user-
exposed parallelism while aggravating chip I/O, cache behavior, and memory bandwidth problems
as well as programming methodologies. Additional departures from conventionality include new
instruction set architectures, new hardware structures, and accelerators such as GPGPUs, game
machines (e.g., IBM Cell SPE), and attached array processors (e.g., ClearSpeed). All of these
breaches of CSP conventionality are symptoms of an impending phase transition in HPC. And as
has always happened before in such cases, it is the change in the foundation model of computation
that will fully establish the new direction for the next epoch.

Then what exactly is a model of computation if it is not the manifestations of architecture,
system software, and programming models that visibly reflect it? One perspective is that an ex-
ecution model is a set of governing principles that guide the form and function of computation.
This includes the nature of the state that initiates, evolves, and is finalized throughout the compu-

September 14, 2009 Page 11

Execution Model Device trends Architecture trend System Software trend 
Von Neumann 

Vector Parallelism 
Shared-Mem. Parallelism 

CSP with Bulk-Sync. Parallelism 

SSI devices 
MSI devices 

VLSI microprocessors 
VLSI microprocessors 

Scalar instrs. 
Vector instrs. 

Cache coherence 
Interconnects 

Scalar compilers 
Vectorizing Compilers 

Multithreaded OS and runtime 
Message-passing libraries (MPI) 

 

ECSS Report

338
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

tation to its conclusion, the atomic operations that may be performed on elements or compound
structures of such elements, the semantics of flow control and concurrency of operation, the means
of coordination, cooperation, and synchronization, the name spaces and their interrelationships of
the data and possible the control elements as well, the innate reflection for control of hierarchy,
encapsulation, modularity, means of manifesting work-flow, distribution, and asynchrony of tasks.
This laundry list of pieces in ensemble constitutes a paradigm and the different models of compu-
tation employed over the decade may be distinguished by these various attributes. More generally,
a model of computation answers the broad question of how we structure and name data and in-
structions and how we interrelate the two. Within the realm of parallel models of computation,
this generality extends to how we harness, distribute, and control concurrency of action.

A subtle question that drives an HPC phase change by transitioning between models of com-
putation is how to assess when a new model constitutes a superior paradigm with respect to a
previous one being replaced? A partial answer comes from consideration of the set of underlying
factors that determine efficiency of parallel execution. These are starvation, overhead, latency, and
contention. Starvation is the factor requiring sufficient algorithm concurrency to drive all parallel
physical elements ( > 100 million cores, > 10 billion-way program parallelism) and resource alloca-
tion (dynamic load balancing) to ensure that all cores in a multicore system have useful work to do.
Overhead is the factor requiring mechanisms providing critical path services to exhibit minimum
response time essential for efficient exploitation of parallelism for ultra scalability. Lightweight syn-
chronization, distributed global address translation, process instantiation and termination, thread
scheduling and context switching, load balancing, and communication exemplify overhead mech-
anisms of importance. Latency is the efficiency factor requiring delays to critical resources due
to latency of information transfer and service request to be mitigated through minimization and
hiding (overlapping) such as to memory or remote computing/data resources. Contention is the
factor requiring that delays to critical resources due to blocking from simultaneous service requests
of shared resources be minimized and mitigated with, for example, sufficient system area net-
work bandwidth, memory bandwidth and chip I/O, and ALU throughput with respect to demand.
Within the context of these factors the effectiveness of an execution model may be assessed. But
the model most also leverage the technologies it is intended to exploit. Thus it is this interplay of
semantics and physics that must be coordinated.

The CSP model has been so effective because it provides this close match between the strengths
of the technologies and the semantics of the model. Specifically the CSP process maps cleanly to
the physical processor. The parallelism to be exposed has to match the number of processors in a
system. At scales of a few hundred to a few thousand this worked well, especially for weak scaling
where the data size grew proportionally with the scale of the system. The static mapping eliminated
much of the overhead. Latency was mitigated by maintaining much more intra-process execution
to message passing (but it also requires that there be enough memory per processor). The vector
model worked because it allowed faster technologies through pipelining. The SIMD array model
was best when technology density permitted many more modest processor and memory nodes to
work together but when clock rates were slow enough that the instruction broadcast time was not
prohibitive. Dataflow didn’t work well as conceived in the 1980s in part because it was memory
and communication intensive with synchronization overheads exceeding the work of the fine grain
operations.

3.1.2 Desiderata for an Extreme Scale Execution Model

What then are the requirements of a model of computation that will match the future capabilities
and opportunities of extreme scale systems while addressing their limitations? Considering the

September 14, 2009 Page 12

ECSS Report

339
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

critical factors mentioned earlier, several attributes can be established. Concurrency must exceed
a billion-way parallelism. This suggests that the overhead for managing such parallelism has to be
lower both to expose finer grain parallelism (overhead lower than the useful work per independent
action). A new model of computation has to change the synchronization semantics, removing global
barriers, and exposing new levels of algorithmic parallelism. It has to provide dynamic adaptive
resource and task scheduling to respond to unpredictable ordering of execution such as varying
latencies, contention, and priorities. Such a model has to maintain some level of global name space
and manage the address translation with low overhead. The model has to permit a wide variation
in implementations from architecture up to programming languages.

Most importantly, a model of computation for future parallel system implementation in the
pan-exaflops performance domain must enable rational and quantifiable co-design of the separate
but interrelated layers of the system stack to guide the development of the semantics and structure
of each.

Extreme Scale systems are characterized by new device technologies with significant power
constraints and by computer architectures that will build on manycore processors with O(103) cores
per socket. A successful Extreme Scale execution model must make explicit the key performance
factors in future Extreme Scale systems which include concurrency, locality, energy, and overhead.
To that end, we outline the following desiderata for an Extreme Scale execution model:

1. Asynchronous lightweight tasks and communications

• Motivation: need asynchrony to hide latency and handle variability among cores

• Challenge: scheduling with bounded resources (adapt across eager vs. lazy scheduling
for starvation vs. contention modes)

• Related topics: control vs data-driven initiation/termination of tasks

2. Explicit locality model

• Motivation: locality is key to efficient parallelism

• Challenge: portable and hierarchical abstractions of locality

• Related topics: co-locating distributed tasks and distributed data c.f., Sequoia and X10
execution models

3. Scalable Coordination and Synchronization

• Mutual exclusion (transactions)

• Producer-consumer (streams)

• Collective synchronization (barriers, phasers)

• Other collective operations (reductions)

• Point-to-point synchronization (semaphores)

4. Abstract performance model

• Parallelism

• Locality

• Energy

September 14, 2009 Page 13

ECSS Report

340
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

3.2 Metrics

In this section, we summarize metrics that can be used to evaluate the effectiveness of new system
software technologies for Extreme Scale systems. Though there has been significant amount of past
work on metrics for application characteristics (Chapter 4) and for hardware characteristics [62], less
attention has been paid to metrics for the system software that bridges the two. This is unfortunate
because it is widely recognized that limitations in system software can cause algorithms that are
highly scalable in theory to fall short by one or more orders of magnitude in realizing their full
potential on parallel hardware. Examples of system software characteristics that contribute to
this attenuation include OS scalability limitations, lack of locality/affinity management, lack of
adaptation and self-awareness, compiler optimization limitations, thread/task creation overhead,
synchronization overhead, and other overheads in runtimes for scheduling, memory management,
communication, performance monitoring, power management, and resilience.

As we study metrics for system software, we observe that system software for Extreme Scale
systems must strive to balance conflicting goals in its management of concurrency, locality, and
energy. The conflicts among some of these goals are well understood from past research. For
example, there is a natural tension between concurrency and locality when spreading computations
across multiple cores can improve concurrency but degrade locality. Likewise, frequency and voltage
scaling for energy optimization may degrade concurrency and time-to-completion if the frequency
scaling resulted in the slowdown of a task on the critical path. What we desire is a single combined
metric or figure of merit that can capture all these trade-offs. To that end, our proposed single
combined metric is to build on the idea of energy-delay product [138] as follows.

The cost of an execution of application A on an Extreme Scale platform with system software
S and hardware H can be expressed as

C(A, S, H) = TotalEnergy(A, S, H) × TotalElapsedTime(A, S, H).

This C-A-S-H metric can be used as the starting point for a number of detailed evaluations. For
example, to evaluate the cost improvement delivered by a new system software stack, Snew, relative
to an existing system software stack, Sold, we can compute the ratio, C(A,Sold, H)/C(A,Snew, H),
for some number of (A,H) pairs. The choice of applications, A, can be driven by a small number
(say 3 to 5) of grand challenge applications that are representative of workloads of importance
to mission partners, and the choice of hardware platforms, H, can be simulated by analytical
models such as the strawmen Exascale systems introduced in [62] or by extrapolating from current
Petascale systems.

The TotalElapsedTime(A, S, H) and TotalEnergy(A, S, H) sub-metrics can in turn be used for
more detailed point-to-point comparisons. For example, the TotalElapsedTime metric can be used
to compare the scalability of two different system software stacks, as discussed in Appendix B.
Also, since vertical locality (or the lack thereof) has been identified as a significant contributor
to energy costs, the TotalEnergy can be used to compare the locality management capabilities of
two different system software stacks. Microbenchmarks akin to HPCC can also be developed to
evaluate performance per unit energy (e.g., operations/Joule and bytes-transferred/Joule), which is
correlated with the reciprocal of the C-A-S-H metric. As yet another example, real-time applications
that work with a fixed value for TotalElapsedTime (deadline) can use the C-A-S-H metric to compare
the energy efficiency of two software stacks that satisfy the same deadline.

September 14, 2009 Page 14

ECSS Report

341
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

�������	

�����
��
����

��������������
��
����

������
����������������
����������
�����
����

������������

����	

�����

���
��������������

��
����

Figure 3.1: Structure of Metrics for Concurrency, Energy, and Resiliency

September 14, 2009 Page 15

ECSS Report

342
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Chapter 4

Challenges in Developing Applications
for Extreme Scale Systems

This chapter addresses the challenges facing the development of applications for Extreme Scale
computing systems. These challenges lie both in understanding how much system resources are
needed to support applications as their requirements change in size and complexity, and in the
converse, namely how efficient applications may be as a function of how many resources are made
available to them. In particular, Section 4.1 summarizes the discussions to date within the com-
munity about applications requirements and system size. Section 4.2 then discusses in more detail
what “application scaling” means. The succeeding sections then consider different classes of appli-
cations. Section 4.9 concludes by summarizing application “sweet spots” in terms of resources for
extreme scale as we currently understand them.

4.1 Application Overview

Application scaling addresses how applications may port to new systems in two respects: how data
sets and problem sizes may grow and fit in new machines with more resources, and/or how existing
applications may adapt when “bigger” systems become available for their execution. Discussions on
how and why such scaling may occur have been topics of considerable debate within the community
over the last few years. In particular, during 2007, there were numerous meetings held to investigate
future computing applications and hardware/software requirements as they might exist at the
exascale level. These meetings included:

• Three DOE Exascale Townhall Meetings [2]

– Lawrence Berkeley National Laboratory (LBL) (April 2007) [3]

– Oak Ridge National Laboratory (ORNL) (May 2007) [4]

– Argonne National Laboratory (ANL) (May/June 2007) [5]

• Council on Competitiveness meeting on Exascale Applications [87]

• Frontiers of Extreme Computing 2007/Zettaflops workshop (October 2007) [6]

At the DOE-sponsored meetings, there were extensive discussions of those applications that
could and should scale to exascale. At the Council on Competitiveness meeting, commercial HPC
users discussed applications that they believed could benefit from extreme scaling.

16

ECSS Report

343
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

0 

200 

400 

600 

800 

1000 

1200 

0 50 100 150 200 250 300 350 400 450 500 

Rank in Top500 List (June 2009) 

R
m

ax
 P

er
fo

rm
an

ce
 (T

flo
p/

s)
 

Figure 4.1: Rank-ordered distribution of Rmax in Tflop/s for systems in the June 2009 Top500
list [1]. 2 of 500 systems have Rmax > 1000 Tflop/s (1 Pflop/s). 468 of 500 systems have Rmax <
100 TFlop/s. 421 of 500 systems have Rmax < 50 TFlop/s.

Not all existing applications will scale to terascale, petascale, or on to exascale given current
application/architecture characteristics. The reasons for limited scaling are potentially many, in-
cluding (but not limited to):

• Parallelism

– Terascale — O(105) threads

– Petascale — O(108) threads

– Exascale — O(1011) threads

• Locality

– Vertical — temporal locality (i.e., reuse). One exploits vertical locality by moving data
up and down a node’s memory hierarchy.

– Horizontal — occurs as a result of node-level data decomposition. One exploits horizontal
locality through domain decomposition — by putting a portion of the application data
on each node of the machine.

• Bottlenecks

– Memory bandwidth

– Bisection bandwidth

– I/O bandwidth

September 14, 2009 Page 17

ECSS Report

344
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Of those applications that operate at sustained terascale today, only a small fraction of those
applications will be successful at reaching petascale. Hopefully, lessons learned when moving ap-
plications to petascale, will permit a reasonable fraction of petascale applications to scale out to
exascale levels.

Insight into the current state of application scaling can be found by looking at the June 2009
Top500 list [1]. Figure 4.1 shows the rank-ordered distribution of the Rmax peak performance in
Tflop/s for the systems in this list. While the Los Alamos National Laboratory’s Roadrunner and
Oak Ridge National Laboratory’s Jaguar systems have broken the petascale performance barrier on
high-performance LINPACK, more than 93% of the top 500 systems have Rmax below 100 TFlop/s.
Clearly there are not substantial numbers of HPC applications currently running at near-petascale
levels, which underscores the challenge for application enablement at the exascale level. As we
examine future exascale application footprints, we will also need to analyze existing applications and
develop models for application scaling to develop projections for applications running at petascale
and exascale. Eventually, these models will be validated by petascale application development work
being performed throughout DOE to provide applications for the LANL RoadRunner [7], and work
being performed by the University of Illinois Urbana-Champaign (UIUC) to study scaling as they
prepare to receive the National Science Foundation (NSF) Tier 1 Blue Waters sustained Pflop/s
system [8].

4.2 Application Scaling

Application scaling remains a major challenge in the utilization of high-end parallelism. Of applica-
tions that operate at sustained Terascale performance today, only a small fraction is expected to be
successful at reaching Petascale and an even smaller fraction at Exascale. Further, even for appli-
cations that reach Petascale performance today, the nature of scaling necessary to obtain Petascale
performance on an Extreme Scale departmental system will raise new challenges for rewriting the
application to address the concurrency and locality requirements of such systems. In this paper, we
argue that the existing software “stack” is a major contributor to these scalability limitations, and
that the approaches discussed in the following sections could have a significant impact in removing
obstacles to scaling.

There are three primary ways to scale applications:

• Strong scaling — apply more resources to the same problem size to get faster results.

• Weak scaling — apply more resources to larger problem sizes to do more within a tractable
time period.

• Temporal scaling — run an application longer.

We will examine the impacts of strong and weak scaling below, and defer more formal definitions
to Appendix B. Temporal scaling does require additional resources, but those are spread over time.
Temporal scaling does not provide additional work within a timestep. Thus there is no increase in
the flop/s rate.

4.2.1 Strong Scaling

Strong scaling refers to the concept of applying more resources to the same problem size to get
results faster. Unfortunately, few applications are amenable to strong scaling, so we cannot rely
on strong scaling to move applications from petascale to exascale. As an application is strongly

September 14, 2009 Page 18

ECSS Report

345
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Speedup

0
Processors 

p

p
0

S(p) = t(1)/t(p)

Efficiency

0%

Processors

100%

0 p

E(p) = S(p)/p

Figure 4.2: Conceptual speedup and efficiency curves for strong scaling

scaled, the work at a node/processor/core decreases and the relative overhead increases. Speedup
may initially equal the number of processors, but eventually the amount of overhead causes the slope
of the speedup curve to flatten. At this point, adding processors does not cause the application
to run faster. Eventually, it is possible that overhead grows so rapidly that adding processors
actually causes the time to solution to flatten or increase and speedup to flatten or decrease. An
application that demonstrated reasonable scaling over three orders of magnitude increase in the
number of processors is the first principles molecular dynamics “Qbox” code that won the 2006
ACM Gordon Bell Prize for “peak performance” with over 200 Tflop/s sustained performance (56%
efficiency) on the LLNL BlueGene/L [9]. More recent winners of the 2008 ACM Gordon Bell Prize
further underscored the importance of algorithmic innovations that attain very high levels of spatial
and temporal locality.

4.2.2 Weak Scaling

Weak scaling refers to the concept of adding work as an application is run on more processors. By
adding work, it is possible to ensure that overhead does not destroy performance. Traditionally,
weak scaling has been accomplished by adding work due to spatial scaling. However, there are
additional sources of scaling — discussed below and referred to in this report as “new-era” weak
scaling — arising from new application trends in which additional work is done per datum e.g.,
multi-scale, multi-physics, interaction analysis, and data mining. Weak scaling permits the user
to look at larger or more complicated problems and use the additional processors to solve larger
problems, obtain better resolution, or learn more about the phenomenon being examined.

Traditional weak scaling occurs in classical mechanics simulations, where either (1) larger prob-
lems are examined or (2) the grid size and time-step interval are reduced. Solving larger problems
(e.g., modeling the airflow around an entire airplane versus modeling the airflow over a section of
the wing) results in a situation when memory scales nearly proportionally with work. In contrast,
when the grid size is reduced (refined) in a 3-D mechanics simulation, the time step also needs
to be reduced thereby increasing the amount of work relative to the amount of memory. When
scaling in three dimensions, a 3/4 power rule applies to the amount of memory required whereas
a 2/3 power rule applies when scaling in only two dimensions. Thus, for these applications, the
required increase in memory size for a 1000× increase in work is 180× and 100× for 3-D and 2-D
applications respectively.

September 14, 2009 Page 19

ECSS Report

346
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

9

From Terascale to Exascale

In
c
re

a
s
e

d
 c

li
m

a
te

 d
e

ta
il

Increased socio-economic detail

Tera

Peta

Peta

Exa

B6 – Climate + Socio-Economic Models

Ian Foster (ANL)

Figure 4.3: New-era weak scaling example

4.2.3 New Era Weak Scaling

“New-era” weak scaling typically adds extra work through one or more of the following:

• Multi-scale

• Multi-physics (multi-models)

• New models

• Interactions

• Mitigation analysis

• Data mining

• Data-derived models

This list is a product of aggregating materials presented at the DOE Exascale Townhall meet-
ings. Figure 4.3 presents a slide indicating a conceptual scaling of the combination of climate and
socio-economic models. In this figure, the climate and socio-economic models would be scaled out
with increased detail then the analysis of the interactions would further boost the scale. Compared
to traditional weak scaling, it can be more difficult to predict application footprints for new-era
weak scaling.

September 14, 2009 Page 20

ECSS Report

347
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Multi-Scale, Multi-Model

V&V & Uncertainty Quantification

Optimization

Implicit Solvers

Adaptive Mesh Refinement

Data analysis

Linear and nonlinear solvers

Graph algorithms

Agent-based modeling

High-precision arithmetic

High-dim. parameter spaces

Data assimilation

Legend

Figure 4.4: Application characteristics from Group B7 Mathematics and Algorithms, David Bailey,
et.al.

4.2.4 Exascale Application Scaling

Nothing implies that we should expect a single silver bullet to enable applications to scale to
exascale. We cannot expect extensive strong scaling in applications as the parallel computing “laws”
of work versus overhead will still hold. “Ensemble” calculations cannot turn capability problems
into capacity problems. Temporal scaling will not provide greater instantaneous amounts of “work”.
Anticipated new-era weak scaling may drive demanding footprints requiring more memory than
the 180x implied by the 3

4 power law. In addition to the need for extensive memory, there may be
reduced data locality in the data-mining/data-intensive portions of the applications that examine
domain interactions. These application characteristics may be far from the locality, reuse, and
regular communications of high-performance LINPACK. On the other hand, anticipated new-era
weak scaling may reduce memory demand when O(n) scratch data is used with O(nm) data-
mining work with m integrated modules. Some hardware characteristics may provide relief for
other hardware deficiencies e.g., it may be possible to trade memory footprint for disk bandwidth
for application checkpointing. As stated above, exascale applications may benefit from current
petascale application research to increase the amount of parallelism.

At the DOE Exascale Townhall meetings, David Bailey (LBL) presented a table of application
characteristics for six application classes. This figure is represented in figure 4.4. These application
classes were different “tracts” at the meetings. In this figure, the intensity of the block shading
identifies the anticipated impact of the listed application characteristics. In two cases, this figure
was modified to add information obtained from an Exascale Application discussion session run by
the Council on Competitiveness. In those two cases the hatched blocks show that these application
areas were modified from minimal impact to extensive impact.

September 14, 2009 Page 21

ECSS Report

348
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

4.3 Emerging Extreme Scale Applications

Candidate applications for extreme scale include:

• traditional HPC applications scaled up from petascale,

• traditional or new applications that are to run at petascale on departmental class systems,

• coupling together of multiple petascale applications to form an exascale application,

• emerging data mining applications, and

• real-time departmental applications.

Within these categories we wish to consider the following kinds of scaling:

• Strong scaling: Those that could solve the same problem as today but 1000× faster. For
example, this category may include real-time CFD to stabilize a physically morphable airplane
wing (effectively recalculating an AVUS calculation that now takes hours every few seconds).

• Weak scaling: Those that would solve the same problem as today but at a 1000× larger
scale. This is normally called “weak scaling”. In this category for example might be global
weather models at sub 1km resolution (effectively solving a WRF calculation at the granularity
used today to forecast hurricanes but at the scale of the entire earth’s atmosphere).

• Increased time steps: Those that would solve the same problem as today but with 1000×
more time steps. In this category for example might be local weather models at climatic
timescales (effectively solving a WRF calculation at the size today used for medium-term
weather forecasting but projecting out for centuries).

• Increased resolution: Those that would solve the same problem as today but at 1000×
more resolution (or increased physics and chemistry in every cell). In this category might be
for example global ocean and tide models that include micro-features such as wave refraction
and coastal turbulent mixing. This may include coupling.

• New approaches: Those that solve entirely new problems than those solved today. These
may include emerging applications in biology and social networks data mining.

Clearly Exascale applications could have aspects of any combination of the above; for example
one could perform a calculation at 100x resolution and 10x more timesteps, for a total of 1000× more
computation than is possible today. In the following sections we identify some specific exemplars
of each and draw some general conclusions.

4.4 “Traditional” HPC Applications at Exascale

A good example of a scale-up of a traditional HPC application is next-generation hurricane modeling
and prediction that requires ultra-high-resolution of gradients across the eyewall boundaries (at
1 km or less), and representation of the turbulent mixing process correctly (at 10 m or less). To do
this over a local region, as for example a hurricane eye-wall, requires a petascale calculation. The
requirements are for 100 kilometer square outer-most domain at 10 meter horizontal grid spacing
and 150 vertical levels, 15-billion cell inner-most 10 meter nested domain, with a model time step

September 14, 2009 Page 22

ECSS Report

349
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

of 60 milliseconds. The calculation takes (at 100,000 tasks) 100 MB per task of data not counting
buffers, executable size, OS overhead, etc. A petascale run generates 24 ∗ 1.8 terabyte datasets =
43.2 terabytes per simulation day assuming hourly output of 30 three-dimensional fields. Assuming
an integration rate of 18 machine hours per simulated day at a sustained petaflop, the average
sustained output bandwidth required is about 700 MB/second.

Now if one were to envision exascale extensions, scaling climate time frames is a “capacity”
problem. A 1000× faster machine with no more main memory would allow one to model a very
limited local region at the rate of 3 simulated years per day. However, an entire hemisphere of earth
at “hurricane eyewall” resolution that might for example capture “butterfly effects” is a capability
problem requiring a sustained exaflop and 10,000 Gbytes = 10 petabytes of main memory to model
the earth at 10m resolution at the rate of 1 simulated day per day.

4.5 Coupled Models

In addition to traditional HPC applications, there is an opportunity to use an exascale facility to
enable adding additional information to a model, for example adding ecological information, such
as forest growth, to models of weather and climate. A grand challenge in geoscience is the addition
of clouds to ecological modeling, especially since clouds and cloud-formation processes interact (in
both directions) with the ecosystem.

Ecological models attached to a high-resolution model of climate change that already have
petascale applicability may provide a good starting point. Ecologists have several embarrassingly
parallel applications that can be “easily” scaled to a petascale system, including:

• stochastic processes1 that need replication

• parameter sensitivity analysis

• heuristic optimization

Such problems are extremely common in ecological applications, as we elaborate here.

1. Stochasticity: Simulation-based ecological models often incorporate demographic stochastic-
ity (random birth/death/movement, etc), environmental stochasticity (random components
of climate forcing, resource availability, etc), and/or genetic stochasticity (random mating,
mutation, etc). Outcomes are thus stochastic as well, and ecologists wish to ask questions
like, “What is the simulated probability that the population size will fall below X within 100
years?” The simulation model must therefore be independently repeated (usually 100s-1000s
of times) to generate a distribution of outcomes.

2. Parameter sensitivity (or more generally, model sensitivity): The “true” parameters of eco-
logical models are rarely known, and in fact there are often disagreements about the form of
the equations governing those processes. Consequently, ecologists frequently want to char-
acterize the sensitivity of outcomes to input parameter values and model assumptions. This
also requires repeated simulation.

3. Optimization: There are (at least) two distinct types of optimization questions that ecologists
commonly ask. The first involves fitting parameters to observed data. In all but the most
trivial models, it is impossible to use analytical or even simple approximating techniques to

1A stochastic process is one that has both predictable and random components in its formal description.

September 14, 2009 Page 23

ECSS Report

350
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

identify maximum likelihood estimates of parameters. Increasingly, ecologists are turning to
stochastic optimization techniques such as simulated annealing, or the use of various imple-
mentations of Markov Chain Monte Carlo to simulate posterior probability distributions in
a Bayesian framework. Secondly, applied ecological models often implement heuristic opti-
mization algorithms as decision tools (e.g., identifying the optimal spatial configuration of a
land reserve system, given some cost criterion). As with parameter estimation, the simpler
algorithms used in the past have been shown to be deficient in complex settings, but more re-
liable methods require many repeated simulations and long run-times. There is a tremendous
need for HPC solutions that can deliver results sufficiently quickly even for models involving
many parameters, fine-scale spatial and temporal resolution, and stochastic processes.

Putting this all together, it is clear that the compute time can be overwhelming when coupling
one or more of the above procedures with even a moderately complex ecological simulation model.
Specifically, some model examples include predicting evolution of a collection of interacting species,
spatial spread of a disease, or the dynamics of a specific ecosystem. Taking the last example, imag-
ine a regional-scale ecosystem model, the core of which is deployed as a small-scale HPC application
(e.g., a single simulation that takes days to complete on a cluster with dozens of nodes). Indeed,
the ATLSS group2 based at UT/ORNL has spent ∼10 years developing and refining a model that
integrates a variety of complex and interacting sub-models to simulate key Geoscience and environ-
mental components of the Florida Everglades; one sub-model has already been parallelized to run
on 60+ nodes. Even if a researcher demands just several hundred stochastic replications in such a
simulation, performed for each of 100 possible configurations of a proposed reserve system, there
would be significant benefit from hierarchically organized parallelization, to enable a 100k-processor
system run (imagine a multi-hundred simultaneous, distributed instantiation of the ecosystem sim-
ulation, which itself might be a 64-node data-parallel application). Whether the envisioned exascale
system even provides the right architecture for this application could be debated, but the point is
that it does not require significant effort to scale up moderately sized ecological models to result in
large computational needs, resulting in the ability to address relevant and interesting problems.

Data integration would be critical to success. A candidate calculation would involve evolutionary
correlations of networks and functions (phenotypes). To the extent that ecologists are able to refine
mechanistic mathematical models in a way that is increasingly faithful to reality, one could easily
conceive of petascale computing demands for simulating an entire ecosystem from its underlying
biological and physical components. However, it is worth pointing out that the tradition in ecology
is to simplify and scale back models — indeed, to err on the side of oversimplification; “realistic”
models have long been mistrusted in favor of either highly abstract mechanistic (theoretical) models
and/or simple phenomenological (statistical) models. In part this is for good reason: ecologists do
not yet fully rely on their own more detailed mechanistic models (there being a lack of the ecological
equivalents of physical laws, testing approximating models via experimentation and observation is
difficult, and each real system seems to have its own unique features). This could in fact partly be
a historical artifact: few ecologists are even aware of the computational possibilities now afforded
by HPC systems. In a sense, one might argue that developments in this area are limited due to
apparent belief in computational obstacles that no longer exist. Opportunities for making forays
into developing complex ecological simulations and to enhance model output with observed data
has the potential to lead to refinement and progress in this area.

2http://www.atlss.org

September 14, 2009 Page 24

ECSS Report

351
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Class Application Benefits from References

Data Mining

De novo genome assembly from
high-throughput sequencers

Large shared memory [49,63,79,150]

Clustering and correlation analysis
of galaxies from cosmological simu-
lations

Large shared memory [40,58,97]

Interaction network analysis Fast I/O [40]

Table 4.1: Example data-intensive HPC applications

4.6 Exascale Data Intensive and Data Mining Applications

In talking about exascale we should also consider improving the performance of data-intensive
applications, not just floating-point intensive applications. By talking to users, examining their
applications, and participating in community application studies [66, 129, 130], we have identified
data-intensive HPC applications spanning a broad range of science and engineering disciplines that
will benefit from fast I/O and large, fast shared memory packed onto a modest number of nodes,
most notably data mining and predictive science applications that analyze large model data.

In a typical data mining application, one may start with a large amount of raw data on disk [134].
In the initial phase of analysis, these raw data are read into memory and indexed; the resulting
database is then written back to disk. In subsequent steps, the indexed data are further analyzed
based upon queries, and the database will also need to be reorganized and re-indexed from time to
time.

As a general rule, data miners are less concerned about raw performance and place higher
value on productivity, as measured by ease of programming and time to solution. Moreover, some
data-mining applications have complex data structures that make parallelization difficult [149].
Taken together, this means that (for example) a large shared memory architecture and matching
shared-memory programming model will be more attractive and productive than a message-passing
approach for the emerging community of data miners. I/O speed is also important for accessing
data sets so large that they do not fit entirely into memory.

A typical predictive science application may start from (perhaps modest) amounts of input
data representing initial conditions but then generate large intermediate results that may be further
analyzed in memory, or the intermediate data may simply be written to disk for later data-intensive
post-processing. The former approach benefits from large memory; the latter needs fast I/O to
disk. Predictive scientists also face challenges in scaling their applications due to the increasing
parallelism required for petascale and beyond [149]; they benefit from large memory per processor
as this mitigates the scaling difficulties, allowing them to solve their problems with fewer processors.

4.6.1 Data-Intensive Balance and the Latency Gap

The growth-rate of data is exponential in many application domains. For example, gene sequence
data is increasing at a rate almost faster than it can be stored, much less analyzed [40], and the same
is true of astronomical data [51]. As we forecast the characteristics of data-intensive applications
in the future, we find that today’s supercomputers are, for the most part, not particularly well-
balanced for their needs. Creating a balanced data-intensive system requires acknowledging and
addressing an architectural shortcoming of today’s HPC systems.

September 14, 2009 Page 25

ECSS Report

352
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Figure 4.5: Typical memory hierarchy for today’s HPC systems. Each level shows the order of
capacity and typical access latency. Note the two-orders-of-magnitude gap between main memory
and disk, which is expected to be bridged by new storage technologies.

4.6.1.1 Tipping the Balance to Data

When the amount of data that an application must analyze exceeds the capacity of main memory,
the application may have to use many processors to obtain the amount of memory required. How-
ever, unless the calculation is highly parallel, it will incur substantial communications overhead.
Also, reserving a lot of processors just for their memory is not very cost or energy effective.

Thus, a machine designed for data-intensive computing should have a large shared memory
accessible to a much more modest number of processors than is common in today’s systems. With
a few exceptions, supercomputers in the current HPC portfolio have only 1 or 2 GB of main memory
per core, while each core is capable of ≈ 10 Gflop/s. This means data-intensive calculations such
as those in Table 4.1, when run on these machines, are limited, with respect to performance and
capability, by the available memory rather than by the available flops. Within the nodes this
translates to a need for the highest possible memory capacity and bandwidth and, for data sets
that exceed the capacity of main memory, the fastest possible I/O to the next level of storage.

4.6.1.2 Hardware to Bridge the Latency Gap

While each level of the memory hierarchy in today’s typical HPC systems increases in capacity,
the costs of each increase are latencies that increase and bandwidths that decrease by orders of
magnitude at each level (Figure 4.5). However, today’s systems have a latency gap beyond main
memory — the time to access disk is orders of magnitude greater than the access time to local
DRAM memory. It is almost as though today’s machines have a missing level of memory hierarchy
that should read and write an order of magnitude faster than disk, a gap that is being filled by
new storage technologies such as flash memory and phase change memory (PCM).

Since some data sets are becoming so large they may exceed the combined DRAM of even large
parallel supercomputers, a data-intensive computer should, if possible, have a level of memory
hierarchy between DRAM and spinning disk. By filling this missing level, a data-intensive exascale
architecture could reap two possible benefits: to make main memory bigger or to make disk faster.

September 14, 2009 Page 26

ECSS Report

353
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

4.6.1.3 Software to Bridge the Latency Gap

Data-intensive calculations that arise outside of traditional HPC, such as data-mining applications,
may not have even been parallelized yet [129], and achieving efficient data decomposition for them
may be hard or impossible. For example, the fact that any gene may match any other gene or the
fact that any node on the Internet may talk to any other makes it hard to partition the analysis
involved in genomics or social networking, as in classical domain decomposition. As a result, these
applications usually need a global address space. While technologies exist to extend the address
space beyond physical memory (e.g., PGAS languages), performance suffers when accessing memory
outside of the current node. A data-intensive system designed to share memory across nodes should
therefore have software that helps to alleviate the latency of inter-node memory accesses and, ideally,
should help applications avoid such accesses by improving their data locality automatically.

Several consensus points emerged in the above studies as to the current and projected needs of
data-intensive computing going towards exascale:

• Serial and/or modestly parallel data-intensive application developers expect their memory
requirements to increase significantly. The reason is simple: data volume is exploding while
methods to mine these data are not becoming massively parallel at the same rate; in other
words, generating data is relatively easy, while inventing new parallel algorithms is hard.
Therefore, shared-memory requirements of > 1 TB are expected to be the norm in many
serial and modestly parallel data-intensive domains circa 2017 [130].

• Many data-intensive applications in genomics [129] and other domains have significant I/O
requirements and are serial or only modestly parallel [129]. A typical data-intensive calcula-
tion today may scale poorly beyond only 128 or 256 processors [129]. This situation is not
expected to improve dramatically with current trends.

• Additionally, data-intensive I/O requirements do not involve just reading or writing large
chunks of data; they may also have significant amounts of small random I/O access. Therefore,
simply combining disks in large RAID arrays to increase I/O bandwidth is not a panacea.
Only a technology shift that reduces latency (increases random I/O access speed) can improve
overall performance when there is significant random I/O.

• We estimate that, taken as a whole, data-intensive applications that need large amounts of
memory, that exhibit poor scalability beyond 256 processors, or that are I/O-bound make
up about 10% of the current HPC workloads. This low percentage may, in part, be due to
self-elimination – there are science domains that cannot use the big flops machines effectively
[129, 130]. In the future, particularly if machines that meet these needs are deployed, we
expect this percentage to grow significantly.

4.6.2 Sample Data Intensive Applications

We now discuss some sample data-intensive applications, and consider their future memory and
data growth.

4.6.2.1 Analyzing Interaction Networks

Interaction networks, or graphs, occur in many disciplines. These describe the relationships among
objects in terms of how they are linked to each other. Often these graphs are constructed in terms
of social networks [40]. Such networks (or graphs) have applicability in, for example, epidemiology

September 14, 2009 Page 27

ECSS Report

354
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

[110,122], phylogenetics [89], systems biology [44] and population biology [122] as well as in studies
that combine information from these fields [40].

All these areas share a common theme — they combine information from multiple databases in
order to answer questions about how the interactions lead to phenomena such as spread of disease.
Key parameters that define their computational requirements include the latency to do a database
lookup, and the total amount of fast storage available to the databases.

As an example, recent investigations combine social network databases with medical records
and genomic profiles to explore questions such as the existence of genetic resistance to AIDS [48].
The analysis may proceed by identifying associates of diagnosed AIDS patients and analyzing their
phenotype (i.e., whether or not they have the disease) for correlation with genotypes such as the
HLA genotype.

4.6.2.2 De novo genome assembly

Genome sequences are produced in a process known as fragment assembly: millions of tiny frag-
ments of a genome are generated, read, and pieced together computationally. This is analogous to
shredding several copies of a book, reading each fragment, and reconstructing the book.

New sequencing machines generate fragments (called reads) in orders of magnitude less time and
cost than first used to sequence the human genome. Codes such as EULER-SR [49], Velvet [150],
and Edena [79] automate the assembly. Each of these codes scans a file containing all reads,
constructs a graph in memory that encodes all information from the reads, and then modifies the
graph to produce the final genome sequence.

Key parameters that define the computational requirements for assembly are the length of the
genome and the coverage, the latter being the average number of times a nucleotide is covered by
a read. Interesting problems require large amounts of memory. Because of the complicated graph,
none of the codes have been parallelized, which makes large shared memory very attractive.

A recent run of Velvet to assemble a plant genome with 120 Mbp (million base pairs) required
90 GB of memory [63]. Assembling the entire 3-Gbp human genome would require roughly 25x as
much memory for the same coverage.

4.6.2.3 Data mining applications

Data mining is the process of analyzing large amounts of raw data and extracting useful information.
The role of data mining in science and engineering will grow as the amount of data produced by
experiments and observations continues to increase [134]. We anticipate applications across a
continuum from simple database queries, in which samples of data are extracted for inspection,
to sophisticated computations such as cluster analyses, which could run for many days. Although
data need not be stored in a database, we expect the amount of database usage to increase rapidly,
because of the need to efficiently organize the vast amounts of data [137]. Scientific databases in
astronomy and Earth science already are terabytes in size and continue to grow. For example, the
Sloan Digital Sky Survey has a 6-TB catalog archive [137], and the GEON LiDAR spatial data and
indices also total about 6 TB [83]. These databases are currently stored on disk arrays and access
is limited by disk read rates [137].

Future data mining investigations will involve the analysis and comparison of data from diverse
sources. Metcalfe’s law [68] predicts that the possibility of new discoveries grows quadratically
with the number of federated databases [71]. For example, one could imagine studying the health
of a community using data such as population demographics, input from various environmental
sensors, and social science observations such as crime statistics. Another example is using the

September 14, 2009 Page 28

ECSS Report

355
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

ever-increasing myriad of biological data available to assist in the process of drug design [59]. By
combining the information in databases on topics such as genome sequences, protein structure and
function, and the biomedical literature, a researcher can generate a test hypothesis more easily
because they have all the information relevant to their problem readily at hand.

Numerous data mining applications will also use large shared memory, not just fast file access.
For instance, in astrophysics, many projects hinge upon assigning importance to over-dense regions
in a set of points. Examples include identifying collapsed halos in a cosmological simulation,
determining whether two galaxies have merged, finding clusters of galaxies in a survey, or locating
dwarf galaxies in star counts. HOP [40] is a density-based clustering method, with poor scalability,
that determines the location of such regions and mines the output of cosmological simulation codes
such as Enzo [98]. For maximum performance such a calculation requires rapid access to the many-
TB-sized simulation output files. The best approach is to park the output files in main memory.

4.6.2.4 Predictive science applications that are data-intensive

The geosciences include many applications that solve inverse problems, i.e., problems in which mea-
sured data are supplemented with computer models to reconstruct 3D fields (often time-dependent
as well) over a domain of interest.

Oceanographers in the ECCO consortium (Estimating the Circulation and Climate of the
Oceans) are generating databases of ocean state as functions of space and time throughout the
world’s oceans. Such ocean state estimation supplements sparsely measured state data with a
sophisticated ocean general circulation model (GCM), embodied in MITgcm. This code solves a
nonlinear minimization problem by iteratively sweeping through the forward and adjoint GCM
equations. These computations generate a large amount of intermediate data during the forward
sweep that need to be reused during the backward, adjoint sweep.

A frequent problem for weather and climate modelers is to obtain initial conditions for subse-
quent simulations using atmospheric GCMs. This data assimilation problem is analogous to the
ocean state estimation problem and is amenable to similar adjoint solution approaches [78, 146],
which again benefit from the availability of additional memory.

Geophysicists within the Southern California Earthquake Center are using full 3D seismic to-
mography [146] to obtain a 3D elastic structure model of the Earth’s crust under Southern Califor-
nia. Another class of predictive science applications exhibits only modest scalability. Well known
examples are quantum chemistry packages, such as Gaussian [10] and GAMESS [11], and struc-
tural engineering packages, such as ABAQUS [12]. The equations solved by these packages, such
as the matrix diagonalization step in the Hartree-Fock method from quantum chemistry, exhibit
fundamental obstacles to efficient parallelization. Adding more and more processors simply does
not improve performance.

4.7 Real-time Departmental Extreme Scale Applications

Extreme scale computers provide the opportunity to read in and react to an enormous amount of
data in realtime. As an exemplar, consider the ability to analyze in real-time 1 million sources,
such as field sensors that can produce > 1 GB/s of visual data each (e.g., the sources could be
hi-res. cameras with 1920x1080 64 bit pixel resolution). A machine would have to be able to read
in at the rate of 1 petabyte per second assuming there was no further computation involved. Thus
the ability to do petascale computing at the departmental level could enable surveillance in real
time to embedded sensors on a wide scale. A detailed discussion of real-time and other specialized
requirements in embedded software can be found in Appendix A.1.
September 14, 2009 Page 29

ECSS Report

356
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

4.8 Framework Technology

Enabling scientific applications on extreme-scale HPC systems is a multi-disciplinary, multi-institutional,
multi-national efforts. Application code complexity is growing to a point that it is increasingly
difficult to make forward progress without high-level organizing constructs. Advanced parallel
languages are necessary to make programming of complex systems tractable, but they are not
sufficient. Frameworks provide higher-level organizing constructs for teams of programmers that
clearly segregate the roles and responsibilities of application team members along the lines of their
expertise as shown in Figure 4.6. Languages must work together with frameworks for a complete
solution.

Frameworks confer the following benefits:

• Separate roles and responsibilities of expert programmers from that of the domain experts/-
scientist/users (productivity layer vs. performance layer).

• Define a social contract between the expert programmers and the domain scientists.

• Enforce and facilitate software engineering discipline.

• Encapsulate complex parallel implementation details in the framework so that they can be
hidden from scientists and end-users.

• Allow scientists/users to code nominally serial plug-ins that are invoked by a parallel schedule.

• Support modular composition of multi-physics applications using components supplied from
different developers and vendors

• Restrict code rewrites to the driver level as the hardware industry moves towards multi-core
architectures with massive parallelism.

• Reduce software development costs.

The definitions and some examples are taken from the High Performance Computing (HPC)
Application Software Consortium (ASC) white paper on frameworks from March 17, 2008 [72].
The state of evolution of application software can be measured in terms of level of component
interoperability, given in Figure 4.7. The level of interoperability is defined by the degree to which
components must conform to a set of rules set by the framework in order to achieve interoperability.
We refer to three levels of interoperability:

• Minimal Component Interoperability: A majority of the existing commercial solvers based
on legacy codes can be described as having minimal component interoperability. Individual
physics models are handled by separate solvers. Therefore, the physics domains are completely
un-coupled; static analysis might be performed across physics domains using file translators or
common interchange file formats, also referred to as workflow coupling. The only requirement
that the framework imposes on the individual solvers is that they share the same file format.

• Shallow Component Interoperability: Several of the leading simulation software vendors have
released simulation suites that are beginning to exhibit shallow component interoperability.
At this level, physics models are loosely coupled at some time step or discrete event. Each
solver maintains its own internal state representation of its respective domain. Common data
is exchanged using wrappers to some interchange interface over a network service. Therefore,
the development guidelines imposed by the framework stop at the interface to the component.

September 14, 2009 Page 30

ECSS Report

357
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Developer Roles Domain 

Expertise 

CS/Coding 

Expertise 

Hardware 

Expertise 

Application: Assemble solver modules to 

solve science problems. (eg. combine hydro

+GR+elliptic solver w/MPI driver for Neutron 

Star simulation) 

Expert Intermediate Novice 

Solver: Write solver modules to implement 

algorithms. Solvers use driver layer to 

implement “idiom for parallelism”. (e.g. an 

elliptic solver or hydrodynamics solver) 

Intermediate Expert Intermediate 

Driver: Write low-level data allocation/

placement, communication and scheduling 

to implement “idiom for parallelism” for a 

given “dwarf”. (e.g. GasNET or Cactus 

PUGH) 

Novice Intermediate Expert 

Figure 4.6: Frameworks clearly separate roles and responsibilities for a large teams of program-
mers — enabling computer science experts, numerical algorithms experts, and domain scientists to
collaborate together productively.

The framework developer need only provide a standards-based interface that is external to
the solver to achieve interoperability. In the commercial market, shallow component interop-
erability is usually limited within a single vendor’s offerings, although some open interchange
standards are beginning to emerge based on web services.

• Deep Component Interoperability: A few leading HPC laboratories have developed physics
component frameworks where the solvers share a common service infrastructure for commu-
nications and data management. Physics models can be tightly coupled at this level of inter-
operability. In this case, the component developer must also heed rules regarding the internal
organization of the component in order to achieve interoperability with the framework. This
approach hides the complexity of the underlying hardware platform and offers higher-level
abstractions for managing parallelism, thereby providing opportunities for improved platform
portability and parallel system library optimization by the hardware vendors themselves.

4.8.1 NASTRAN OMD-SA case study

The Open Multi-Discipline Simulation Architecture (OMD-SA) framework [131] is an extensible and
flexible Service Oriented Architecture (SOA) for scalable multidisciplinary engineering analysis that
has been designed by MSC Software. It supports efficient data transfer for modular multi-physics
simulations on HPC systems. Whereas older generation codes used data files to exchange model
data between various solvers in a multi-physics application, the OMD-SA architecture enables direct
transfers between the components as well as a composition system for combining solver components
into a single application. As the simulation data can easily be in the gigabytes or even terabytes,
the transfer of data across service layers must be optimized. Specifically, the framework must avoid
unneeded copying or transfer of data if it is not absolutely necessary. Services in this framework can
be either in a local application space or in a remote application space. Local services should cost
September 14, 2009 Page 31

ECSS Report

358
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

�

Figure 4.7: Evolution of Software Framework Integration (From High Performance Computing
(HPC) Application Software Consortium (ASC) Summit, March 17, 2008).

no more than a simple function call so as to ensure that the framework imposes negligible overhead
on the overall performance. The framework supports language interoperability so that existing
optimized code written in FORTRAN, C, or C++ can be used to implement services within the
framework to support this capability. Remote services leverage standard and emerging network
protocols to maximize performance. A single service can be used both locally and remotely, and
it is up to the framework to determine the usage and the appropriate optimizations relevant to
each case. Services must be highly tuned internally for efficient processing, using multi-threading,
caching, efficient sharing of memory across services where possible, etc.

There are 4 main elements to the OMD-SA architecture:

• Component Framework The component framework is an open SOA model where the services
are available on-demand. The component framework is comprised of multiple layers. The
services are connected through the Simulation Bus and a common data model that assures
scalability and effective application of the services to a simulation application.

• Simulation Clients The services are exposed to the various players in the simulation process
through different clients, both rich and thin, that address the specific user needs.

• External Services External services are available to OMD-SA through standard open plug-
in technology. Legacy applications, 3rd party applications, as well as in-house developed
applications can be exposed as services to OMD-SA applications.

• Enterprise Service Bus The Enterprise Service Bus can be either an existing ESB within an
enterprise or a third-party ESB to which OMD-SA will interface. This allows for the use of
external enterprise data and processes within a simulation process, i.e., using geometry from
PDM within simulation. This allows for the use of simulation services and processes within
external enterprise applications.

OMD-SA uses emerging standards for interface definitions and Internet protocols, including
OMG-IDL (ISO standard 14750) and WDSL for service description and interface definition, UDDI
September 14, 2009 Page 32

ECSS Report

359
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

for service discovery, and SOAP for service invocation/interaction. OMD-SA is an open platform for
customers and partners to address extended or proprietary applications through the customizable
service APIs, the SOA, and the programmable user interfaces.

OMD-SA is an example of a shallow component interoperability framework in terms of the
interfaces it presents to developers. Integrating a component into this framework does not require
any changes to the internal data model employed by the solver. Each component is able to share
data with other physics solvers using the standards-based APIs to write data to the simulation bus
in an operation that looks like writing a file to disk (as would be the case for older multi-physics
simulations), but can reside in memory for local data exchanges between simulation clients. All
parallelism remains internal to each component, which enables the solvers to be incorporated with
little or no changes to their internal data model or data structures. While the shallow interoperabil-
ity model simplifies coupling of components, the approach does not support any form of abstraction
or modularity for the implementation of the parallelism.

4.8.2 Cactus case study

The Cactus Framework [121] is an open source, modular, portable programming environment
for collaborative HPC computing. Cactus consists of both a programming model with a set of
application-oriented APIs for parallel operations, management of grid variables, parameters etc,
as well as a set of modular swappable tools implementing parallel drivers, coordinates, boundary
conditions, elliptic solvers, interpolators, reduction operations, and efficient I/O. Although Cactus
originated in the numerical relativity community where the largest HPC resources were required
to model black holes and neutron stars, Cactus is now a general programming environment with
application communities in computational fluid dynamics, coastal modeling, reservoir engineering,
quantum gravity and others.

Cactus consists of four main elements:

• The Cactus Flesh, written in ANSI C, acts as the coordinating glue between modules that
enables composition of the modules into full applications. Although the architecture is differ-
ent, the Flesh plays the same role as the Enterprise Service Bus for the OMD-SA framework.
The Flesh is independent of all modules, includes a rule based scheduler, parameter file
parser, build system, and at run time holds information about the grid variables, parameters,
methods in the modules and acts as a service library for modules.

• Cactus modules are termed Thorns and can be written in Fortran 77 or 90, C or C++.
Each thorn is a separate library providing a standardized interface to some functionality.
The thorns are similar in nature to the Simulation Clients in OMD-SA, but Cactus further
externalizes the implementation of parallelism for the thorns, enabling different architecture-
specific implementations of parallelism to be plugged in. Thorns providing the same interface
are interchangeable and can be directly swapped. Each thorn contains four configuration
files that specify the interface between the thorn and the Flesh or other thorns (variables,
parameters, methods, scheduling and configuration details). These configuration files have
a well-defined language and can thus be used as the basis for interoperability with other
component based frameworks.

• Drivers are a specific class of Cactus Thorns that implement the model for parallelism. Each
solver thorn is written to an abstract model for parallelism, but the Driver supplies the con-
crete implementation for the parallelism. For example, the PUGH (Parallel UniGrid Hier-
archy) driver implements MPI parallelism, whereas the ShMUGH (Shared Memory UniGrid

September 14, 2009 Page 33

ECSS Report

360
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Hierarchy) driver provides a shared memory/threaded implementation for the parallelism.
The application can use different drivers without requiring any changes to the physics thorns.
However, the thorns must be written specifically to the guidelines of the Cactus framework.
The modular drivers for implementing parallelism are both the principle advantage of the
deeply integrated framework model, but also the most daunting part due to the need to
conform to framework coding requirements to take advantage of this capability.

• Cactus modules or thorns are grouped into Toolkits. Cactus is distributed with the Cac-
tus Computational Toolkit that consists of a collection of thorns providing parallel drivers,
boundary conditions, scalable I/O etc to support applications using multi-dimensional fi-
nite differencing. Community toolkits are provided or are under development by different
application areas such as Numerical Relativity and Computational Fluid Dynamics.

The modular design of Cactus with swappable thorns provides several important features:

• Third-party libraries and packages can be used by applications through the abstract Cactus
interfaces, decreasing application reliance on any particular package and making it possible
to switch to new capabilities as they are available. For example, instead of using the Uni-
Grid parallel driver PUGH distributed with Cactus, applications can use a variety of other
independent adaptive mesh refinement drivers such as Carpet, PARAMESH, SAMRAI.

• New I/O methods can be added as thorns, and are then available to applications as a param-
eter file choice.

• Cactus currently supports a variety of output formats including HDF5, NetCDF, ASCII,
JPEG, FlexIO, and provides architecture independent checkpoint and recovery along with
interfaces for parameter steering and remote visualization.

Cactus has already been shown to scale to large processor numbers (4,000 to 33,000 cores) for
different applications, and has active user and developer communities, along with funding from a
range of agencies to both improve the infrastructure and build new application areas.

Whereas the shallow component interoperability framework enables modular composition of
solver components into a multi-physics application, providing a scalable and modular model for
parallelism requires deeper modifications to the code base. Deep component interoperability frame-
works such as Cactus and Sierra (discussed in the next section) present an approach where the
abstract model for parallel computation is external to each of the components. This requires a
larger initial investment in code, but offers additional performance and scalability benefits down
the road as systems move towards a massive parallelism on multicore systems.

4.8.3 Sierra case study

Sierra is a software framework [57], which is used for multi-physics computational mechanics sim-
ulations primarily targeting finite element and finite volume methods for solid mechanics, heat
transfer, fluid dynamics with reacting chemistry, and multi-physics permutations of these mechan-
ics. Sierra is designed around an in-core data model for supporting parallel, adaptive multi-physics
on unstructured grids, with an emphasis of simultaneously handling parallelism, dynamic mesh
modification, and multiple mesh solutions and transfer operations. Sierra also provides common
services and interfaces for linear solver libraries, dynamic load balancing, file input parsing, and
mesh file I/O. It was designed to unify and leverage a common base of computer science and data

September 14, 2009 Page 34

ECSS Report

361
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

capabilities across a wide range of applications, and facilitate research, development and deploy-
ment of multi-physics capabilities, while managing the complexities of parallel distributed mesh
data.

Through its solvers class capability and external interfaces, Sierra provides plug-in capability of
a range of solver libraries for different mechanics. Plug-ins play the same role as the thorns in Cactus
nomenclature and the Simulation Clients in OMD-SA. At the coupled physics level, Sierra provides
a procedural language to support operator splitting methods to couple mechanics, including the
ability to iterate to convergence and to sub-cycle physics modules relative to one another. The
procedural language, called SolutionControl, allows a user to specify how the coupled mechanics
for the various Sierra Regions are executed in sequence, how variables are mapped between the
computational domains of each region, and how solution convergence is controlled at the coupling
level before moving the simulation forward in time. SolutionControl is the basis for composing solver
components into composite multi-physics applications, much as the OMD-SA scripting environment
and Cactus Flesh is used to support module composition in those respective frameworks. Sierra
also supports limited tighter coupling through forming full Jacobians for multi-physics within a
single Sierra Mechanics Region.

Sierra’s support for parallelism is pervasive, and is designed to limit the amount of work and
complexity associated with parallel data structures for the mechanics developer, so that they can
focus on the physics-relevant aspects of their solver module. Like Cactus, the implementation of
the parallelism is externalized from each of the solver modules, so that the implementation of the
parallelism need not be replicated for each module that comprises the framework. Supporting this
capability requires the solvers to adopt some common data structures and conform to framework
coding requirements, which is the hallmark of a deeply integrated framework.

4.8.4 Comparison across Frameworks

Examining both shallow and deeply integrated frameworks for modeling and simulation on parallel
computing platforms, some common themes have emerged. Physics solvers in these frameworks
are implemented as modular software components so they can support flexible reconfiguration for
different multi-physics problems. The coupling of physics modules follows loosely coupled at some
time step or discrete event as opposed to tight coupling. The framework provides a flexible com-
position environment that matches the requirements of the application domain. In addition to
these common features, deep component interoperability frameworks also partition the implemen-
tation of parallelism into separate components, in other words abstracting the implementation of
parallelism, to reduce programming errors and support performance optimization and portability
across diverse hardware platforms. The key distinction between shallow and deep component inter-
operability frameworks is that shallow framework components manage their own parallelism and
data structures and exchange data using external interfaces, whereas a deep framework components
externalize the parallelism and data structures so that they can be optimized and ported indepen-
dently from the solver component implementations. Our belief is that deep interoperability will
increase in importance for extreme scale systems.

Frameworks also provide a base set of services and build tools that simplify the customization
of existing software components, and building and integration of new components within the frame-
work. Examples of such services are I/O services, memory management services, error handling
services, etc. As existing software modules are to be imported into a framework, their outer layer
(a main program calling the subroutines) is peeled off and rewritten as declarations to the frame-
work, which describe the high-level dataflow between the components. The framework manages
the coarse-grain dataflow of an application, which is required for efficient parallelization. However,

September 14, 2009 Page 35

ECSS Report

362
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

fine-grain dataflow within subroutines remains under control of the individual components and thus
remains highly efficient.

The attraction of shallow integrated frameworks is that they minimize the amount of code
rewriting internal to each of the solver components. Each component interacts through a common
SOA interface that preserves the opaqueness of the internal architecture of the component. How-
ever, such an architecture makes it difficult to impose constraints on the data layouts employed
within each module, and therefore can lead to inefficient coupling between components due to the
extra layer of data copying that must be employed between components with incompatible data
layouts. It also limits the ability of a third party to innovate the implementation of parallelism for
the components without getting inside of each module and rewriting the solver implementation.
However, the shallow framework component model is well tested in enterprise applications and
would require the least amount of effort for ISVs to cooperate. These shallow integration frame-
work architectures consist of a few (tens) of components, each operating on large amounts of data
for a significant amount of time. Overheads due to staging, invocation, load distribution etc. are
amortized over the run time of the components’ activity. One crucial advantage of shallow frame-
works is that they arise naturally from preexisting, independent, large software packages as the
need for coupling arises. The deeply integrated applications require that solvers agree upon an ex-
ternal data representation for the model data that is exchanged between solvers. This architecture
also manages the parallelism external to the solvers. The framework then defines the optimal data
layout that is common to all of the components, so as to minimize the amount of data re-copying
required to couple components together. In addition, the deeply integrated approach enables the
implementation of parallelism to be separated from the solver components, so that innovations
in parallelization methods (particularly for multicore processors) can be exploited by the solvers
without requiring them to be rewritten. However, the price of such a deep level of integration is
that existing solver components must all be rewritten to conform to the frameworks restrictions.
This requires a more significant initial investment and a deeper level of cooperation among ISVs,
but can lead to a platform that is more scalable to future trends in concurrency.

Deep component interoperability framework architectures consist of many (hundreds) of smaller
components, each invoked many times in parallel, operating only on small subsets of the overall
data set, supervised by a framework driver layer. Efficiency is guaranteed by the driver layer’s
control over the data layout, which enables it to orchestrate calculations and relocate data as
required. Examples of deeply interoperable framework architectures are Cactus, SIERRA, Chombo,
and UPIC. The crucial advantage of deep component interoperability frameworks is the close yet
efficient interaction since parallelization is handled by the driver layer, which allows for more
accurate multi-physics simulation.

In summary, a tightly integrated framework architecture consists of several key components:

• A backbone which orchestrates the overall simulation, touching only metadata

• A driver layer providing the “heavy lifting”, handling memory management and idiom for
parallelism

• Parallel data-layout (domain-decomposition) management components that define or modify
the data structures on which the simulation operates (structured, unstructured, AMR)

• Solver components, operating on driver-defined subsets of the data

• Statistics/introspection components, collecting metadata and providing feedback (provenance,
performance, progress monitoring)

September 14, 2009 Page 36

ECSS Report

363
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

4.8.5 Domain-Specific Application Frameworks and Libraries

In the following we briefly examine three applications from chemistry that have all departed from
norm of generic MPI+OpenMP parallelization and have instead pursued innovative solutions to
their computational problems. One enabling characteristic in common is that all three are the
result of close and long-term collaborations between application experts and computer scientists.

4.8.5.1 NWChem case study

NWChem was the first quantum chemistry code developed specifically for massively parallel com-
puters and has been funded since circa 1992 by the DOE as part of the Environmental Molecular
Sciences Laboratory at Pacific Northwest National Laboratory. Other institutions in Japan, Eu-
rope and the USA (e.g., ORNL) contribute to the project and the software is in use at nearly
all supercomputer sites worldwide. The genesis of the project was the recognition by Thom Dun-
ning that lack of scalable software precluded chemistry, and in particular environmental molecular
science, from exploiting the massively parallel computers emerging in the early 1990’s. From the
outset, the project adopted a multidisciplinary approach. Molecular electronic structure uses a
wide variety of methods to solve a single chemical problem, and the associated computations have
complex data structures that can be thought of as block-sparse multi-dimensional matrices. The
nature of the sparsity and computation requires careful load-balancing to achieve scalability and
the size of the data structures requires distribution to enable computations larger than those pos-
sible on a single computer. These challenges led to the development and adoption of the Global
Array (GA) library [13] that provides one-sided access to arbitrary blocks of logically-shared but
physically distributed matrices. The library has since been extended to other data structures to
facilitate its use in many other disciplines. It remains the only portable distributed-shared memory
programming library in use since the 1990’s.

The combination of one-sided access and data structures/abstractions chosen for the domain
revolutionized the writing of scalable applications in chemistry; all scalable chemistry codes ei-
ther use GA or a derivative of it. Most of the algorithms implemented with GA are inherently
more scalable than their MPI counterparts since the one-sided access eliminates unnecessary syn-
chronization, is often closer than message passing to the actual hardware capabilities, and greatly
facilitates full dynamic load balancing since computation and data can be easily relocated. GA
makes aggressive use of overlapped, asynchronous communication, and also handles the complex
translation of addresses from the application (multi-dimension matrix patches) to the hardware
(non-contiguous blocks in partitioned linear address spaces). The only components of NWChem
still written in message passing are those that for reasons of performance or correctness benefit
from the (weak) synchronizations implied by exchange of messages, such as tight coordination of
data motion in a parallel FFT or the dependent graph of tasks in a classical matrix factorization.

Going forward, the three main downsides of GA are lack of language support, the fact that its
memory model is tied to a specific machine model, and the fact that it only emphasizes two levels of
the memory hierarchy (three if disk arrays are considered). The lack of language support is a large
source of errors and increased complexity since the user is responsible for tiling accesses to global
data structures, managing local arrays, and correctly invoking GA interfaces. GA was consciously
designed as a memory model so as to keep its implementation efficient on available computers, but
this has now become a major limitation. Within GA, all one can do is move data to/from the
computation and this turns out to be insufficient for efficient management/use of more complex
data structures. For instance, a distributed sparse tree or hash table would be very inefficient and
complex to manage with GA. What is needed is the ability to move computation to data. Finally,

September 14, 2009 Page 37

ECSS Report

364
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

while GA does a good job at managing the coarse grain data motion and parallelism it does little
to help with increasing concurrency within SMP nodes. In particular, by forcing the programmer
to chose which data to distribute and which to replicate what was once a strength of GA has now
locked its existing applications into a specific choice of granularity for their parallelism.

4.8.5.2 NAMD case study

NAMD is a parallel molecular dynamics code designed for high-performance simulation of large
bio-molecular systems and was recipient of a 2002 Gordon Bell Award. It is based upon the
Charm++ parallel programming environment and represents a long-standing collaboration between
distinguished UIUC researchers Sanjay Kale (Computer Science) and Klaus Schulten (Molecular
Biochemistry). Charm++ is now the only widely used parallel programming model that emphasizes
virtualizing all aspects of the computation, with an intelligent runtime taking full responsibility
for scheduling and data management. Parallel programs are composed in terms of messaging be-
tween objects (chares) addressed in name spaces (chare arrays) without reference to the underlying
hardware. This virtualization and separation of responsibilities encourages the expression of the
intrinsic parallelism in the application as advocated in Chapter 5. This is exemplified by NAMD
being the first chemistry application to execute efficiently on tens of thousand of processors on the
IBM BG/L primarily because it was the only application that had expressed sufficient parallelism.
Due to its scalability, and the support of Kale’s and Schulten’s research groups, NAMD is widely
used with an increasing amount of science functionality accruing around it.

The main limitation to date of the Charm++ environment might also be interpreted as a de-
fect of the rest of the world. Charm++’s complete virtualization means that its applications are
largely incompatible with existing MPI applications unless those applications are also imported
into Charm++ using the AMPI library. There are also performance issues associated with fine grain
virtualization and object models that can be alleviated with more powerful language, compiler, and
runtime technologies.

4.8.5.3 TCE case study

The Tensor Contraction Engine (TCE) arose out of an NSF ITR project and a DOE SciDAC
project, and is the application of compiler optimization and source-to-source translation technol-
ogy to craft a domain specific language for many-body theories in chemistry and physics. The
underlying equations of these theories are all expressed as contractions of many-dimensional arrays
or tensors. There may be many thousands of such terms in any one problem but their regularity
means that they can be translated into efficient massively parallel code that respects the bounded-
ness of each level of the memory hierarchy and minimizes overall runtime with effective trade-off
of increased computation for reduced memory consumption. The approach has been overwhelming
successful and now NWChem contains about 1M lines of human-generated code and over 2M lines
of machine -generated code from TCE. The resulting scientific capabilities would have taken many
man-decades of effort; instead, new theories/models can be tested in a day on a full-scale system.
In combination with the OCE (operator contraction engine) that turns Feynman-like diagrams into
tensor expressions, the TCE represents perhaps the first end-to-end production quality example of
a solution to the semantic gap between applications and hardware.

Clearly, domain specific languages will be an integral part of future computational science and
we note that several of the HPCS languages had at their core the idea of being extensible and
readily specialized to new fields. However, translating the narrow success of the TCE into broad
relevance remains a challenge. For instance, how can application scientists make effective use of

September 14, 2009 Page 38

ECSS Report

365
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

the optimization and compilation tools of computer science without having a computer scientist
at their side? What elements are in common between languages tailored to chemistry or material
science or linguistics or forestry, and how do we ensure that such programs can inter-operate when
composing multi-physics applications?

4.9 Footprints

A “footprint” is the trace of resource usage left by an application as it executes on a system. Under-
standing such footprints is thus important to understanding whether or when new Extreme Scale
systems are in fact capable of supporting the kinds of Extreme Scale systems discusses elsewhere in
this chapter. In the remainder of this section, we will examine several different types of footprints.

4.9.1 Application Footprints — System Memory

The quantities of required system memory are highly dependent on specific applications and the
associated problem size, architecture balance, research in progress, and anticipated future research.
Research includes new-era weak scaling concepts such as multi-scale, multi-physics, new models,
interactions, mitigation analysis, data mining, data-derived models, as well as new mathematics
and algorithms. Our recommendations are as follows:

• For petascale systems, we recommend O(100TB) to O(1PB) of system memory. These num-
bers are derived from the following:

– For all applications, the quantity of system memory should not be less than the bytes/flop/s
ratio of the current IBM BlueGene/L (0.083) or BlueGene/P (0.144) systems.

– Many traditional applications may require a bytes/flop/s ratio similar to Red Storm,
Jaguar, and ASCI Purple (0.3-0.5).

– Applications or data sets may exist that require O(1PB). This is consistent with the
bytes/flop/s ratio of 1.0 from Amdahl’s Memory Law (1.0).

• For exascale systems, we recommend O(10PB) to O(1EB) of system memory. These numbers
are derived from the following:

– It may not be possible to perform an exascale application “existence proof” with just
O(1PB) of system memory.

– For many exascale “hero” applications, O(10PB) to O(100PB) system memory may be
required.

– For special applications with massive in-core databases, O(1EB) system memory may
be required.

4.9.2 Application Footprints — Storage Capacity

The quantities of required scratch storage are highly dependent on the application and problem size.
The amount of scratch storage has traditionally been driven by the need for checkpoint/restart to
provide application resiliency — thus it is correlated with the system memory footprint. The need
to access additional data in the future may substantially increase the scratch storage requirements
due to new-era weak scaling applications. New-era weak scaling may also require that additional
data be stored for post-processing data mining. We recommend that scratch storage capacity grow

September 14, 2009 Page 39

ECSS Report

366
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

at a rate faster than system memory. For many applications, scratch storage capacity greater than
10-100x system memory may be required.

• For petascale systems, we recommend O(1PB) to O(100PB) of scratch storage capacity.

• For exascale systems, we recommend O(100PB) to O(100EB) of scratch storage capacity.

The quantities of required archival storage are highly dependent on the application and problem
size. The same application requirements that drive scratch storage will drive the need to access
additional data from archival storage in the future. We recommend that archival storage capacity
grow at a rate faster than system memory or scratch storage. For many applications, massive
archival storage capacity greater than 100x system memory may be required.

• For petascale systems, we recommend greater than O(100PB) of archival storage capacity.

• For exascale systems, we recommend greater than O(100EB) of archival storage capacity.

4.9.3 Application Footprints — Node/System Memory Bandwidth and Latency

”Local” memory bandwidth and latency requirements will be driven by the fact that new appli-
cations will have reduced vertical locality on a node because the trend in new applications are to
employ:

• New mathematics and algorithms that trade regular data access for improved convergence.

• Model-directed adaptive mesh refinement (AMR) for improved computational accuracy where
required.

• Data-derived models, data-mining, and interaction studies in multi-physics models.

It will be a challenge for hardware designers to provide adequate bandwidth and sufficiently low
memory latency to keep processors “busy”. There must be adequate memory bandwidth to feed
instructions to the processors/cores on a node (given the high latencies). Key techniques include
attacking the traditional “Memory Wall” and employing latency tolerance techniques with massive
multi-threading.

”Global” memory bisection bandwidth and latency requirements will be driven by the fact that
new applications will have reduced “horizontal” locality for many of the same reasons that there
will be reduced vertical locality in new applications. Bisection bandwidth requirements will be
highly dependent on application characteristics such as:

• Scientific and Engineering Codes including solvers for Partial Differential Equations (PDEs)
and 3-D meshes

– Structured Grids — nearest neighbor communications

– Unstructured Grids — indirect addressing and random communications

– Adaptive Mesh Refinement — move extensive amounts of data around machine

• Multi-scale, multi-model, etc. — less likely to be able to map data/processes to (nearest-
neighbor) locations to minimize communications

• Models may trade global data access for better convergence in new mathematics and algo-
rithms

September 14, 2009 Page 40

ECSS Report

367
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

• Application reliability could have a significant impact on bisection bandwidth in the future

Global memory latency will be driven by these same application characteristics. Given the
physical size of exascale computers, system diameter and “speed-of-light” issues will set the lower-
bound on latency. Hardware designers must provide sufficiently low latency or adequate bandwidth
and latency tolerance in keeping with Little’s Law [14,15].

After analyzing these application characteristics we recommend that latency be as low as pos-
sible and the bandwidth be as follows:

• For petascale systems, we recommend bisection bandwidths — O(50TB/s) to O(1PB/s).
These numbers are derived from the following:

– For all applications, bisection bandwidth should be no less than current 3-D topologies
scaled to a petaflop/s performance rates.

∗ Sample XT4 configuration (40 x 32 x 24) @ 318Tflop/s ← 19.4TB/s
∗ Scaled to (80 x 64 x 48) @ 2.4Pflop/s ← 80.0TB/s

• For many applications: bisection bandwidth may need to approach the bandwidth specified
in the DARPA HPCS program (500.0TB/s-3.2 PB/s)

– For exascale systems, we recommend bisection bandwidths — O(10PB/s) to O(1EB/s).
These numbers are derived from the following:

– While it may be possible to perform an exascale “existence proof” at O(1PB/s), real
applications will require substantially greater interprocessor communications capability.

– For nearly all exascale applications, bisection bandwidth should scale with the quantity
of memory — O(10PB/s) to O(1EB/s).

4.9.4 Summary — Design Sweet Spots

In summary, we do not expect applications to strongly scale three or more orders of magnitude
efficiently to provide faster application run times with similar quantities of system memory. Some
applications will be able to scale to petascale and on to exascale using traditional weak scaling.
We anticipate that many applications to be run at exascale will employ new-era weak scaling
and employ one or more of the following: Multi-scale, Multi-physics (multi-models), New models,
Interactions, Mitigation analysis, Data mining, and Data-derived models.

In figure 4.8, we present a summary chart of the petascale and exascale application derived
“footprints”. On this chart, we have proposed design “sweet spots” that will address the capabilities
of a majority of new exascale applications. These footprints and “sweet-spots” are in agreement
with the 2007 Exascale Hardware study [62].

4.10 Two Illustrative Graph Scenarios

An examination of two graph algorithms illustrates some of the issues with exascale software. An
N-body code (e.g., GROMACS) in which neighbor lists of vertices are traversed to compute interac-
tions represents one data point where the locality is easily managed. A shortest-path algorithm, on
the other hand is more challenging because of fine-grain mutability and lower arithmetic intensity.

September 14, 2009 Page 41

ECSS Report

368
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Petascale Exascale

Range “Sweet Spot” Range “Sweet Spot”

Memory Footprint

System Memory O(100TB) to O(1PB) 500 TB O(10PB) to O(1EB) 100 PB

Scratch Storage O(1PB) to O(100PB) 10 PB O(100PB) to O(100EB) 2 EB

Archival Storage Greater than O(100PB) 100 PB Greater than O(100EB) 100 EB

Communications Footprint

Local Memory 
Bandwidth and 
Latency

Expect low spatial locality

Global Memory 
“Bisection” 
Bandwidth

O(50TB/s) to O(1PB/s) 1 PB/s O(10PB/s) to O(1EB/s) 200 PB/s

Global Memory  
Latency

Expect limited locality

Storage 
Bandwidth

Storage bandwidth will need to grow at a faster rate than system peak performance 
or system memory growth

Figure 4.8: Petascale and Exascale Application Design “Sweet Spots”

4.10.1 N-Body

N-body codes are used to study the interactions of systems ranging from proteins to galaxies. N-
body codes are often structured as graph algorithms where each particle maintains a neighbor list of
other particles within an interaction radius. Each time step, every particle computes an interaction
with every neighbor, and this interaction is used to update the state of the particle at the end of
the time step. Every few timesteps (typically 10) the neighbor lists are recomputed often using a
cell structure that reflects the three-dimensional nature of the problem.

In very rough terms the code is:

for each timestep {
if(neighborListsStale()) {

forall particle in particles {
particle.neighbors = computeNeighbors(particle) ;

}
}
forall particle in particles {

forall neighbor in particle.neighbors {
computeInteraction(particle, neighbor) ;

}
}
forall particle in particles {

updateState(particle) ;
}

}

This is a gross oversimplification, but captures many important issues outlined below. In particular,
the analysis assumes that the particles in a cell interact only with a thin boundary layer of particles
September 14, 2009 Page 42

ECSS Report

369
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

in adjacent cells and that the partition of force computations follows the partition of the particles.
Parallelization: The bulk of the computation has parallelism of PN where P is the number of

particles and N is the number of neighbors per particle. The update step has parallelism of P but
accounts for a much smaller fraction of the total computation. For a large problem, there can be
108 particles each with 103 neighbors, so the amount of parallelism may be 1011.

Note that this parallelism is needed both to take advantage of multiple cores and to hide latency
to higher levels of the storage hierarchy.

Synchronization: The required synchronization is implied by the program data flow. Each
time step must use the updated state from the last time step. There is no need for two barriers per
time step although many implementations would over-synchronize the application in this manner.
A looser synchronization would give improved performance.

Locality: The amount of locality depends on the underlying graph. If the graph is generated by
connecting all particles within an interaction radius in a 3D space, it will have X(2/3) connections out
of a partition of X particles. A partition of X particles can be gathered into a local memory along
with a halo of neighbor particles and operated on entirely locally. XN operations are performed
for each X+halo(X) particles fetched. The size of a partition X is driven by the amount of storage
available at a level of the storage hierarchy. This partitioning is done recursively down the hierarchy.
Achieving this locality depends on generating a good (min-cut) partition of the set of particles P.
Because the graph changes over time, this partition also changes over time.

A related issue is the computational intensity of the program — how much work is done in the
routine “computeInteraction”? For molecular dynamics codes, the interaction is complex — 100s
of operations — giving a high arithmetic to bandwidth ratio.

Load Balance: Load balancing can be accomplished by distributing partitions to levels of the
hierarchy — nodes, multi-core chips, regions on these chips, and cores. This distribution can by
dynamic — and needs to be at least partly dynamic as the partitions will change as the graph is
modified. As opposed to fine-grain work stealing, load balancing needs to be done at a coarser
grain — that of partitions — to avoid destroying locality.

In summary, the N-body problem has lots of parallelism and easily exposed locality. It is
straightforward to load-balance and synchronize the application provided the parallelism and lo-
cality can be easily expressed.

4.10.2 Shortest Path

Consider a single-point shortest path problem in a graph. Starting at a single point, for each vertex
in an active set, we visit all neighbors, possibly updating their distance, and if updated we add the
neighbor to the active set. In rough form the code looks like:

activeSet = Singleton(sourceNode) ;
while(notEmpty(activeSet) {

for vertex in activeSet {
for neighbor in vertex.neighbors {

test = Update(vertex, neighbor) ;
if(test) Insert(neighbor, activeSet) ;

}
}

}

Again, this is an oversimplification. For example, the active set should be managed as a priority
queue, but it captures some interesting behavior.
September 14, 2009 Page 43

ECSS Report

370
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Parallelism: The amount of parallelism depends on the shape of the graph. It starts with a
single thread at the source node and increases as the active set increases. Depending on how many
times a node is revisited, the average parallelism is roughly V/D where V is the number of vertices
and D is the diameter of the graph. For a graph of 109 nodes with diameter 100, the average
parallelism would be about 107.

Synchronization: The calls to the routine “Update” need to be atomic. Multiple vertices
may have the same neighbor, and one update of that neighbor must be completed before the next
is started. The difficulty of this atomic action depends greatly on implementation — specifically
where the update is performed. If the update is done on the core that is co-located with neighbor,
then this can be done relatively inexpensively. The atomic section of code can be run out of local
memory with no long latency accesses or message round trips.

On the other hand, if one attempts to run Update on an arbitrary node, the synchronization
can become prohibitively expensive. This requires acquiring a lock (or the equivalent), fetching
the current value of neighbor, writing back the updated value, and then releasing the lock. This
requires at least six messages (three round trips), and the number can easily be several times this
number if a cache coherence protocol is involved. The amount of time a neighbor remains “locked”
is a critical parameter here as it affects the amount of usable parallelism.

Locality: Locality depends on the nature of the graph and the contents of the active set at a
given point in time. However, it is likely to be low. The active set represents a slice of the graph
at a given distance from the source and hence is not likely to be highly interconnected. The re-use
is most likely about the average degree of a vertex — since each vertex gets updated by each of its
neighbors. To get this amount of locality, one needs to partition the active set so that vertices that
share neighbors are in the same partition (which may not be easy).

The locality problem is made worse by the fact that the update function is likely very simple
— a few arithmetic operations — making the arithmetic to bandwidth ratio low. Despite the low
locality, we can make data transfers efficient by doing block transfers (gathers) of partitions of the
active set and the neighbors of that partition. Neighbors that are shared by partitions of the active
set are placed in only one partition.

Load Balance: As above, this can be load balanced by distributing partitions of the active
set to levels of the storage hierarchy. The load balancing needs to be done at the level of partitions
to avoid destroying what little locality there is.

September 14, 2009 Page 44

ECSS Report

371
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Chapter 5

Challenges in Expressing Parallelism
and Locality in Extreme Scale
Software

The focus of this chapter is on the challenges in expressing parallelism and locality that are en-
countered by application-level programmers across the three classes of Extreme Scale systems. The
task of managing the parallelism and locality is relegated to the system software discussed in Chap-
ter 6. It is likely that some heroic programmers, particularly for the data-center and embedded
configurations, will wish to program directly at the system level using the interfaces in Chapter 6.
However, for the remainder, it will be critical to address the challenges outlined in this section to
enable them to use the capabilities of Extreme Scale systems. The capabilities described in this
chapter are intended to address the needs of Applications (Chapter 4), serve as a portable inter-
face to Runtime Management of Locality and Parallelism (Chapter 6), and provide information to
Extreme Scale Tools (Chapter 7).

5.1 Application Programming for Extreme Scale Require Funda-
mental Breakthroughs

As outlined in Chapter 4, if applications are to be able to tap the power of future extreme-scale
systems, they must exploit parallelism at multiple scales, at fine granularity, and across a wide
variety of irregular program structures, data structures, program inputs, and in widely varying
dynamic resource environments. In short, there are fundamental challenges which amount to a
major crisis in the underpinnings of software development for all high performance computing
systems. Simply put, the existing programming approaches we have relied on to get to 100,000 fold
parallelism in nascent petaflop computing systems of today will not take us to extreme scale. They
are too rigid and labor-intensive, while also failing to expose sufficient parallelism and locality to
enable scalability and portability to future extreme scale computing systems.

Simultaneously expressing all available application parallelism and locality is a significantly
different task from writing traditional sequential programs. Sequential programs can be thought
of as a single expression of operation order and implied data movement (and thereby realized
locality), and traditional program optimizers and parallelizers required “proof” of effect equivalence
to make limited changes around that sequential order for performance [37], parallelism [85,90,118,
145] or locality [85, 119, 144]. With expression of only a single path, the limits of analysis meant

45

ECSS Report

372
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

that the computation expressions were over-constrained. While those programming systems could
increase parallelism and performance moderately, they are incapable of taking sequential application
programs and automatically creating the needed parallelism and locality for efficient extreme scale
parallel execution. Expressing all available application parallelism and locality requires a much
richer expression — of the lesser constraints required to realize the computation, and the rich
structure of locality over which the underlying program implementation system can play to achieve
low power and high parallelism — both being synonymous with performance in extreme scale
computing.

We identify several critical challenges to enable applications to exploit parallelism at multiple
scales, at fine granularity, across a wide variety of irregular program structures, data structures,
program inputs, and in widely varying dynamic resource environments:

• Billion-fold parallelism is required to tap the performance of extreme scale machines; achieving
this requires flexible exploitation of regular and irregular parallelism across a range of scales
from coarse to fine-grained.

• Locality is a critical requirement both to reduce energy per unit computation, and reduce
latency (which in turn reduces the energy and complexity costs of managing many concurrent
outstanding memory operations). This is a critical requirement (not an optional one) because
the power requirements of extreme scale systems are directly tied to achievable performance
[62].

• A third critical requirement is for the programming system to provide a simple execution
model for the programmer to think about. As the scale and complexity of software to meet a
variety of mission and commercial needs continues to expand in complexity, a simple execution
model will reduce the application programming complexity required to achieve the goals of
exposing all parallelism and locality. While the execution model may be defined at a high level
of abstraction, the underlying programming system should enable programmers to provide
non-binding guidance (hints or “default” control) when needed, thereby providing a level of
performance transparency.

While we do not expect any one means of balancing these factors to be appropriate for all
extreme scale applications, we believe that significant progress is required (and possible) in all
three. Attacking all three simultaneously is the grand challenge of extreme scale programming.
These challenges are demanding, but they must be addressed if extreme scale systems are to achieve
their performance potential.

5.2 Portable Expression of Massive Parallelism

The requirement of pervasive extreme-scale parallelism outlined earlier demands that all of the
intrinsic parallelism be exposed at all levels in the application. This is a marked contrast to current
practice where programmers repeatedly rewrite applications to expose incrementally more paral-
lelism for the next generation of hardware. Instead, our goal should be to express all opportunities
for parallelism, leaving the choice of what to exploit to the layers of the software stack responsible
for managing parallelism and locality (Chapter 6). While this is likely to be a more demanding
task for current programmers who have been trained in sequential programming, it is expected that
expression of parallelism and locality will be simplified in future programming models that break
sequential habits of thought [132]. In this section, we briefly summarize some of the key points made
in [132] and related work.
September 14, 2009 Page 46

ECSS Report

373
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

First, a major focus in writing efficient sequential code is to minimize the total number of oper-
ations. In contrast, efficient parallel code needs to focus on maximizing parallelism i.e., minimizing
the number of operations on the critical path. With modern memory hierarchies, both sequential
and parallel code must also focus on improved locality, but parallel code offers more opportunities
than sequential code to (say) perform redundant operations to reduce communication. As men-
tioned earlier, locality optimization will have a first-order impact on energy reduction for future
Extreme Scale systems. Second, good sequential algorithms attempt to minimize space usage and
often include clever tricks to reuse storage; however, parallel algorithms need to use extra space to
permit temporal decoupling and to achieve larger scales of parallelism. Finally, sequential idioms
often stress linear problem decomposition through sequential iteration and linear induction. On the
other hand, good parallel code usually requires multi-way problem decomposition and multi-way
aggregation of results. A simple example is the difference between specifying a summation as a
sequential iteration vs. a Fortran 90 SUM intrinsic for arrays.

A fundamental issue in the portable expression of parallelism is the need for data structures
that lend themselves naturally to data-parallel operations. Fortunately, the array or vector data
structure, which is a cornerstone of traditional HPC applications, is very well suited to data paral-
lelism as evidenced by programming languages such as APL [82], Fortran 90 [102], NESL [42] and
Ct [67]. These languages are able to express both flat data parallelism on vectors (element-wise
operations, reductions, constrained permutations) and nested data parallelism on sparse or indexed
vectors. Streams represent another data structure that is well suited for parallelism, as exemplified
in data flow languages and programming models such as Sisal [100], Synchronous Data Flow [93],
Brook [45] and StreamIt [69]. However, graph and other pointer-based data structures necessary
for new Extreme Scale applications pose additional challenges for expression of parallelism and lo-
cality. The notion of abstract collections in modern object-oriented languages can help bring some
of the benefits of data parallelism from arrays and streams to pointer-based data structures. In ad-
dition, asynchronous dynamic parallelism, as embodied in languages such as Cilk [43], Chapel [53],
Fortress [38], and X10 [50], is necessary for operating on irregular data structures. Compared to
current approaches, a key challenge for Extreme Scale is the ability to express this parallelism at the
finest granularity possible, while delegating to the implementation the choice of what parallelism
to exploit in a locality-sensitive manner.

In summary, a program that is organized according to sequential thinking and linear problem
decomposition principles will be very hard to parallelize, whether by manual or automatic means.
On the other hand, a program organized according to parallel problem decomposition principles
should be easily run either in parallel or sequentially, according to available resources. At first,
the costs and overheads for the “intrinsically parallel” approach may be daunting, but we have
no choice than to overcome these challenges so as to enable software to use future Extreme Scale
systems. Along with advancing foundational technologies for intrinsic parallelism and locality, we
will need to also advance the pedagogy and curricula for software development. We will need to
teach new strategies for problem decomposition ranging from data structure design to algorithmic
organization that do not incorporate any inherent sequentiality. Approaches to multi-way problem
decomposition may make the process of combining general sub-solutions harder than the sequential
case, but this is our only hope for program portability in the future.

5.3 Portable Expression of Locality

The term “locality” refers to the logical or physical proximity of data to the units that perform
computation on them. As mentioned earlier, locality optimization will have a first-order impact on

September 14, 2009 Page 47

ECSS Report

374
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

energy reduction for future Extreme Scale systems. Also, good sequential algorithms attempt to
minimize space usage and often include clever tricks to reuse storage; however, parallel algorithms
often require extra space to enable the temporal decoupling necessary for larger scales of parallelism.
In Chapters 3 and 4, we also discussed the need for extra storage in weakly scaled parallel algorithms.

Programs must capture the opportunities for reuse and locality independent of machine struc-
ture or management policy. The compiler and runtime/OS can then decide how to best exploit
the locality that has been exposed — fitting it to the structure of a target machine. Locality must
include both horizontal (between processing elements) and vertical (between levels of the hierarchy)
types.

5.3.1 A Simple Example

Consider the following simplified pseudocode fragment from a fluid dynamics application:

for t in timesteps {
forall cell in cells {

forall neighbor in cell.neighbors {
compute_flux(cell, neighbor) ; // uses old value of pressure

}
}
forall cell in cells {

compute_pressure(cell) ; // uses both x-flux and y-flux
}

}

Here cells is a possibly irregular collection of cells that is large enough so that it fits only in
the aggregate main memory of a large machine. The computation iterates over the collection twice.
On the first pass, it computes the fluxes through each face of a cell as a function of its pressure
and that of its neighbors. On the second pass, it computes the pressure of each cell as a function
of these fluxes. Each cell structure holds a collection of pointers to the cell’s neighbors, the fluxes
through each face of the cell, and the pressure within the cell.

The locality of this program is expressed by the neighbor relationship among cells, which also
captures the dependences in the computation. The neighbor graph is data dependent, and may be
time varying. Ideally we would like to exploit this locality by capturing both the reuse of shared
neighbors and the producer-consumer locality between flux and pressure. Both of these forms of
locality can be exploited horizontally and vertically.

While the neighbor relationship captures the locality of this program, it is easier to exploit this
locality if it is expressed by partitioning the cell collection into sub-collections of arbitrary size in
a manner that minimizes the number of external neighbor links from each sub-collection. Consider
the following pseudocode:

partition(N, cells, parts) {
forall part in parts {

forall cell in part {
forall neighbor in cell.neighbors {

compute_flux(cell, neighbor) ; // uses old value of pressure
}

}
}

September 14, 2009 Page 48

ECSS Report

375
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

forall part in parts {
forall cell in part {

compute_pressure(cell) ; // uses both x-flux and y-flux
}

}

Here we assume an application-specific function decomposes the cell collection into a partition
called parts. Each part can then be mapped to a given node to exploit horizontal locality or
to a level of the memory hierarchy to exploit vertical locality. Multiple levels of vertical locality
can be expressed in this manner by recursively partitioning a collection. In a style motivated by
Sequoia [64] and by Hierarchical Place Trees [147], we can write:

void compute_cells(cells, level) {
if(is_leaf(level)) {

forall cell in cells {
// do the computation

}
} else {

partition(N[level], cells, parts) ;
forall part in parts {

compute_cells(part, level-1) ;
}

}
}

To capture producer-consumer locality, we need to fuse the two forall nests as shown below:

partition(N, cells, parts) {
forall part in parts {

forall cell in part {
forall neighbor in cell.neighbors {

compute_flux(cell, neighbor) ; // uses old value of pressure
}
compute_new_pressure(cell) ; // but don’t update old pressure yet

}
}
make_new_current() ; // now make new pressure visible

The programmer here is expressing the producer/consumer locality between fluxes and pressures
by bringing the two computations closer together. Now the fluxes are used (consumed) as soon
as they are generated (produced). Hence the flux values can be captured in the smallest level of
the storage hierarchy and never have to be written out to main memory. This transformation also
improves reuse as it avoids having to read the cell back in to compute its pressure. To avoid creating
a read-after-write (RAW) hazard, however, the update of pressure needs to be synchronized so that
all flux computations in the current timestep see the old pressure value. While in theory such
transformations could be automatically discovered, it is much easier if this locality is explicitly
expressed, rather than leaving it to be discovered.

September 14, 2009 Page 49

ECSS Report

376
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

5.3.2 Parameterized Decomposition

As shown in the example above, the key to expressing locality in a portable manner is a parameter-
ized decomposition of a dataset. The partition function above expresses what the programming
system needs to know about the collection to exploit both horizontal and vertical locality. Speci-
fying the partition function is a key aspect of expressing locality.

The partition function is application specific. For dense matrices, partitioning is just a block
decomposition. For graphs, the structure of the problem may be exploited to generate good parti-
tions inexpensively. For example, in a 3D code, the physical partitioning of space into contiguous
3D regions may be used to generate good partitions.

The temporal nature of the partition is also application specific. For some codes the partition is
data independent. For others it is data dependent but static i.e., the partition must be computed
when the data set is loaded, but then remains constant for the remainder of the program execution.
In other cases, the partition is time varying — the partition changes (perhaps incrementally) each
timestep.

Expressing locality also requires that the dependence graph of the application be easily deter-
mined from the source code. In the example above, the dependence information is easy to determine
— cell fluxes depend on cell and neighbor pressures and cell pressure depends on cell fluxes. For
applications with significant indirection, such dataflow can be harder to determine making it more
challenging for a compiler and run-time system to discover locality. Programs must capture the op-
portunities for re-use independent of machine structure or management policy, let the runtime/OS
exploit this as it can.

5.4 Portable Expression of Synchronization with Dynamic Paral-
lelism

Writing programs using today’s state-of-the-art synchronization primitives is akin to using assembly
language for programming. All the burden of performance, scalability and correctness falls squarely
on the shoulders of the programmer with minimal support from the programming languages, devel-
opment tools, runtime systems or hardware. In order to make parallel programs robust, portable,
and scalable and reduce the burden on the programmers, many innovations are required in syn-
chronization and communication. As an example, the phasers construct [124, 125] extends X10’s
clocks [50] so as to integrate collective and point-to-point synchronization with fine-grained dy-
namic parallelism, while providing a next statement that guarantees that all synchronizations will
be performed in a deadlock-free manner. Each fine-grained task has the option of registering with a
phaser in signal-only/wait-only mode for producer/consumer synchronization or signal-wait mode
for barrier synchronization. Support for dynamic parallelism dictates that it should be possible for
new tasks to be dynamically added and dropped from phaser registrations, which creates a potential
challenge to avoid race conditions between synchronization operations and registration add/drop
requests. The fine-grain synchronization that accompanies fine-grain parallelism also presents the
challenge of phaser contraction [126] to reduce the synchronization overhead when reducing the
actual parallelism that is exploited on a given system.

One of the biggest challenges with synchronization for a programmer is the difficulty in avoiding
deadlock and data races, both of which can appear non-deterministically in current programming
models. Of the two, data race avoidance is more challenging than deadlock avoidance, since
deadlock freedom can be enforced by well-defined programming practices and the use of deadlock-
free programming constructs such as transactions and phasers. Removing non-determinism from

September 14, 2009 Page 50

ECSS Report

377
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

the programming model (as in declarative and functional programming approaches) can greatly
simplify the testing and debugging of parallel programs, but the key challenge there is to ensure
that the resulting model is sufficiently expressive for Extreme Scale software while still being efficient
enough for execution on Extreme Scale hardware.

5.5 Support for Composable and Scalable Parallel Programs with
Algorithmic Choice

Sequential idioms often stress linear problem decomposition through sequential iteration and linear
induction. On the other hand, good parallel code usually requires multi-way problem decomposi-
tion and multi-way aggregation of results. A simple example is the difference between specifying
a summation as a sequential iteration vs. a Fortran 90 SUM intrinsic for arrays. Extreme scale
software will tax our ability to build programs — due to the complexity of application logic, so-
phisticated irregular algorithms, and program structure required. To manage these complexities,
it must be possible to tap the full collection of higher level programming tools available to mod-
ern software engineering. In particular, in extreme scale programming systems, the expression of
parallelism, concurrency and synchronization, and locality must interact gracefully with modern
software engineering tools. The importance of composition was discussed earlier in Section 4.8.
Ideally, concurrency, synchronization, and locality would be expressed and managed at the level of
programmer meaningful abstract entities — objects or data abstractions — not individual bytes or
words or values. (Of course, the system level interfaces outlined in Chapter 6 may well operate on
lower-level machine-specific primitives and datatypes.)

To reduce the development cost of extreme scale software, it is imperative to have programs that
can seamlessly scale across embedded, departmental and data center-sized extreme scale systems.
However, it is often impossible to obtain a one-size-fits-all solution for high performance algorithms
that will work effectively in both ends of the scale. Often the best algorithm for an architecture
is tightly coupled to differences in parallelism, communication, and available system resources.
Different algorithms are effective at different sets of architectural parameters. Current compiler
and programming languages are unable to handle algorithmic choice. Thus, it is important to have
programming languages and compilers that also support algorithmic choice. These systems should
let the programmers express different algorithms to solve a problem and have the compiler and
runtime system automatically identify the best algorithm for the given deployment.

5.6 Managing Heterogeneity in a Portable Manner

With the advent and increasing popularity of hybrid architectures, programming systems face the
challenge of how to efficiently exploit multiple levels of parallelism, often coupled with different
memory systems, instruction sets, or even numerics. In current-day systems, such as the LANL
Roadrunner system [86], there may be as many as three distinct types of processors with distinct
memory, messaging, and performance characteristics. These elements of heterogeneity are man-
aged explicitly by the application programmers — through the use of coroutine-style models (one
for each type of heterogeneity), explicit message passing for data movement, and distinct address
spaces. Other examples of heterogeneous systems might include instruction set and performance
heterogeneity or simply differences in memory structure such as cache coherent shared-memory,
partitioned global address space, or shared-nothing. Unfortunately, if such characteristics of hard-
ware heterogeneity are explicitly addressed by the programmer, not only is the programming effort

September 14, 2009 Page 51

ECSS Report

378
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

increased, it is likely that the software will not be functionally portable, much less performance
portable to other systems.

Extreme Scale systems of the future may have both designed heterogeneity (in dimensions such
as architecture, organization, instruction set that are exhibited today in hybrid systems), as well as
intrinsic heterogeneity that arises from manufacturing variability, configuration, or aging differences.
It is critical the software built for such large-scale parallel systems address the heterogeneity of the
system in a fashion that supports portability of the applications. That is, it should be possible to
move applications from one machine to another — with different heterogeneous characteristics —
without significant change at the application source code level. This imposes major challenges in
expression of parallelism, locality, and computation so as to both enable the compiler and runtime
to deliver performance on one Extreme Scale system, but also in a form portable and flexible enough
that it can enable the compiler and runtime to deliver performance on other heterogeneous Extreme
Scale systems. This is a daunting challenge, but is in our view a fundamental requirement for a
technology landscape that supports Extreme Scale computing.

September 14, 2009 Page 52

ECSS Report

379
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Chapter 6

Challenges in Managing Parallelism
and Locality in Extreme Scale
Software

Earlier in this report, we summarized the hardware characteristics of future Extreme Scale systems
(Chapter 2) as well as the challenges involved in developing applications (Chapter 4) and expressing
parallelism and locality (Chapter 5) for such systems. In this chapter, we focus on the challenges and
implications in software management of parallelism and locality for Extreme Scale i.e., in bridging
between high-level application frameworks and programming models and the realities of Extreme
Scale hardware. Current software for high-end data-center, departmental and embedded systems
build on a classical software stack which primarily consists of operating systems, parallel runtimes,
static compilers, and libraries. Different embodiments of the classical software stack have been used
in the past for data-center-class capability systems, departmental systems, and embedded systems
with thinner and more restricted stacks used at the two extreme ends, and a richer software stack
used for departmental systems in the middle. However, as described in the following sections, the
general structure of the classical software stack has remained largely unchanged for decades, and
will be highly mismatched to the requirements of all three classes of future Extreme Scale systems.

6.1 Operating System Challenges

6.1.1 Introduction

Extreme Scale processors containing hundreds or even thousands of cores will challenge current
operating system (OS) practices. Many of the fundamental assumptions that underlie current OS
technology are based on design assumptions that are no longer valid for a Extreme Scale processor
containing thousands of cores. In the context of Exascale system requirements, as machines grow
in scale and complexity, techniques to make the most effective use of network, memory, processor,
and energy resources are becoming increasingly important. In its role as gate-keeper to all these
resources, the OS becomes a major obstacle in allowing the application to view the hardware in
accordance with the Extreme Scale Execution Model outlined in Section 3.1. A baseline challenge
for the exascale software stack is: how to reduce OS overheads without compromising the need to
protect hardware state from errant or malicious software.

Execution models that support more asynchrony will be necessary to hide latency. Such execu-
tion models will also require more carefully coordinated scheduling to balance resource utilization

53

ECSS Report

380
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

and minimize work starvation or resource contention. These execution models will also require
extraordinarily low-overhead, fine-grained messaging. However, the attributes required by the ex-
ecution model are nearly impossible to achieve when the OS intervenes for every operation that
touches its privileged domain e.g., for exclusive and privileged control of scheduling policy, for
exclusive ownership of resource management policies, and for inter-processor communication oper-
ations.

6.1.2 What is wrong with current Operating Systems?

Over time, operating systems have evolved into multifaceted and hugely complex software imple-
mentations that have accreted a broad range of capabilities. We refer to the challenge of breaking
the OS apart based on separation of concerns as “deconstructing the OS”. Below are a subset of
leading issues that motivate the need to reexamine the underlying assumptions that are encoded
in current OS implementations. These issues are discussed from the viewpoint of all three classes
of Extreme Class systems, not just the data center class for which specialized solutions have been
developed in past work on developing lightweight kernels for supercomputers.

6.1.2.1 Time Sharing

Time-sharing OS’s are built around the assumption that the CPU is a precious resource that must
be shared. This is no longer true for a CMP (Chip level Multi-Processor) containing thousands of
cores and constrained memory bandwidth.

• Old Conventional Wisdom (CW): When CPUs are considered the most precious resource,
time-multiplexing is performed to share access. However, when hundreds of CPUs are avail-
able, it no longer makes sense to suffer the overheads incurred by context switching. Indeed,
the cost of a context switch is not merely the time spent preserving registers because the asso-
ciated cache pollution (and other shared resources) can substantially reduce CPU throughput.
Context switching makes inefficient use of the new precious resources, which are energy, on-
chip memory and off-chip bandwidth.

• New CW: If cores are cheap, then allocation of cores should be spatially partitioned for
function rather than offering time slices of a single resource. This spatial partitioning is
analogous to Logical Partitioning (LPAR) from 1970’s era mainframe terminology.

• Research examples: MITOSYS (MIT/Berkeley), K42.

6.1.2.2 Inter-Processor Communication

All device interfaces are at the OS’s privilege level in a typical system of today. Therefore, any
access to virtualized device interfaces is mediated by the OS in order to protect the hardware
interface. However, the overhead of the privilege change and additional data buffer copies required
for OS mediation has given way to a wide variety of “OS bypass” and “user space messaging”
implementations such as VIA, PORTALS, and DRI. However, these approaches expose the hardware
to irrecoverable state corruption by errant software. Whereas current OS works in-band to protect
the hardware state, it would be more efficient to employ extra cores or some other supervisory
hardware to monitor application-to-device transactions out-of-band to check for state corruption
without adding additional overhead to the communication stream.

• Old CW: invoke OS for any interprocessor communication or scheduling to protect hardware
state from corruption.

September 14, 2009 Page 54

ECSS Report

381
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

• New CW: direct HW access allowed by application, but hypervisor monitors for state cor-
ruption out-of-band from the transactions (perhaps using a dedicated subset of cores as ob-
servers).

• Research examples: Singularity, MVIA/MVAPICH. that is isolated to OS bypass for MPI)

6.1.2.3 Interrupts and Asynchronous I/O

Background task handling for asynchronous operations are currently handled by threads and signals
in modern OS’s and application designs. In particular, devices must interrupt the CPU in order to
invoke the device driver software to service their requests.

• Old CW: Interrupts and threads (a side-effect of time-multiplexing access to a core) are used to
implement asynchronous operations or system calls in user codes. Even more fundamentally,
device handling is implemented by interrupting the CPU for the time-critical top-half of the
device driver and then scheduling the bottom half of the driver to run on the next available
time-slice of the CPU. The interrupt subjects processes to non-deterministic delays that can
result in load-imbalances for parallel applications.

• New CW: If CPUs are abundant, side-cores can be dedicated to asynchronous I/O and device
handling. For that matter, cores can be used to implement programmable DMA and asyn-
chronous I/O instead of using dedicated hardware components. Using a core or background
thread to implement DMA eliminates the need to write to the device control interface for a
dedicated DMA engine, which require costly msync() operations by the requesting CPU.

In this way, finer-grained spatial deconstruction can be achieved with legacy device drivers
wrapped and isolated on separate cores, interrupts delivered automatically to free cores, and
traditional facilities (e.g., file systems) handled as servers on separate cores. In addition,
resource allocation and Quality of Service (QoS) guarantees for network and memory band-
width and fair access to I/O modules can be obtained by using hardware mechanisms for
QoS as well as software-based policy implementations. The complexity added, however, is in
duplicating management information of virtual memory and other resources.

6.1.2.4 Device Drivers and Virtualization

OS’s play an important role in virtualizing finite hardware device interfaces — making it appear
to each application that it is the exclusive owner of a replicated copy of the device interface. In the
parallel context, current OS’s assume a workload of uncoordinated processes that stochastically vie
for control of finite/virtualized devices.

• Old CW: OS’s currently implement a greedy allocation policy where the first process acquires
a lock to gain exclusive access to a device (or OS/driver interface) for each I/O transaction.
This approach is sensible for stochastic access to the virtualized resource, but very bad for
highly-synchronous parallel algorithms. Resource and lock contention hurts performance by
flooding the inter-processor communication network with redundant/spinning lock acquisition
requests. Locks also serialize otherwise parallel processes when they attempt to access the
same resource (such as the network interface), and subjects them to nondeterministic delays.

• New CW: A new OS will need to use a QoS management for symmetric device access by a large
number of entities, or hand over coordinated scheduling of device access to the application.
The development of novel mechanisms for coordinating parallel access to finite number of
virtualized device interfaces is essential.

September 14, 2009 Page 55

ECSS Report

382
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

• Examples of Research: NOOKs, K42.

6.1.2.5 Fault Isolation

Another important role of operating systems on more robust systems is fault isolation. This is
particularly difficult for large SMP systems as errors can propagate rapidly through the system and
are extremely difficult to track down. With growing node concurrency, and increasing likelihood
of soft errors, the ability to rapidly identify and isolate errors will be essential. The total lack of a
fault isolation strategy in modern OS’s is arguably one of their weakest points moving forward.

• Old Conventional Wisdom (CW): CPU failure on an SMP node will result in a “kernel panic”
that takes down the system. Such events will happen with increasing frequency in future
silicon.

• New CW: CPU failure should result in isolation of the partition containing the failure. It
would be better yet if the hardware supported integrated rollback mechanisms to support
partition Restart. There is existing work in the Singularity OS to consider how transactions
between the application and device interfaces can be rolled-back to a known state to support
restart of partitions containing the application.

• Research Examples: VMM containers, Singularity.

6.1.3 Parallelism Scalability Challenges in Operating Systems

its role as the gate-keeper to shared resources, operating systems have traditionally been a major
bottleneck in achieving scalability on SMP’s. This is especially true for the open source Linux
operating system, which has historically lagged behind commercial Unix OS’s such as AIX and
Solaris in scalability but has now become the dominant OS of choice for high-end systems. Sig-
nificant attention has been devoted by the Linux community over multiple years to bridge the
scalability gap with commercial OS’s, starting with efforts such as improvements to the Linux
scheduler in 2001 [88]. More recent examples of scalability efforts explored and undertaken by the
Linux community include large-page support, NUMA support [95], and the Read-Copy Update
(RCU) API [101]. While these Linux enhancements have resulted in improvements for commercial
workloads with independent requests and flow-level parallelism [140] on small-scale SMP’s, the
scalability requirements for even a single socket of an Extreme Scale system will be two orders of
magnitude higher than what can be supported by Linux today. It is clear that this gap cannot be
bridged by business-as-usual efforts; in fact, future scalability improvements in Linux are expected
to be harder rather than easier to achieve, as evidenced by the RCU experience [101] and the
complexities uncovered by ongoing efforts to reduce the scope of the Linux Big Kernel Lock (BKL)
e.g., see [114].

High-end systems typically use specialized operating systems for compute and I/O nodes, and
standard operating systems for service, front-end, and file-server nodes. In the case of Blue
Gene/L [105], the specialized OS operates at the level of a processing set (pset) which consists
of one I/O node and a collection of compute nodes. The design of the Compute Node Kernel
(CNK) was simplified by placing a number of restrictions on the application e.g., single thread per
processor, absence of virtual paging, and support for only 68 system calls in Linux. While this
design approach was necessary to support the schedule and system requirements of the early Blue
Gene/L systems, it will not be practical for Extreme Scale systems with a thousand cores per chip
or for the dynamic, asynchronous, and irregular parallelism structures expected in future grand
challenge applications for Extreme Scale systems (Chapter 4).
September 14, 2009 Page 56

ECSS Report

383
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

The scalability challenges in operating systems of course extends to parallel file systems as well.
In recent years, a significant amount of research on parallel file systems has been reported, including
Lustre [99], GPFS [70], PVFS [96], pNFS [80], PanFS [107] and others [41,52,108,112,127,143,151].
Different APIs to interface with files such as MPI-IO [106], HDF5 [77] and NetCDF [115] have gained
popularity as an alternative to the basic POSIX API. Object-Based Storage [133] provides a different
way to organize data and metadata on the storage medium than file or block methods. Much of the
increased functionality of these parallel file systems comes at the cost of increased complexity and
overhead of the file system software. Some recent work seeks to reduce overhead of the file system
and its load on the file servers. The Light Weight File System (LWFS) [111], a current project at
Sandia National Laboratory, is a parallel file system that implements only essential functionality
without any additional functionality that degrades performance and scalability. Implementations
of additional features are moved into libraries and the application itself, allowing the application
to be optimized to a right-weight solution.

6.2 Runtime Challenges

Runtime support for parallel programming requires key innovations in lightweight mechanisms for
communication and memory hierarchy management, and user-controllable policies for managing
the system resources. Expected contributions to this area of research include:

• Lightweight runtime mechanisms to exploit the novel features of interconnection networks,
including topology queries, atomic operations, remote procedure invocation, fast one-sided
transfer notification used in synchronization.

• Extensions of the execution models to handle fast and slow memory associated with a single
thread, and demonstration of that model on a single-chip system with software-managed local
memory that replaces or augments the traditional hardware-managed cache hierarchy.

• Runtime support to virtualize the set of processors through the use of multi-threading and
dynamic task migration. Programming model extensions that allow for such virtualization
when needed, without enforcing it for all applications.

• Runtime support for memory system virtualization, including object caching and migration.
As with processor resources, the programming model will be extended to permit runtime-
managed data placement in addition to the user-managed placement already available.

• Support for multiple runtime systems for different execution models and soft real-time appli-
cations.

6.2.1 Task Scheduling and Locality Runtime Challenges

Past task scheduling runtime systems have typically been optimized for dynamic parallelism that
is oblivious of locality (e.g., Cilk, OpenMP, Intel Thread Building Blocks) or for locality in the
absence of dynamic parallelism (e.g., MPI, UPC, CAF). As discussed in Chapter 5, a desirable
characteristic for future programming models is that they express large amounts of concurrency
with locality control so as to be “forward scalable” to future generations of parallel hardware.
However, efficient locality-sensitive scheduling of O(1011) lightweight tasks is a major research
challenge.

September 14, 2009 Page 57

ECSS Report

384
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

6.2.2 Communication Runtime Challenges

High performance computing (HPC) systems implementing fully-connected networks (FCNs) such
as fat-trees and crossbars have proven popular due to their excellent bisection bandwidth and ease
of application mapping for arbitrary communication topologies. However, as extreme scale systems
move towards millions (and even billions) of processors, FCNs quickly become infeasibly expensive.
These trends have renewed interest in networks with a lower topological degree, such as mesh and
torus interconnects (like those used in the IBM BlueGene and Cray XT series), whose costs rise
linearly with system scale. Future systems will also need to take into account wiring complexity as
they consider alternative low-degree interconnect topologies.

Indeed, the number of systems using lower degree interconnects such as the BG/L and Cray
Torus interconnects has increased from 6 systems in the November 2004 list to 28 systems in the
more recent Top500 list of June 2008. However, it is unclear what portion of scientific computations
have communication patterns that can be efficiently embedded onto these types of networks without
advanced runtime support to more efficiently map the communication graph onto the underlying
hardware interconnection topology.

Figure 6.1 shows the communication patterns of a broad-variety of applications at a modest
parallelism. Even at 256p concurrency, the analysis highlights the application’s irregular commu-
nication patterns, evincing the limitations of 3D mesh interconnects [123]. At the same time, most
communication patterns are sparse, revealing that the large bandwidth of a FCN is not necessary
and have good locality, showing that an intelligent task-to-processor assignment can significantly
decrease the load on the network. It is clear that either the interconnect will need to adapt to the
diverse communication requirements of the applications, or there needs to be a system to implement
static task placement or runtime migration of tasks to better map the communication topology onto
the underlying topology of the hardware. The runtime system will play a crucial role in either case.

Current programming practice presumes an entirely flat model for communication locality,
where every processor is equidistant to its peers. Although topological hints exist in MPI, they
are rarely, if ever used. Most PGAS programming models only express two-levels of locality —
local and remote. HPCS languages such as Chapel and X10 attempt to mitigate this by allowing
the programmer to express locality using “locales” and “places”. However, optimized mapping of
places onto hardware elements by the runtime system is still a major open problem.

There must be substantial changes in software practice to better expose communication require-
ments. If explicit task placement is left to the application developers, then performance portability
may be brittle. This further supports the idea that the runtime system will need to play a more
important role in task placement and interconnect configuration in future systems.

6.2.3 Synchronization Runtime Challenges

Applications that need to exploit high levels of hardware parallelism are usually expressed in terms
of deep software parallelism and perform a significant amount of synchronization operations at
various levels of the system hierarchy. Fast synchronization primitives might define several areas
of research.

• Intra-node synchronization and notification: Synchronization primitives are usually imple-
mented using either signals/interrupts or polling. Polling is the faster technique since it does
not require any context switches but it makes implementations that have to deal with unex-
pected events cumbersome. One generic question that needs to be addressed in any implemen-
tation is the servicing of notification events. In some cases, these notification events initiate
complicated execution paths that consume processor resources. As an example consider the

September 14, 2009 Page 58

ECSS Report

385
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

� �� ��� ��� ��� ���

���	
����

�

��

���

���

���

���

�
��
	


�
�
�
�

�
��
��������������������������	���������
��

���
���

���
���

���
���

���
���

���
���

���
���

 ��
���

!��
���

���
���

"��
���

� �� ��� ��� ��� ���

���	
����

�

��

���

���

���

���

�
��
	


�
�
�
�

����������������������������	���������
��

���
���

���
���

	��
���


��
���

���
���

���
���

���
���

��	
���

��

���

���
���

� �� ��� ��� ��� ���

��	
���

�

��

���

���

���

���

�
�
	


�
�

�

����
�	����	�
�
����	�
������		
	�����#

��

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

Figure 6.1: Topological connectivity of a broad range of scientific computing applications, showing
volume of communication at P=256.

September 14, 2009 Page 59

ECSS Report

386
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

asynchronous remote execution functionality proposed in the DARPA HPCS languages. In
the ideal case, execution of unexpected events is dispatched to the “execution unit” that
already has possession of the required resources. Examples are requests for data that already
resides in a processors cache or requests for execution of services that a processor has just
served. One research direction will be interrupt dispatch based on resource requirements.

• Remote synchronization: The networking layer for advanced execution models supports sev-
eral primitives for remote synchronization. Depending on the hardware target, these prim-
itives are implemented using either active messages [142] or specific system features (such
as offload). We envision a highly concurrent and asynchronous execution environment where
events are generated and dispatched to various system components with various resource allo-
cations and privileges. In this setting, asynchronous events are ideally dispatched to the entity
that “expects” them and also has the available resources. The necessity for a distinction be-
tween resource ownership and availability to serve an event is illustrated by networking layer
implementations of data packing/unpacking communication primitives using AMs. Whenever
an active message requesting data packing arrives at a node, it should ideally be served at
the processor thats most likely to have the data in caches. However, if that processor is busy,
the request should be served by a different core.

Several requirements become apparent from the previous discussion. Events have to express
their resource requirements, execution entities (threads) have to be paired with resource usage (e.g.,
memory footprint) and schedulers/dispatchers have to be able to access this information. Meeting
these requirements translates into research into performance instrumentation and techniques to
extract and describe application behavior.

6.2.3.1 Thread and Resource Virtualization

Current threading packages, such as Pthreads, offer very limited control over scheduling decisions.
Ideally, information about resource utilization is associated with threads and schedulers take this
information into account. Furthermore, experience indicates that cooperative threading rather
than preemption is able to increase performance in a HPC environment. This unfolds into several
research directions:

• Develop mechanisms to extract resource usage (memory, functional units) for parallel appli-
cations, using both dynamic (instrumentation and runtime monitoring) and static (program
analysis) approaches.

• Develop mechanism to extract the current state of execution: precise point in the execution
thread and expectation of near future action.

• Develop scheduling mechanisms and policies based on resource usage, priority and data de-
pendence information.

• Develop mechanisms and policies to avoid deadlock in a cooperative scheduling environment.

• Develop frameworks to expose this functionality to applications/libraries.

• Develop mechanisms to ensure progress and attentiveness in the presence of asynchronous
remote execution and Active Messages based implementations.

September 14, 2009 Page 60

ECSS Report

387
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

6.3 Compiler Challenges

The crucial role of compilers at the extreme scale is to map from language constructs that express
a very high-level decomposition of an application to highly power-efficient and memory-efficient
architecture-specific code and runtime layer calls. As has been proven historically, completely
automatic compiler optimization from high level code will not meet the performance requirements at
the extreme scale; in the extreme scale regime, we will also encounter memory and power constraints
that programmers and tools could previously ignore. Further, compiler-based approaches, such as,
for example, compilers for PGAS languages, have generally focused on regular, static parallelism.
As the applications for extreme scale platforms expand to encompass irregular, unstructured and
dynamic algorithms, so must the compiler technologies that support these challenging application
domains. An article reporting on a recent NSF-sponsored workshop on the future of compiler
research listed the following 6 research challenges, in addition to other guidelines on enhancing
research and enriching education [75].

Compiler research challenges in optimization include:

• Make parallel programming mainstream;

• Write compilers capable of self improvement (i.e., auto-tuning); and

• Develop performance models to support optimizations for parallel code.

Compiler research challenges in correctness include:

• Enable development of software as reliable as an airplane;

• Enable system software that is secure at all levels; and

• Verify the entire software stack.

Compilers at the extreme scale must collaborate closely with the application programmer to
derive an architecture-independent algorithm description that can be mapped to high-quality code;
further, the compiler must incorporate lightweight mechanisms that interface with the runtime
layer and architecture to dynamically map this code for a specific execution context to be both
high performing and power efficient.

6.3.1 Customized and Dynamic Code Generation

Generally speaking, the role of code generation must fundamentally change in response to the need
for agile code mappings that respond dynamically to execution context, including input data set
properties, machine load and power constraints. Rather than a single statically-generated imple-
mentation of a computation, the compiler must represent a space of possible implementations that
are generated either a priori, by predicting relevant features of execution contexts, or dynamically,
in response to execution context.

Some of the critical decisions made in the code generation process must be exposed to both
programmers and the runtime layer, and the set of alternative implementations must be well-defined
and systematic. Such requirements will make it possible to explain the code generation process
to the application programmer, and to mechanically evaluate these alternatives, either off-line
or dynamically during execution. An essential feature of code generation is that the mechanisms,
either dynamic code generation, partial code generation that is instantiated at run time, or run-time
selection of statically-generated code, be efficient in both execution time and memory requirements.

September 14, 2009 Page 61

ECSS Report

388
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

6.3.2 Extracting Useful Parallelism from Ideal Parallelism

At the language level, as discussed in the previous chapter, we want the application programmer to
be able to express an abundance of parallelism, providing the underlying system architecture with
sufficient degrees of freedom to derive an efficient mapping of the parallelism. We need to strike a
delicate balance between runtime overhead for managing parallelism and the risk of idle resources
or load imbalance from lower overhead static thread management.

Historically, compiler-managed parallelism is mostly static, and possibly explicitly declared by
the programmer. In the extreme scale regime, the compiler should make some decisions on static
management of parallelism for efficiency’s sake, and defer other decisions for the runtime layer.
Therefore, the virtualization of some but not all parallelism is desirable, and even for runtime deci-
sions, the compiler should optimize for efficiency of dynamically-mapped code. The programming
model can assist with how to decide what parallelism to bind statically, and what to defer to run-
time, and the complexity of runtime decisions. For example, a hierarchical expression of parallelism
would provide the compiler with useful guidance on how to do this mapping [116,117].

6.3.3 Optimizations for Vertical and Horizontal Locality

A wealth of prior research on compiler optimizations to manage locality for uni-processors will
provide an important foundation for both vertical and narrowly-defined horizontal locality within
a chip. Dramatic reductions in memory per core and increased competition for off-chip memory
bandwidth will make such optimizations truly essential, but the approaches taken must be modified
to support parallel threads and in particular sharing of data across threads. Where caches are
shared across cores, fine-grain scheduling of parallelism to exploit locality in aggregate caches will
be needed. Further, on-chip non-uniform access time to caches (i.e., NUCA architectures) may
require careful placement of data even in caches.

Across processor chips and across the storage and processor hierarchy, careful data layout in
memory will be required to optimize performance and manage power. While PGAS and HPCS
languages offer some support for expressing data layout, as discussed in the previous chapter, new
programming model constructs are needed to express hierarchy and manage locality in light of
dynamic parallelism. Further, user-defined data layouts and libraries, working in conjunction with
compiler-generated code, will be required for more irregular applications. The role of the compiler
is to map high-level data layouts into levels of the memory hierarchy.

6.3.4 Synchronization and Communication Optimizations

Extreme Scale environments will demand advanced compiler analyses and optimizations that ex-
pand on current communication optimizations. Such optimizations must extend the scope of com-
pilers to handle (or even specify) new runtime mechanisms for synchronization, caching, and other
critical dynamic decisions based on user-space scheduling, memory management or communication.

6.3.5 Energy Optimizations

Compiler optimizations to reduce energy consumption have been a topic of research interest for
over a decade, but have mostly been deployed only in embedded environments. In conventional
architectures and high-end systems alike, energy is largely managed directly by hardware and low-
level system software. It is still the case that most compiler optimization research has focused
on minimizing execution time, without regard to power. For extreme scale architectures, the
compiler’s optimization objective function must consider both performance and power. Fortunately,

September 14, 2009 Page 62

ECSS Report

389
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

some optimizations can be good for both objectives, such as increasing processor utilization or
improving data locality. However, improving performance and managing power might be at odds
with each other in parallelization since a faster time to solution may use resources less efficiently
in computations that do not exhibit perfect strong scaling. Therefore, situations arise in which
the compiler must balance performance and power to obtain a solution that meets both sets of
objectives, suggesting the need for incorporating estimates of power consumption and power budgets
into the optimization process.

6.3.6 Support for Resilience

As discussed in [75], future requirements call for continuing the trend of the increasing role of compil-
ers in detecting errors automatically or semi-automatically. Research must continue to be pursued
in static and dynamic analyzes, in conjunction with language constructs, to detect programmer
errors. Further, the compiler will be responsible for appropriate code generation mechanisms to
detect hardware and system software errors and respond to faults.

6.3.7 Global Auto-tuning and Dynamic Optimizations

Compilers will play an important role in auto-tuning and dynamic optimizations, systematically ap-
plying the set of optimizations described in this section to empirically evaluate the best-performing
solution. Auto-tuning could be used for managing both performance and power, for computation
kernels and whole applications, and in both off-line and on-line settings. Because auto-tuning as a
technique requires a number of technologies that are beyond the capabilities of a compiler such as
techniques for navigating prohibitively large search spaces, library, run-time and application-level
optimizations, further discussion of auto-tuning is deferred until Chapter 7.

Dynamic optimization strategies must be efficient enough to employ at run time, or must be used
in conjunction with partial code generation and dynamic instantiation or a priori code generation
and dynamic code selection. The overhead of dynamic optimization means that it must be applied
at the appropriate computation granularity. If high speedup is feasible for a repeated computation,
then the execution can also overlap optimization with execution of a previous time step and execute
the newly optimized code when it becomes available.

6.4 Library Challenges

One of the many tenets of computer science is an aspiration to develop techniques to manage
and reduce software complexity. Often the practical limitations on complex computer systems are
human comprehension — not the physical computing and I/O capacity. This is especially true of
high-end computing (HEC), with a heightened emphasis as we scale to petascale and on to exascale
systems. Earlier in Section 4.8, we discussed the role of application frameworks in reducing software
complexity. In this section, we discuss the role of software libraries.

Libraries have historically been an important means to managing the complexity of system
software. In the HPC community, libraries can provide both productivity and performance. The
domain-specific libraries discussed earlier in Section 4.8.5 make use of support libraries to provide
optimized performance across a wide range of architectures – possibly ranging from workstations
to Top10 systems. The relationships between domain-specific and support libraries are depicted
in Figure 6.2. Note that support libraries may be architecture dependent with (1) numerical
libraries optimized for specific microprocessors, (2) communications libraries optimized for specific
system interprocessor communications characteristics, and (3) data management libraries and I/O

September 14, 2009 Page 63

ECSS Report

390
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

�

Figure 6.2: The Relationships between Domain-specific and Support Libraries

libraries optimized for specific shared memory and I/O system characteristics. It is important to
note that support libraries — numerical, communications, and data management — can be used
by any program and need not exclusively be used in a hierarchy below domain-specific libraries and
frameworks.

6.4.1 Numerical Libraries

Numerical libraries have been available to support application developers for over 40 years. The
International Mathematics and Statistics Library (IMSL) may be one of the oldest general numerical
libraries, currently supporting a comprehensive set of 1000+ algorithms [16]. The Basic Linear
Algebra Subprograms (BLAS) was first published in 1979 and is used to develop other numerical
libraries such as LAPACK [17] [18] [19]. An important feature of numerical libraries is that they
offer both portability and performance. While open source software is available to compile and
link for any architecture, the highest performance most often comes from highly optimized libraries
for specific processor/system architectures. To minimize the effort to reach high performance,
an open source auto-tuning implementation of BLAS APIs was developed, notably ATLAS (the
Automatically Tuned Linear Algebra Software) [20].

The algorithms in numerical libraries have evolved as a function of architecture over time. This
is illustrated in figure 6.3. LINPACK in the 1970’s was based on level-1 vector-vector operations,
which were well matched with the vector architectures of the time. LAPACK in the 1980’s needed to
deal with caches, data movement, and locality and used data-reuse friendly methods that employed
level-3 BLAS routines. With the advent of massively parallel processing with distributed memory
in the 1990’s, LAPACK evolved into ScaLAPACK based on PBLAS message passing. The most
recent incarnation of numerical libraries must be able to work on new many/multi-core architectures
where thread-level parallelism is as important as distributed memory parallelism.

The Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) project aims to
address the critical and highly disruptive situation that has been a result of the introduction of
many/multi-core processor architectures. Like the BLAS, LINPACK, LAPACK, and ScaLAPACK,

September 14, 2009 Page 64

ECSS Report

391
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Figure 6.3: Figure Evolution of Optimized Algorithms in Numerical Libraries [55]

PLASMA’s ultimate goal is to create software frameworks that enable programmers to simplify the
process of developing applications that can achieve both high performance and portability across a
range of new architectures. The new technologies employed in PLASMA are based on asynchronous,
out of order scheduling of operations as the basis for the definition of a scalable yet highly efficient
software framework for linear algebra applications [21]. Other open source numerical libraries
include Fast Fourier transforms (FFTs) such as FFTW [22], FFTE [23], and Vector Signal Image
Processing Libraries such as VSIPL/VSIPL++ [24].

Nearly all open source numerical libraries have been designed to deal with issues relating to
portability and performance. Many numerical libraries offer simple portability with reference im-
plementations that can be compiled and linked with larger applications. Many of the numerical
libraries offer both portability and performance. Some of the aforementioned libraries have auto-
matic tuning features e.g., FFTW. Others have been optimized for particular architectures e.g.,
FFTC, which has been optimized for the Cell BE processor architecture. Others rely on either
hierarchically employing optimized vendor libraries or having vendors develop optimized imple-
mentations e.g., VSIPL/VSIPL++.

While the HPC community makes extensive use of open source numerical libraries, there are
optimized numerical libraries available provided by vendors e.g., Intel and IBM both provide op-
timized numerical libraries for processors they have developed. Intel provides the Math Kernel
Library v10.x (multi-threaded and thread-safe) [25]. IBM provides the Engineering Scientific Sub-
routine library (ESSL) (thread-safe) and the Parallel ESSL (based on MPI for distributed memory
applications) [26]. These libraries are often available free for non-commercial use.

6.4.2 Communication Libraries

Communications libraries come in two basic varieties — general purpose and domain-specific — with
the possibility that domain-specific communications libraries have been built upon general purpose

September 14, 2009 Page 65

ECSS Report

392
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

communications libraries. We traditionally think of “libraries” as using language subroutine or
function calls, but here we permit the more general idea of an application programming interface
(API). MPI (and its variants) is based on the subroutine/function model [27] In the past, there
were application specific communications toolkits e.g., TCGMSG that was provided with the Global
Arrays support software that is part of NWChem [28]. Later versions were built upon MPI (i.e.,
TCGMSG-MPI) but maintained the domain-specific flavor in the programming interface [29].

6.4.3 Data Management and I/O Libraries

The third support library category describes those libraries developed to support data management
and I/O. There are general purpose libraries e.g., MPI-I/O, which combines the portability and
“look and feel” of MPI with performance and file interoperability [30]. Additionally, there are
domain-specific libraries to simplify data management and I/O. For example, NWChem makes use
of the following data management and I/O libraries:

• Global Arrays provides an efficient and portable “shared-memory” programming interface for
distributed-memory computers [13].

• Dynamic Memory Allocator provides a dynamic memory allocator for use by C, Fortran, or
mixed-language applications [31].

• Aggregate Remote Memory Copy (ARMCI) library provides a portable remote memory access
(RMA) operations (one-sided communication) optimized for contiguous and noncontiguous
(strided, scatter/gather, I/O vector) data transfers [32].

• ChemIO provides a standard I/O API that meets chemistry requirements while being portable
and being highly efficient [33].

September 14, 2009 Page 66

ECSS Report

393
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Chapter 7

Challenges in Supporting Extreme
Scale Tools

Extreme Scale tools encompass the portion of the software environment that support human clients
or other parts of the software stack. These tools must interact with producers and consumers of
information in two directions, both to provide guidance and query for additional information.

• Explaining application and system behavior: Tools to collect and present information to the
user or other parts of the software stack to help assist in the process of changing the application
to improve its behavior.

• Exploiting information beyond application code: Tools to collect and utilize information from
the user or other parts of the software stack to automatically improve the application.

We group all such tools collectively into development environments, which support the mapping
of application code to specific architectures. Several broad categories of development environment
capability include (1) performance and power optimization tools, which exploit architectural features
and eliminate bottlenecks; (2) correctness tools, which pinpoint and eliminate errors and vulner-
abilities; (3) analysis of computation, which provide analysis of application behavior, preferably
through interactive visualization; (4) application completion tools to manage the low-level details
of mapping an application to an architectural platform; and, (5) compilers, which provide support
for all of the above, in addition to translation from the programming model. While more details
on these classes of tools are presented in Appendix A.2, this chapter examines the technological
challenges facing tool developers.

7.1 History of Tools and Development Environments

For well over twenty years, researchers and tool developers in academia and industry have been
struggling to develop technologies and tools for tuning performance and debugging parallel systems
and applications, with only partial success. The reasons for these struggles are manifold, but can
be traced to a combination of technology, economics and human psychology.

Technologically, finding and re-mediating performance or correctness problems is difficult, given
the complexity and scale of today’s parallel systems. Not only do tens to hundreds of thousands
of hardware components (processors, cache and memory systems, communication interfaces and
interconnection networks, and storage systems) interact in oft-unexpected ways, their behavior is
mediated by complex, multilevel system and application software hierarchies. Subtle interactions

67

ECSS Report

394
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

among the components at any level, or even multiple levels, can adversely affect observed application
performance. Each new, large-scale system exposes examples of such unexpected problems, from
the deleterious, system-wide effects of a TLB replacement algorithm, to operating systems jitter
induced by system daemons, to adaptive runtime systems that conflict with system policies. If
history is any guide, such challenges will only grow with future extreme scale systems.

Despite, or perhaps given this complexity, software performance and debugging tools are rarely
a priority during development for HPC system designers or vendors. Perhaps paradoxically, the
shift to commodity-based HPC systems has exacerbated this difficulty, for software performance
and debugging tools are one of the few aspects that are not readily extensible from the sequential
domain. One can construct large-scale systems using entirely commodity components - proces-
sors, memory and storage systems, interconnect, operating system, libraries and compilers, yet the
challenges of tuning and debugging one hundred thousand concurrent threads differ markedly from
PC-based debugging and tuning.

Moreover, experience has shown that there is no economic market to stimulate development
of parallel software tools. There is no thriving ISV market for HPC debuggers or performance
tools, nor is development of such tools a priority for the large system vendors. The selection
criteria for HPC system procurement overwhelmingly focus on other aspects — peak and sustained
performance, reliability and power consumption — but less on human productivity and total time
to solution. Government contracts mandate basic tools as part of most, if not all procurements,
but this has done little to advance either the technical or commercial state of the art.

Finally, unlike other elements of the HPC software stack, software performance and debugging
tools must combine both technology and usability. However arcane the compiler and code develop-
ment interface, no current user would consider writing assembly code. In contrast, performance and
debugging tools must be capable of capturing and presenting data on possible performance or cor-
rectness problems, and they must do so in ways that users find intuitive and helpful, else the users
will eschew these tools in favor of more rudimentary alternatives such as manual instrumentation.

Given the technological complexity of tools, the realization that market forces seem unlikely to
solve current problems, and the usability challenges inherent in tool development, several workshops
and reports have recommended that we change our current research and development model. Simply
put, our current tool approaches are not working and have not worked for the past twenty years.
The remainder of this chapter examines how tool research can be integrated with research on
extreme scale systems to navigate the complexities of O(1011)-way parallelism.

7.2 Overview of Extreme Scale Development Environment Chal-
lenges

Many of the most critical challenges facing tools and development environments are variations
on challenges that have plagued the HPC community for 20 years, as discussed in Section 7.1.
Progress in this area demands a very different approach to developing and deploying tools. Beyond
existing challenges, an extreme scale regime will dramatically increase the complexity of developing,
debugging, modifying, porting and validating future applications. Hundreds of thousands of threads
executing in an increasingly dynamic environment is beyond the intellectual scope of even the most
veteran HPC application developers. The application programmer must of necessity let go of total
control of performance and focus on using more productive ways of expressing and mapping their
applications. Further, managing power consumption will become a new priority for application
programmers. This growth in complexity across a number of dimensions makes the use of tools
and development environments even more essential in managing the workload of HPC developers

September 14, 2009 Page 68

ECSS Report

395
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

and broadening the pool of talent for developing applications at this scale. We now enumerate the
essential properties of extreme scale tools and development environments, and then discuss specific
details of how these properties impact the technological direction of the extreme scale software
stack.

Performability. One immediate consequence of the dramatic growth in system scale is the
increased importance of system reliability and the need for alternate approaches to system resilience.
Today’s HPC systems contain more addressable nodes than the entire Internet did just a few
years ago, yet our modus operandi continues to presume systemic reliability. With millions to
tens of millions of hardware components, component failures will be frequent events, yet they
should not trigger system failure. This suggests that future extreme scale systems must adroitly
support a continuum of operating modes, ranging from complete health (all components operating
correctly) to substantially degraded operation (many failures). From the tools perspective, this
notion of performability (i.e., integrated performance and reliability) means combining multiple
techniques for fault tolerance (e.g., checkpointing, redundant computation, restart-retry) with real-
time monitoring to detect aperiodic component failures.

Scalability. When debugging and tuning a parallel application on a small-scale SMP, one has
the luxury to capture detailed data on the fine-grained interactions among threads and hardware
components. At the exascale, such detailed examination is neither productive nor even possible.
The volume of performance and debugging data and the more worrisome perturbations induced
by its capture become unmanageable. This suggests that extreme scale performance analysis and
debugging tools must combine dynamic instrumentation techniques (i.e., those that can be enabled
and disabled rapidly and on demand) with methods that exploit large scale as an advantage.
Stratified population sampling, adaptive compression, temporal logic and classification mechanisms
can be used to capture data and reason about behavioral equivalence classes. Only with such
approaches can instrumentation infrastructure and overhead grow sublinearly with system size.

Abstraction. The usability counterpoint to scalability is abstraction — presenting system and
application behavior in terms relevant to the system operator or application developer. In turn,
this has implications for program transformations and compile-time and run-time optimizations, as
crucial information must be preserved across transformation boundaries, else there will be inade-
quate data to relate measured behavior to application specifications. Moreover, if we are to broaden
the base of HPC application developers, we must move to presentation metaphors that are deeply
tied to the application model, not the hardware. Although extreme scale software developers, as
with any apex system, will be willing to accept the need to understand some level of system detail,
this will be unacceptable to users of departmental extreme scale systems. Knowledge of multicore
chip structure and interconnects, transient bit errors, memory hierarchies and interconnect topolo-
gies should not be required to develop portable, reliable, efficient extreme scale applications. This
is especially true when a level of hardware-software virtualization will likely be required to hide
ongoing component failures.

Adaptation and Autotuning. As noted, the volume and complexity of performance and de-
bugging data are likely to overwhelm even the most determined application developer, even when
abstracted and presented in terms relevant to the application programming model. This suggests
that manual optimization should be complemented by dynamic adaptation and autotuning. Such
introspective runtimes would combine real-time measurement, via targeted sensors, decision proce-
dures for intelligent policy configuration and selection and actuators for decision implementation.
Implementation challenges include hysteresis (i.e., the lag between change and its manifestation),
oscillation (i.e., avoiding repeated policy or configuration changes) and multilevel adaptation, where
compiler-synthesized adaptation (e.g., multiversion code generation), runtime library adaptation
(e.g., scheduling or code dispatching) and operating system management (e.g., virtualization and
September 14, 2009 Page 69

ECSS Report

396
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

dynamic provisioning) interact appropriately and intelligently.
Multilevel Integration As noted earlier, one of the many challenges of complex HPC systems

is the behavioral interdependence across hardware and software levels. As we raise the level of
programming abstraction to increase human productivity and to hide the idiosyncrasies of specific
hardware implementations, the semantic gap between user specifications and run-time behavior
will continue to widen. Data parallel languages, functional specifications, domain-specific toolkits
and libraries all hide system details, and their implementations depend on multilevel translation
and mapping. Understanding the performance and assuring the reliability and correctness of ap-
plications written using these tools will only be possible if the hardware and software tool chain
contains information sharing specifications and interfaces that can relate measured data to appli-
cation specifications.

Availability and Portability. When tools are provided by vendors of specific platforms,
application developers must either focus on using only a set of platforms sold by that vendor,
or use different tools as they port from one platform to another. Neither of these strategies is
reasonable, and undoubtedly has contributed to the general lack of adoption of tools as part of
the application developer’s workflow. An alternative and more desirable solution is the existence
of robust tools that are available on every HPC platform, preferably open-source tools that can
be adopted in academic environments and taught to the next generation of application developers.
The motivation to develop and deploy such tools must be carefully examined, with appropriate
incentives to guarantee a long-term evolution and maintenance of portable, robust and low-cost
tool and development environments. Fundamentally, the path to robust, efficient and effective
tools and programming environments demands that such software must be an integral part of an
overall system design, and not as an afterthought when the system has already been developed.

7.3 Enabling Technologies for Exascale Tools

Given the previously-described requirements, as part of this study we have identified three key
enabling technologies that will be essential for tools in exascale systems. The first of these is the
ability to collect and analyze enormous volumes of data to improve an application’s execution. The
second considers the computation side of data collection and analysis: how to enlist additional
computation to improve the execution of the main application. Finally, we discuss autotuning,
a principled methodology for using additional computation to test out alternative mappings of a
computation to find the best implementation.

7.3.1 Scalable Data Collection and Analysis

Data Collection. While almost every microprocessor provides performance counters to examine
execution data, these counters fall short of the requirements for exascale tools. Fundamentally,
hardware performance counters collect low-level information that is not directly meaningful to
application programmers. Vendors find these counters useful in understanding performance bot-
tlenecks on existing workloads, and improving upon functionality in future generations of devices.
Deriving meaningful application performance data from such low-level counters requires the pro-
grammer or tool developer to interpret the meaning of the counters, multiplex the counters of
interest since only a small number of events can be counted, modify the application to access the
counters, and then interpret the results and decide how to modify the application. Further, there
are gaps in what the counters are collecting, such as, for example, communication events from the
interconnect.

September 14, 2009 Page 70

ECSS Report

397
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Software layers can also inhibit data collection. The goal of exposing performance counter
information in an architecture-independent way, while desirable, is somewhat elusive. Portability
issues are a frequent challenge when counters on different platforms are not counting the same thing.
Compilers also introduce a number of challenges in mapping collected data back to code structures in
the application code. Following lowering from high-level constructs and optimization, the compiled
code may look very different from the original application. Only with proper preservation of the
original structure during the compilation process is it possible to do this mapping [135,136]. Run-
time layers and operating systems face similar challenges in mapping dynamically collected data
back to application constructs. A further requirement for dynamically collecting data in software
is its overhead, since a subset of data collection may need to occur during production executions.
The importance of efficient data collection in exascale systems begs the question of whether the
design of hardware counters, compilers, operating systems and development environments might
be very different if the designers start with the goal of explaining application behavior.

Autonomous Data Analysis and Mining. The system must autonomously and efficiently
collect data about what the program and system are doing, and perform on-the fly analysis of
the result at scale. Due to the complexity of exascale application behavior, the system must find
anomalies that are unanticipated, and therefore must collect data on routine and production runs,
and not just when looking for a specific problem. Thus, efficient modes of collection and analysis
become a high priority, as compared to detailed traces and post mortem analysis.

On-the-fly analysis algorithms must be developed that rapidly reason about behavior and com-
pare it to expectations, perhaps with system support to maintain efficiency. What are the baselines
or ground truth to which an execution can be compared? As an example, in monitoring SPMD
programs, analysis could look for threads with the most deviant behavior. Other baselines could
include user-specified expectations, models of expected behavior or results of prior execution. In
support of automatic validation of applications, scalable techniques for off-line detection of common
errors must be developed.

Implicit in this analysis is a set of important decisions about what information to collect,
analyze and discard or retain. The retained data must be organized in a performance database
that provides meaningful information to subsequent executions or phases in the current execution,
but also provides efficient access for on-the-fly analysis. Further, it should be noted that while
there may be some differences, much of the underlying support for identifying performance, power
or correctness anomalies will be common.

7.3.2 Companion Computations

While some applications may achieve high utilization on Extreme Scale systems and remain compute-
bound for their entire duration, many applications will likely be limited by other aspects of the
system such as memory bandwidth for at least some part of their execution. For these applications,
the unused hardware resources can be used to assist in improving critical application characteris-
tics such as programmability and resiliency. The notion of utilizing otherwise wasted resources to
improve execution is not a new idea, and has been proposed to exploit unused issue slots for ILP, in
multithreaded architectures, and now for multiple cores. An available surplus of resources suggests
mechanisms to support additional threads or processes not directly contributing to computation,
which we call companion computations. A companion computation provides information about ex-
ecution of the main process that can be used to analyze or improve performance, identify the health
of a node to improve reliability, examine tolerances to ensure accuracy, increase throughput and
interface with developer or other tools. Companion computations can be both sensors, detecting
problems during execution, and actuators, modifying execution to improve its behavior.

September 14, 2009 Page 71

ECSS Report

398
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

The notion would be to allow the user/tool to start up a companion computation at the same
time that the application is started. The companion computation would not only have its own
processors and memory, it could read and write into the memory of the executing application. The
companion computation would also have access to the interconnect and be able to communicate
with other companion computations associated with the same application.

The operating system should permit and assist in co-location of application and companion
threads. In addition to the reading and writing of the application’s data, the companion computa-
tion must be able to multiplex hardware counters that are important to the determination of the
bottlenecks in the application. Monitoring message traffic is also extremely important.

On the process side we have the ability of the companion process to capture important infor-
mation about the execution of the application and at the user/tool end we have the interface to
allow the user to direct the function of the companion process.

In designing mechanisms and roles for companion computations, we must adhere to the premise
that companion computations should do no harm. If the purpose of companion computations is to
gain useful system throughput, it is problematic if they are competing for resources with the main
computation.

7.3.3 Autotuning

Autotuning is broadly used to describe application code, libraries, and compiler-generated tools
that, either in an off-line or dynamic way, evaluate a set of alternative implementations. This
evaluation usually involves executing code under representative execution contexts, to select the
most appropriate for a specific hardware platform, input data set, and execution environment.
As with companion computations, off-line autotuning is feasible in today’s powerful systems, and
on-line autotuning will become feasible in light of the vast resources available in exascale systems.

The popularity of autotuning arose in response to the complexity of modeling or predicting the
impact of code changes on performance, particularly given the subtle interactions between hardware
features. This complexity will grow in the exascale regime, but so will the availability of hardware
resources to be used in the autotuning process. At exascale, on-line parallel search of alternative
implementations becomes more feasible.

While auto-tuners have largely focused on improving performance, the general approach is well-
suited for other optimization criteria, such as reducing power consumption, increasing throughput,
or limiting the load on some overused resource such as interconnect. Support for auto-tuners might
include appropriate hardware performance counters, parallel search algorithms and heuristics to
prune the search space of potential implementations, programming model features to express both
the space of possible implementations (as discussed in Section 5.5) and ways to prune this space,
and compiler technology to map the set of implementations to executable code segments.

7.4 Scenarios for Interaction with Tools

This section describes scenarios for how tools may interact with the exascale software stack to
manage the complexity of application development, execution and understanding/modifying tasks.
In each scenario, we present a motivation for why new approaches will be needed in an exascale
regime, and connect the scenarios to the six requirements in Section 7.2 and the three enabling
technologies in Section 7.3.

September 14, 2009 Page 72

ECSS Report

399
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Programming Model 

Express parameterized 

data partitions, and  

alternatives 

Hardware Performance Counters 

Collect processor, memory hierarchy, interconnect measurements 

Compiler 
Translate parameterized layouts 

Multiple versions 

Socket optimizations (mem., cores) 
Cross-processor communication 

Optimization decision tree 

Run-Time & Operating System 
Dynamic communication  

     optimization (parameterized) 

Thread scheduling 
Optimization decision tree 

Data Collection  

& Analysis 
Select Perf. Counters 

Detect anomalies 

Toggle data collection 
Store statistics 

Companion 

Computations 
Monitor data collection 

Inform user of anomalies 

Track back to code 

Autotuning 

Experiments Engine 

Evaluate alternative mappings 

Collect search space statistics 

Provide feedback 

Visualization of Execution 

    & Feedback 

Figure 7.1: Illustration of information flow for Analyzing Data Partition

September 14, 2009 Page 73

ECSS Report

400
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

7.4.1 Scenario 1: Clarify Performance Behavior for Developer

Abstraction involves distilling relevant behavior so that it is meaningful to the developer and helps
them implement changes that improve execution of their application. This requirement demands
that the system pinpoint causes of problems and map them back to application constructs, and
also provide the developer with suggestions of changes that have a direct and observable impact
on execution behavior. Therefore, the previously-described multi-level integration must support,
from initial design, mechanisms for such changes, and measurement capability to provide feedback
on the effectiveness of such mechanisms.

To understand what the developer needs to know we look back to the early days of vector
processors, when the execution behavior was easy to discover from feedback from the compiler and
profiling tools. The developer simply had to go to the routine in the application where the time
was being spent and then determine (with compiler assistance) if the code vectorized, and if not,
why.

With the advent of large-scale and distributed-memory architectures, the reasons why the appli-
cation is not performing well are more obscure and more difficult to remediate. When the developer
specifies a potential decomposition approach (parameterized by problem and machine size) for their
application data, this single choice has a significant impact upon the performance of the application.
Once the decomposition is specified, a number of other performance features of the implementation
are set as well, such as load balancing and number of messages. Additional optimizations on the
message-passing and overlap with computation can further improve performance, including mes-
sage consolidation and asynchronous pre-posting of receives. Once an application is in production
use, the modification of the decomposition is typically very difficult and the optimization of the
implementation of the message passing is the only way to improve the performance. Virtualization
approaches as in CHARM++ [84] can ameliorate this problem by allowing the programmer to
specify an “over-decomposition” and using the runtime system to perform dynamic load balancing.

Using a high-level language, for example High-Performance FORTRAN (HPF), the decompo-
sition is easy to change; however, the optimization of the implementation is left to the compiler.
Among the many lessons to be drawn from the HPF experiences of the 1990s is the need for
invertible performance mappings that can relate the measured behavior of executing code to ap-
plication programming idioms. HPF compilers generated message passing code (typically MPI)
from data parallel FORTRAN, annotated with data distribution directives. Presenting message
passing metrics, derived from instrumenting the generated code, to an HPF application developer
was of no value, as the application developer had no way to either understand the performance
problem or to change it. What was needed was a mapping from measured communication patterns
to recommendations about changes to data distribution directives or code fragments.

The average application developer who uses the high level language would have little or no
knowledge of the implications of parallelizing their application. Where there was a simple, “Did it
Vectorize?” question on the vector machines, on the large scale parallel systems, the questions are
significantly more difficult to ask. To address this challenge, the compiler/runtime system must be
very precise and accurate as to the major reasons for the lack of scaling. As the level of abstraction
rises, the difficulty of relating certain performance abnormalities to the actual code becomes much
more difficult. The importance of solving this problem is at the root of the issue of using new
languages that reduce the difficulty of using explicit message passing.

Thus, in Figure 7.1, we illustrate how the exascale software stack might collaborate to find
an appropriate data layout for a computation. We rely on abstraction and information sharing,
which have been among the most successful of our software ideas. Programming models and lan-
guages, libraries and runtime systems, operating systems and hardware, all define abstractions and

September 14, 2009 Page 74

ECSS Report

401
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

information sharing interfaces. However, these interfaces are predominantly lossy and communi-
cate information in one direction — from above to below. To implement run-time adaptation and
performability at exascale, we must increase the volume and types of bi-directional information
sharing. For our performance optimization scenario, compilers must retain code transformation
data to allow performance tools to relate measured data to application source code in ways that
suggest how application code might be changed to increase performance or reliability.

Let us assume the programmer expresses in the programming model a parameterized data par-
tition, with actual sizing of dimensions of the layout left to be bound empirically. The programming
model may also allow specification of multiple organizations and partitions, e.g., for a sparse graph,
that can be compared. The compiler translates each partitioning strategy into parameterized code,
possibly generating multiple alternatives that can be selected at run time. The compiler generates
cross-processor communication, hierarchical parallelization across cores, and a set of optimizations
to exploit the memory hierarchy. For each set of optimizations the compiler performs, it may have
unbound parameters that can be set empirically. It may also have a set of decisions that it would
prefer to defer until run time. Similarly, the run-time system will dynamically perform thread
scheduling and optimize communication, and the run-time too may parameterize these optimiza-
tions or have a set of decisions it would

We can think of the result of compilation as a set of alternative mappings, rather than just one,
and execution as a comparison of multiple different execution strategies. This suggests a complex
evaluation process to arrive at the most appropriate mapping. An autotuning experiments engine
evaluates the alternative mappings, providing feedback to the application programmer as to what
mappings were most successful. To support this evaluation process, the hardware must provide
access to performance counters to describe (among others): (1) processing within a core and within
a socket; (2) memory hierarchy behavior; and, (3) from the on-chip and cross-socket interconnects.
Companion computations derive important performance metrics and look for abnormal indicators
that could indicate poor performance. On-line collection and analysis of data steers the search for
the most appropriate mapping, with a tiny subset of results added to the performance database.
For example, if a companion computation for data analysis observed load imbalance, it could ini-
tiate a tracing of messages coming into and going out of the process, combined with workload
characteristics, to understand how the data layout is contributing to this performance problem.
With such real-time access to the application, a companion computation could provide a sophisti-
cated interactive visualization of the execution, providing the user multi-level access to performance
across a set of experiments for different mappings. This interactive interface would be designed
to correlate the application details to the location in the program responsible for the performance
details. Through automatic evaluation of a range of implementations and online comparison across
these implementations, such an approach would allow the programmer a view of how the layout
specification impacts performance.

7.4.2 Scenario 2: Online Failure Detection and Response

Historically, we have treated performance and reliability as distinct objectives, with equally distinct
approaches to design and optimization. For scientific and technical applications, checkpointing is
the standard mechanism, where the nodes of an MPI application collect and write data to secondary
storage, typically every few hours. These checkpoints can be used to restart the computation at
a later time. Implicit in this approach is the assumption that failures can be detected reliably.
Further, our performance tuning approaches rely on instrumentation and (predominantly) post-
mortem analysis of the resulting performance data to identify and correct performance bottlenecks.

At exascale, we can expect failures to be more common, suggesting that we must bridge the

September 14, 2009 Page 75

ECSS Report

402
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

chasm separating performance and reliability approaches, addressing performability as a single,
runtime, rather than post-mortem concept. This implies the need for real-time measurement of
reliability indicators (i.e., transient memory and data transmission errors, behavioral differentials
across cores) and performance metrics (computation, networking and storage). By monitoring the
temperature of a node, a key insight into the health of the node can be tracked. For example,
monitoring the number of retries in the transfer of a message can give an indication of the health of
the interconnect. This analysis could be combined with dynamic adaptation, including adaptively
selecting checkpointing frequencies, multi-version code execution for verification, automated task
retry and autotuning that adapts computation to changing resources. Equally importantly, this
will require greater information transparency across software and hardware levels. Coupled with
programming model support to describe responses to failure and information from previous exe-
cutions, compilers should generate multiple code versions that reflect expected failure modes (e.g.,
restartable models, configurable checkpoints, etc).

7.4.3 Scenario 3: Power Management

Exascale raises power management issues at two levels, both for individual nodes and at the system
level. At the node level, this includes managing processor power states, enabling and disabling
cores, memory and storage power management, and network interface states. To date, power
management has focused largely on processors and voltage/frequency adjustment. However, rather
than managing individual cores, managing collections of cores and their chip-stacked memory will
become increasingly important, and complicated, as memory will be a major fraction of node
power consumption. At the system level, it includes partition management and scheduling and
interaction with cooling infrastructure, something not normally considered in high-performance
computing software.

Given the wide range of power management scales, it is critical that clear interfaces be defined
for information sharing and coordination across hardware, system software, runtime systems and
applications. No single level of the hardware/software stack contains all the data needed for power
management and optimization. Perhaps equally importantly, these power management issues are
deeply intertwined with performance optimization and reliability management (performability),
particularly when systems include heterogeneous cores.

To enable intelligent, adaptive decision making, exascale tool systems must include real-time
measurement of performance metrics, reliability indicators and power consumption. In turn, deci-
sion runtime procedures must be designed to balance the oft-conflicting goals of high performance,
bounded power consumption and reliable execution. Similarly, software tools should present not
only performance data but power consumption profiles as well. Optimizing for performance alone
can push systems beyond their thermal limits and increase the probability of component failure
due to thermal stress. Conversely, optimizing for power consumption alone can unduly constrain
application performance.

7.4.4 Scenario 4: Debugging

When a user encounters a problem when running an application across a large number of processors,
they need to investigate the cause of the problem, where does it manifest itself? Is it a logic error
or a system error? If it is a logic error, is it in the serial code, parallel code, or communication
code? The application programmer has several options available to them:

1. Run the application again and see if the problem is repeatable

September 14, 2009 Page 76

ECSS Report

403
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

2. Run the application on fewer processors and see if the problem exists

3. Try to schedule interactive time on the same large number of processors to use a debugger to
isolate the problem.

Since an exascale system will have billions of threads of execution, no one expects today’s
debuggers to scale to that level. Therefore, how can the aforementioned enabling technologies be
employed to assist the programmer in identifying the problem? One of the most difficult problems
is the amount of time a code compiled to be debugged takes to run. The use of the companion
process has the potential to significantly reduce that time. With new research, we anticipate that
the companion process should be able to use compiler and runtime information to perform the
necessary mapping between optimized and unoptimized execution states without slowing down the
application threads.

If the program runs the application again and it runs correctly, that does not assure that the
application/software is correct. We could actually have the worst kind of error that is typical of a
race condition where we have a successful execution one time and an unsuccessful application the
next time. A companion process could assist the application developer in identifying the problem in
several ways. For example, the companion process could make memory watch points significantly
more efficient. By monitoring the executing program’s memory, the companion could identify the
initial point when a race condition occurs. Then it could halt the application and allow the user
to step back to identify which operation actually caused the error.

Another use of a companion process would be to execute an earlier correct version of the
program in parallel with the current version to be able to identify the point in time when the two
versions differ. This type of analysis is particularly valuable when the programmer is restructuring
a currently running application to perform more effectively. Development of a new age of debuggers
which have access to a companion process would open up a wide range of additional capabilities to
quickly identify error, even when running large scale applications.

A companion process could improve the performance of differential debuggers. With such a
companion process, the application could be dynamically checkpointed when the user identified an
abnormality. The user could then examine the contents of the application’s memory and quickly
determine the cause of the problem. Plotting the contents of an array in real time would allow the
user to visually identify where abnormal computation is taking place, perhaps at a boundary that
is not properly being handled in the application.

7.5 Summary

This chapter has highlighted three key areas of innovation in the software stack needed to de-
velop useable tools that truly enhance programmer productivity in the complexities of an exascale
regime. These three areas of innovation are: (1) scalable data collection and analysis; (2) compan-
ion computations; and, (3) auto-tuning. Using four scenarios highlighting how tools could enhance
programmer productivity, we examine how these areas would facilitate interaction with the appli-
cation developer and the rest of the software stack. While a lengthy discussion of tool research
is beyond the scope of this report, we describe in more detail the set of tools currently used for
petascale or envisioned for exascale in Appendix A.2.

September 14, 2009 Page 77

ECSS Report

404
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Chapter 8

Technical Approach

In this chapter, we outline key elements of a technical approach for Extreme Scale software. The aim
of this chapter is to provide examples that are indicative of the kind of software technologies that will
be needed to address the Concurrency and Energy Efficiency challenges of Extreme Scale systems,
without prescribing specific solutions. It is expected that the community will create shared open
source components through efforts such as the International Exascale Software Project [56] that
can be leveraged in building Extreme Scale software stacks. Section 8.1 highlights the importance
of software-hardware interfaces in an Extreme Scale system. Section 8.2 identifies opportunities
for addressing Concurrency and Energy Efficiency challenges through software-hardware co-design.
Section 8.3 discusses the importance of deconstructed operating systems in the future OS roadmap
for Extreme Scale systems. Section 8.4 presents a vision for Extreme Scale system software based
on the notions of a global OS and self-aware computing [36]. Finally, Section 8.5 describes an
example execution model and technical approach, in an effort to encourage the community to think
of breakthrough approaches for building Extreme Scale software.

8.1 Software-Hardware Interfaces in an Extreme Scale System

Figure 8.1 shows a notional structure for software and hardware interfaces in an Extreme Scale
system. The main motivation for these interfaces is that we expect optimization of Concurrency
and Energy Efficiency to be best achieved by graceful cooperation among software and hardware
layers. The separation between software and hardware layers is specified as a “Hardware API” —
we refer to this interface as an “API” to emphasize the fact that hardware interfaces should not
look different from software interfaces from the application viewpoint. As shown in Figure 8.1,
there can be multiple levels of information flow within and across software and hardware layers.
Some examples of this information flow are as follows:

Programming language supplying data access pattern information to compiler: Programming
languages do not often provide the means to express many facts that the programmer may
know about their application, such as data access patterns. For example, a programmer may
write a library routine for generality such that it can handle both sparse and dense array
arguments. However, if the routine is often used for dense linear algebra, a hint like #pragma
expect stride 1 could help the compiler generate more efficient code in the common case.
These sorts of pragmas were commonly supported in languages and compilers for old vector
machines, but are rarely found on modern cluster platforms. If the programmer does not know
what data access patterns the code engenders (perhaps the programmer responsible for code
tuning/maintenance did not write the code originally), they should be able to use a tool like

78

ECSS Report

405
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

��

�

�

�

�

�

� ����

����	
�������	��
�������	����
�������������	���

��	��	
�������	��
�����
��	�	�����

����������

����	
�������	����
���	���
�
������������������	��	
��
����������	����	��
�������
��
�����������
�

���	����

����	
��
�� ��
�
��������
���������

�
��		����������

��	��	
�������

�
�����
�!�	�������	��
��
���	��
�������	��
�����������
	��	���
�

������������	���
�

����	
��������

�
	������
�������	���
������"����		���
��

��������	�����������

� #�� ��
�
�
�������	���� �

�����	����
���	���
������	�����������������������������
����� �

$�

���		���
�
������	��

	��	���
��
�������
���	����	
������
��		���
�

�

�
��������#�� ��
�
����������������

��������%&��	����������������
�

'�����	�&��(���!����$���

(���������������	�
��� �	���	����
�� ����	���
�������)�����������

������
�	��	�������

���������� �	�	���
����!����������!��	��	���*�
�!�	��	��
�������

���
���	�&��(���!����$���

(��������
���������	���
���������!����	��	�*��������)������������	������	��	��
������

�������

(���!����

�������������
�����	��
����	�&�
�

��������������	��
����� �
� �����

�
	�����

'���	�&�
�	��
����!����	��
�����������

Figure 8.1: Software and Hardware Interfaces in an Extreme Scale System (Notional)

September 14, 2009 Page 79

ECSS Report

406
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

a memory access profiler to discover the pattern, and then insert a pragma to capture what
has been learned. This scenario involves a feed-back loop among the programmer, compiler,
and memory tracer. It should be noted that trace-based recompilation is available today but
memory access pattern information for the most part is not available today (a missing, but
somewhat trivial to supply hardware API feature).

Compiler providing scheduling information to runtime system: Compilers invest a lot of
effort to discover the control flow, instruction mixes, and in many cases the data access
patterns and memory footprints of an application, then throw this information away after
code generation. In the meantime if the runtime knew the computational demands of the
programs being handed to it, it could reason about resource conflicts, and (say) explore
symbiotic scheduling that avoids conflicts on shared resources. For example, by binding
a non-memory-intensive and a memory-intensive thread together, rather than two memory
intensive threads together on the same shared memory node, cache thrashing and memory
bandwidth competition could be reduced.

Runtime system controlling data-motion hardware at a fine level of granularity: Armed
with information from the user and compiler about what data access patterns to expect, the
runtime should be able to ask the hardware to cache certain data structures, not cache cer-
tain others, and also should be able to control prefetching and other data motion operations.
Based on this information conveyed in a hardware API, a smart memory controller should
then be able to avoid moving long cache lines, big memory pages, and substantial disk blocks
when only one element of them is likely to be needed.

Performance tools: Memory address stream information (including communications and disk
I/O) can be used by performance tools to carry out very simple data analyses (e.g., identifying
data structure access patterns) or highly sophisticated analyses (e.g., identifying possible task
reorderings that preserve semantics while improving locality) and reflect this back to the
appropriate level. In Figure 8.1, the performance tools sit in the middle, observe, and inform,
all the other levels.

Declarative Hardware API: This high-level API describes properties of data structures or com-
putations that hardware may choose to take advantage of, for example that a data structure
is accessed randomly, or that a computation is memory intensive. The API is also used to
support queries on the choices made by the hardware that go far beyond today’s hardware
performance monitor interfaces e.g., querying the cache management policies used by the
hardware for a given address range, based on the declarative information received by the
software.

Further examples of the high-level declarative API include:

• Performance profiling requests that include identification of events to be counted and
sampled, and interface for software to collect information on performance events such as
AMD’s proposed interface for Lightweight Profiling.

• Resilience information that includes identification of threads with lower resilience re-
quirements e.g., for which software can perform error detection and recovery so hardware
does not have to.

Prescriptive Hardware API The declarative hardware API establishes information flow be-
tween software and hardware, does not enable the software to directly control the hardware’s

September 14, 2009 Page 80

ECSS Report

407
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

actions. In contrast, the lower level prescriptive hardware API, describes actions that the
hardware should or should not take. For example, the hardware can be told to not cache
data in a certain address range, or that it should voltage-scale the processor when running a
particular region of code. The lower level API should allow hardware to reflect up hardware
performance counter information including access to physical or virtual address (something
not the case today) without high overhead; this feature alone would greatly expand the ca-
pability of performance tools to carry out analysis that in turn can feedback to all layers of
software, and back to hardware via API, to improve parallel and energy efficiency. Further
elements of the low level API could include:

• Memory hierarchy configuration parameters e.g.,
– Cache sizes, line lengths, degree of associativity
– Register file sizes, data widths

• Memory access patterns
– Address ranges that should bypass cache
– Address ranges that require hardware coherence
– Address ranges for which coherence will be managed by software
– Address ranges with values that are guaranteed to be read-only (immutable) for

certain application phases
• Network bandwidth partitioning for different forms of data movement and communica-

tion
– PGAS
– RDMA
– Message passing
– Stream processing
– Other network reconfigurability parameters including topology and packet size

Power management
– Frequency scaling (smaller time constant, but constrained by voltage)
– Voltage scaling (larger time constant)
– Issue width management
– speculation control
– core power cycling temperature-based power policies

As different software stack components are developed for Extreme Scale systems, it will be
desirable to reuse components across the three classes of systems. To that end, Table 8.1 summarizes
the key similarities and differences among software stack components across all three extreme scale
system classes.

8.2 Opportunities for Software-Hardware Co-Design

We believe that software-hardware co-design will be a critical necessity for Extreme Scale systems,
in addition to the interfaces outlined in the previous section. This form of co-design has been
essential for vector parallelism [85] in current and past systems, and is also being explored for
scalable approaches to mutual exclusion using transactional memory [92]. In this section, we discuss
a few additional examples of software runtime capabilities that will be necessary for future Extreme
Scale systems, and examine how they can be made more effective with software-hardware co-design.
September 14, 2009 Page 81

ECSS Report

408
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Software Stack Com-
ponents

Data Center Departmental Embedded

Operating Systems Capability: restricted
high-end applications

Feature-rich: broader
mix of applications, ISV
software

Deterministic, Real time

File Systems Scalability: Large num-
ber of files

Enterprise file system Flat, simple, limited

I/O Some apps are massively
I/O bound

Standard network I/O,
richer set of I/O drivers

I/O bound

Resilience Runtime Intelligent checkpointing Could approach Enter-
prise mission-critical

Fault tolerant apps,
Replication for mission-
critical

Task Scheduling Run-
time

Featherweight asyn-
chronous tasks

Lightweight asyn-
chronous tasks

Deterministic, Real time

Memory Management
Runtime

Typically, single job at a
time, limited # large ad-
dress spaces

More sharing, larger #
address spaces

Single job

Intra-System Communi-
cation Runtime

Massive # nodes, special
communication hard-
ware, Special controls
for data movement,
Latency on critical path

Commodity Small number of modes,
application-specific data
movement

Power Management
Runtime

Adaptive, large-scale
power management

OS-driven Application-driven
(platform-limited)

Profiling & Monitoring
Runtime

Scalable, Online anal-
ysis/aggregation,
anomaly detection

Should be accessible to
non-experts

Lightweight, pre-
dictable, fixed time
intervals

On-chip communication
Runtime

Locality-aware dynamic
data movement and load
balancing

Locality-aware dynamic
data movement and load
balancing

Support for dynamic,
systolic, and statically
scheduled communica-
tions

Static & Dynamic Com-
pilers

Support for new task &
locality constructs, use
of spare cores, dynamic
optimization

Support for legacy codes
and their migration

System-level optimiza-
tion, more heterogeneity

Programming models Expression of new task
& locality constructs,
ultra-fine-grain paral-
lelism

Expression of new
task & locality con-
structs, very fine-grain
parallelism, Should be
accessible to non-experts

Expression of new task
& locality constructs,
real-time constraints

Table 8.1: Key Software Stack Component Similarities and Differences for Extreme Scale System
Classes

September 14, 2009 Page 82

Software Stack 
Components Data Center Departmental Embedded

Operating
Systems 

Capability: restricted high-end 
applications

Feature-rich: broader mix 
of applications, ISV 

software

Deterministic,
Real time 

File Systems Scalability: Large number of files Enterprise file system Flat, simple, limited

I/O Some apps are massively I/O 
bound 

Standard network I/O, 
richer set of I/O drivers I/O bound 

Resilience
Runtime Intelligent checkpointing Could approach 

Enterprise mission-critical

Fault tolerant apps,
Replication for 
mission- critical 

Task Scheduling 
Runtime Featherweight asynchronous tasks Lightweight

asynchronous tasks 
Deterministic,

Real time 
Memory 

Management 
Runtime 

Typically, single job at a 
time, limited # large ad- dress 

spaces 

More sharing, larger # 
address spaces Single job 

Intra-System 
Communication 

Runtime 

Massive # nodes, special 
communication hardware, Special 

controls for data movement, 
Latency on critical path 

Commodity 

Small number of 
modes, application-

specific data 
movement 

Power
Management 

Runtime 

Adaptive, large-scale power 
management OS-driven Application-driven

(platform-limited)

Profiling & 
Monitoring

Runtime 

Scalable, Online 
analysis/aggregation, anomaly 

detection

Should be accessible to 
non-experts 

Lightweight,
predictable, fixed, 

time intervals 

On-chip
communication 

Runtime 

Locality-aware dynamic data 
movement and load balancing 

Locality-aware dynamic 
data movement and load 

balancing

Support for 
dynamic, systolic, 

and statically 
scheduled

communications 

Static & Dynamic 
Compilers 

Support for new task & locality 
constructs, use of spare cores, 

dynamic optimization 

Support for legacy codes 
and their migration 

System-level 
optimization, more 

heterogeneity

Programming
models 

Expression of new task 
& locality constructs, ultra-fine-

grain parallelism 

Expression of new task 
& locality constructs, 

very fine-grain 
parallelism, Should be 

accessible to non-experts 

Expression of new 
task

& locality 
constructs, real-
time constraints 

ECSS Report

409
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

8.2.1 Scheduling dynamic parallelism with fine-grained tasks

As discussed in Chapter 5, it is important to ensure that the intrinsic parallelism in a program
can be expressed at the finest level possible e.g., at the statement or expression level, and that
the compiler and runtime system can then exploit the subset of parallelism that is useful for a
given target machine. There have been multiple proposals for expressing fine-grained parallelism
e.g., statement-level spawn [43] or async [50] operations, expression-level future [76] operations,
and operator-level data flow graphs [54, 128]. These operations for fine-grained parallelism are in
stark contrast with the bulk-synchronous parallel model [139]. While profile-directed compile-time
partitioning can be used to optimize the granularity of fine-grained tasks in certain cases [116,117],
in general the runtime system also needs to participate in the partitioning so as to best adapt to
unpredictable execution times. A classic approach to runtime partitioning is lazy task creation [104],
which has been extended into work-stealing runtimes for fine-grained tasks [65,73]. A work-stealing
runtime system creates a fixed number of worker threads, with one local double-ended queue (deque)
per worker. Each worker repeatedly picks up work from a deque of lightweight tasks using scheduling
policies that are designed to achieve good load balance while bounding the size of the deques. This
approach has been shown to yield scalability that is orders-of-magnitude superior to the scalability
achieved if each task were to be created as a thread at the OS level.

However, there are still significant overheads that remain in a software-only approach, that will
likely prevent it from being usable at Extreme Scale. These overheads involve locking operations,
and in the case of nonblocking algorithms involve spin loops on shared memory locations with their
accompanying cache consistency overheads. As mentioned earlier, these overheads are especially
important because they occur on critical paths in parallel programs. Hardware support for shared
queue data structures can result in orders-of-magnitude reductions in scheduling overheads and
scalability bottlenecks, while still retaining the flexibility of task scheduling policies in software.
As mentioned in Section 8.2.4, hardware support for shared queues can have other uses as well in
Extreme Scale systems.

Another source of overhead in task scheduling lies in the operations that need to be performed
on the fast path to save local variables, so as to ensure that the task can be resumed on a separate
worker from the one that it started on (if needed). A software-only approach introduces word-at-
a-time store instructions to save the local variables, and some of these stores are often redundant.
In contrast, hardware support for saving and restoring local variables (as in calling conventions)
can help reduce this overhead that occurs on the fast path.

8.2.2 Distribution and co-location of tasks and data

Another candidate for software-hardware co-design pertains to distribution and co-location of tasks
and data, which is one mechanism that can be used in support of locality optimization. As ob-
served throughout this report, it will be critical to optimize vertical locality so as to satisfy the
energy constraints of Extreme Scale systems. Runtime systems for programming languages such as
UPC [60] and Co-Array Fortran [109] that are based on a Partitioned Global Address Space (PGAS)
model include the notion of virtual home location for each shared datum. The more recent HPCS
languages extend this notion of home locations to computational tasks, as in Chapel’s locales [53]
and X10’s places [50], so as to enable tasks to be shipped to data, data to be shipped to tasks, or
any meet-in-the-middle combination thereof. The translation from global to local addresses is a
major source of overhead in a software-only approach to implementing such languages, along with
the communications that accompany non-local accesses. Thus, it becomes important for a com-
piler for such languages to perform redundancy elimination on address computations, to coalesce

September 14, 2009 Page 83

ECSS Report

410
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

contiguous accesses into a single communication operation, and to overlap communication with
computation [148]. However, many of these optimizations can still remain in a software-only ap-
proach after compiler optimization. Opportunities for software-hardware co-design include the use
of translation buffers to accelerate virtual-to-physical address translations, and DMA-like hardware
support to reduce the processor overhead of data transfers.

8.2.3 Collective and point-to-point synchronization with dynamic parallelism

As discussed in Section 5.4, the fine-grained parallelism intrinsic to a program may need to be ac-
companied by fine-grained collective and point-to-point synchronization among dynamically varying
sets of fine-grained tasks. These synchronization structures may be irregular, and tasks are per-
mitted to dynamically join or leave these structures as in the phasers construct [125]. Further,
it is usually desirable to augment the synchronization structures with communication for reduc-
tions [124], collectives, and systolic computations. As discussed in Section 8.2.1, synchronization
structures always represent good candidates for software-hardware co-design since a software-only
approaches for synchronization suffer from unnecessary cache consistency and serialization bottle-
necks. Hardware support (e.g., in the form of counting semaphores) can be used to reduce the
overhead of inter-core synchronization, and extensions in the form of register-level inter-core com-
munication (e.g., as in the Raw project [94]) can reduce the overhead of communication. Further,
the use of a single master task to perform a reduction in software can be a scalability bottleneck,
and a software-only approach to creating combining trees incurs high setup and tear-down over-
head. Instead, hardware support for combining synchronization and reductions will greatly reduce
the overhead of collective and point-to-point synchronization with dynamic parallelism.

8.2.4 Producer-consumer parallelism

Another common idiom in fine-grained parallel programs is that of producer-consumer parallelism.
In this model, a single-writer task serves as the producer of a datum for multiple readers. To
accomplish this, the writer task typically stores its result in a designated location, and the reader
tasks block when they request the result (if the result is not ready). In the case of futures [76],
the execution of the writer task may (optionally) be deferred till the datum’s value is requested by
one of the readers. Once again, we observe that a software-only approach suffers cache consistency
and serialization bottlenecks, and hardware support can be used to reduce these bottlenecks. A
classical example of hardware support in this area is the full-empty bit, but there may be many
other variations. Also, in many cases, the location on which the producers and consumers wish to
synchronize may be designated by a tag rather than an address. Hardware support to accelerate the
translation of tags to addresses can be very useful. Intel’s Concurrent Collections (CnC) [46,47] is
an example of a high-level programming model that relies heavily on producer-consumer parallelism
and that would benefit greatly from any hardware support.

8.3 Deconstructed Operating Systems

Operating systems must be refactored (deconstructed) to offer more flexible resource management
and runtime support for parallel execution models with the focus on exposing system resource
usage policies to the various level of the programming stack. The overall goal of a deconstructed
OS would be to allow the application to compose the best resource usage policies for its particular
needs and to adapt to system scale and load. Policy control should be hierarchical, with different
levels of abstraction depending on their consumer. For example, a future communication scheduling

September 14, 2009 Page 84

ECSS Report

411
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

mechanism could expose to the libraries/compilers explicit control over message sizes and ordering,
while exposing to the application level/programmer only abstract policies like “long routes first”.
Adaptation can take form of Quality of Service mechanisms or migration for communication locality.

Previous experience with compiler and runtime optimizations for PGAS languages indicates
that lightweight control over OS mechanisms is not sufficient for good performance and additional
control is required over the policies that guide the management of these mechanisms. Looking
beyond PGAS languages, even more control of resource management will be necessary to support
the kind of novel execution strategies required for Exascale applications. Current OS designs
favor generic policies, e.g., preemptive thread scheduling or Least Recently Used page replacement,
which have been selected as being the least common denominator for commercial workloads. In
contrast, the execution models required for structured parallel algorithms in scientific computing
applications are less diverse, usually require cooperation among computing entities and exhibit a
relatively ordered execution imposed by data/task dependence.

8.3.1 Role of Hypervisors in a Deconstructed OS

The resources (such as memory, bandwidth, and power) in an extreme scale system are expected
to be highly constrained. Exascale hardware technology is also envisioned to be highly memory
constrained. Therefore, rather than a full OS model, there may be substantial benefit from an
“exokernel” model [61] where applications are bundled with only the necessary OS functions linked
in to the application that run in their own virtual machines (VM) container, relying on the hypervi-
sor or VM container for protection, resource sharing, and management of Quality of Service (QoS)
guarantees. We will refer to these protection mechanisms as an “application container” because
there are a number of technologies including hypervisors, VMMs, and runtime environments such
as Singularity that can implement this kind of isolation in a spatially partitioned CMP. The pri-
mary roles of the application container are to manage partitioning of hardware resources, including
physical processors, physical memory, and memory and interconnect bandwidths, while the runtime
layer above the application container will have complete control over scheduling and virtualization,
if any. For example, in an SPMD execution layer used in UPC, there is no need for processor
virtualization, while for dynamic threading used in the DARPA HPCS languages, a lightweight
user-space thread scheduler that can be directly controlled by the application or runtime would be
beneficial.

One approach to both operating systems and runtimes for parallel execution is to deconstruct
conventional functionality into primitive mechanisms that software can compose to meet applica-
tion needs. A traditional OS is designed to multiplex a large number of sequential jobs onto a small
number of processors, with virtual machine monitors (VMMs) adding another layer of virtualiza-
tion. An alternative approach is to explore the usage of a very thin hypervisor layer that exports
spatial hardware partitions to application-level software. These virtual machines allow each parallel
application to use custom processor schedulers without fighting fixed policies in OS/VMM stacks.
The hypervisor supports hierarchical partitioning, with mechanisms to allow parent partitions to
swap child partitions to memory, and partitions can communicate either through protected shared
memory or messaging. Traditional OS functions are provided as unprivileged libraries or in separate
partitions.

For example, device drivers run in separate partitions for robustness, and to isolate parallel
program performance from I/O service events. An alternative “deconstructed” architecture would
enable partitioning not only of cores and on-chip/off-chip memory but also of the communication
bandwidth among these components, with QoS guarantees for each partition. The resulting per-
formance predictability improves parallel program performance, simplifies code (auto)tuning and

September 14, 2009 Page 85

ECSS Report

412
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

dynamic load balancing, and supports real-time applications.
Hypervisors, VMM-based application containers, and various code-rewriting systems offer a thin

protection layer that can be used to support desired capabilities for massively parallel CMP-based
systems summarized in the following subsections.

8.3.1.1 Minimalism, Modularity, Mediation

A thin protection layer is needed on a CMP to prevent hardware state corruption, but otherwise
offer bare-metal access to the underlying hardware wherever possible. Many system facilities will be
linked at user level as a set of optional systems libraries. Hardware protection mechanisms will allow
direct, user-level access to facilities such as networking and I/O through the lightweight protected
messaging layer. Parallel applications will be given bare metal partitions of processors that are
dedicated to the given application for sufficiently long periods to provide performance predictability.
The primary roles of the protection layer are to manage partitioning of hardware resources, including
physical processors, physical memory, and memory and interconnect bandwidths, while the runtime
layer above the protection layer will have complete control over scheduling and virtualization, if
any. There are many lessons to be learned from K42 [39], the MIT Exokernel [61], and embedded
operating systems such as VxWorks [34] regarding approaches to efficient and modular system
services.

The thin protection layer (possibly a hypervisor or VMM-based application container) will play
a role in mediating concurrent access to devices to ensure fair sharing of resources. Although
software functions can be virtualized through replication, hardware devices are finite and access to
them by multiple hardware components must be managed. This will include Quality Of Service
guarantees for access to certain rationed resources such as memory or network bandwidth.

8.3.1.2 Isolation

Groups of processors can be combined into protected partitions. Boundaries will be enforced
through hardware mechanisms restricting, for example, sharing of memory across partitions. Mes-
saging between partitions can be restricted based on a flexible, tag-based access control mechanism.
OS functionality such as device drivers and file systems will be spatially distributed rather than
time-multiplexed; we refer to this as spatial partitioning. This approach works in synergy with the
sidecore techniques [91], which allow an application to vector OS or driver functions to execute on
free cores rather than forcing a context-switch on the core running the application.

8.3.1.3 Safe User-Level Messaging

Messages will be used to cross protection domains rather than more traditional trap-based mecha-
nisms. Through hardware mechanism and/or static analysis, applications will have direct, user-level
access to network interfaces and DMA. Further, fast exception handling and hardware dispatch of
active message handlers will permit low overhead communication without polling. Most traditional
system-calls will translate into messages to remote cores (other system-calls will be to linked system
libraries) [91].

8.3.2 Related Work

Operating system research is an infrastructure-intensive process with a long initial development
time. Traditional operating systems have a monolithic design with little or no control over the
internals exposed to the application or user level. Novel programming models need to demonstrate

September 14, 2009 Page 86

ECSS Report

413
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

clear performance and productivity advantages over the established paradigms in order to have a
chance for widespread adoption. Their efficiency can be greatly improved when having access to
fine application level control over functionality provided by the system software stack (OS). The
same fine-level of control is beneficial to established execution models of existing parallel runtime
environments.

There are several DOE sponsored ongoing research projects related to operating systems de-
sign. The ZeptoOS [35] project distinguishes between service node and compute node kernels and
provides tool for OS instrumentation and understanding of the interaction between the OS and
the application layer. The Right-Weight Kernels [103] project focuses on a judicious selection of
OS level services in order to diminish OS interference. The K42 research project focuses in paral-
lelizing the OS itself and providing abstractions for overall system adaptation at scale. A common
characteristic of these projects is the focus on improving overall system behavior and reducing
OS interference [113] and putting more resources under the application and user space control
while maintaining fault isolation and security. They mostly explore the opportunities offered by
lightweight kernels and focus on kernel level mechanisms for resource control: CPU, memory, and
network.

8.4 Global OS and Self-Aware Computing

8.4.1 Services for Adaptation at Large System Scale

Optimization and execution decisions should be made based both on the instantaneous system
state and global knowledge about the application behavior. For example, data transfer mecha-
nisms should be instantiated based on current load and the logical communication topology of the
application. This unfolds into the following research directions:

• Develop automated frameworks for exploration of system characteristics to understand scaling
behavior. Scaling behavior is determined by a combination of the hardware characteristics of
the system and the way the application uses the hardware. The result is a highly dimensional
parameter space that is not fully explored by current benchmarking techniques. Furthermore,
due to restricted access to large-scale systems, the benchmark process today provides in some
instances statistically unsound data.

• Develop policies and mechanisms for adaptation. These will include:

1. Automatic mechanisms to enforce flow control and avoid congestion intra and inter node,
exposing and using QoS primitives in the application

2. Intra-node mechanisms for communication scheduling such as scheduling of communica-
tion operations based on layout, e.g., long-range communication has priority over short
range communication or coalescing of communication operations that target the same
node.

3. Selection of the best communication primitives based on load and application require-
ments, e.g., selection between active message or pipelining based implementations for
applications that process a large number of disjoint remote memory regions.

• Develop mechanisms to expose application behavior to the adaptation mechanisms. This may
include exploration of two different alternatives:

1. offline instrumentation and feedback

September 14, 2009 Page 87

ECSS Report

414
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

OOODA 

Loop 

Figure 8.2: OODA Loop

2. continuous monitoring and feedback loop.

• Explore formal methods to describe the communication requirements and behavior of an
application and annotated execution models.

8.4.2 Sensors and Actuators

Sensors will include machine profile sensors that can determine properties of the target machine
on which the application runs including capacities and bandwidths of the memory hierarchy, to
allow the application to adapt to the hardware configuration on which it runs. Further sensors may
determine dynamically the level of contention form the hardware/runtime and allow an application
to deploy an algorithm that is more efficient when bandwidths to shared resources drop.

Actuators from the application side will include application signatures to represent the resource
requirements of the application to the other levels of the stack and the hardware. For example an
application’s memory footprint will be an actuator that can cause the runtime to allocate sufficient
memory; memory access patterns may cause the runtime or compiler to optimize prefetching policies
for the specific application. Information about symbiosis (the impact of the application upon shared
resources) may be used by the O/S to choose co-scheduling partners for the application.

8.4.3 Self-Aware Systems

Current operating systems have pre-programmed behaviors that are based on guesses about resource
availability. As a result, they are ill-suited to complex multicore systems and result in sub-optimal
performance in the face of changing conditions. In contrast, it will be desirable for the OS to behave
like a self-aware system that “learns” to address a particular problem by building self-performance
models, responding to user goals, and adapting to changing goals, resources, models, operating
conditions, and even to failures.

Figure 8.2 illustrates the basic Observe-Orient-Decide-Act (OODA) loop of a self-aware system.
Thus, a self-aware system is

• Introspective — it observes itself, reflects on its behavior, and learns.
September 14, 2009 Page 88

ECSS Report

415
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

O
rg

a
n

ic
 

O
p

e
ra

ti
n

g
  

S
y
s
te

m
 

Disk 
I/O 

Devices DRAM 

   App 2 

App 1 

App 3 

miss 

rate 

voltage, freq, 

precision 
cache size, 

associativity 

p
o

w
e

r 

Memory 

Manager 

File 

System 

Device 

Drivers 
Scheduler 

activity, 

power, temp 

App 1 

Analysis & 
Optimization 

Engine 

Observe 

Decide Act 

Core 

Cache 

App 2 App 3 

Learner 

Core 

Cache 

System call 

s
p

e
e

d
 

algorithm 
heartbeat, 

goals 

Heartbeat 

Perf. Models 

Figure 8.3: Organic Operating System (Notional)

• Goal-oriented — ideally, the system’s client only specifies the goal, and it is the system’s job
to figure out how to get there

• Adaptive — the system analyzes the observations, computing the delta between the goal and
observed state, and takes actions to optimize its behavior

• Self-healing — the system continues to function through faults and degrades gracefully

• Approximate — the system does not expend any more effort than necessary to meet goals

As an example of a self-aware OS, consider the notional Organic Operating System (OOS)
shown in Figure 8.3. The Observe and Orient steps are accomplished via a number of new sensor
interfaces that will need to be added to all software and hardware components of an Extreme Scale
system (yet another example of software-hardware co-design). These observations include processor
characteristics such as performance, energy, miss rates, queue lengths, resource utilizations as well
as physical characteristics such as temperature. The Decide and Act steps are enabled by a new
actuator interfaces that enable the system to control application behavior at a number of levels such
as number of allocated, cache configurations, scheduler policies, clock frequencies, and numerical
precision desired. Thus, a separation of concerns is achieved between the application and the OOS
where the application communicates goals and options to the OOS, and the OOS uses component
performance models to decide how best to meet goals under given system constraints.

September 14, 2009 Page 89

ECSS Report

416
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

8.5 Silver: An Example Execution Model and Technical Approach
for Extreme Scale Systems

This section offers an example of one possible Exascale software stack, referred to as “Silver”,
to serve as an exemplar for the general class of transformative software strategies to address the
broad challenges of extreme scale computing. The design of Silver is based on the premise that
any extreme scale software stack must address four critical obstacles to scalability: starvation
or insufficient program parallelism, overhead or critical path management work, latency to main
memory and across system, and contention for concurrent service requests to shared resources.
Each of these critical factors is influenced and impacted by design choices made at every layer of
the computing stack. Furthermore, the design of any stack layer interrelates with all of the others,
but in particular with adjacent layers. Additional performance and quality of service factors to be
addressed include reliability, availability, programmability, and cost. The future generation extreme
scale system software stack may take on any one of many forms and understanding and evolving
these will require a vision that recognizes these needs.

8.5.1 Silver Execution Model

The unifying set of principles for Silver is a model of computation that is a synthesis of semantic
constructs, policies, and mechanisms comprising the logical organization and operation of a parallel
computation to be performed. The Silver model strives to

1. provide an abstraction of parallel computation that exposes and exploits a high degree of
algorithm concurrency, particularly that available from dynamic directed graph structure-
based applications,

2. enable intrinsic latency hiding through automatic overlap of computation and communication
through message-driven work-queue multithreaded execution,

3. minimize impact of synchronization and other overheads for efficient scalable execution through
lightweight object-oriented semantics,

4. support dynamic global address space scheduling for adaptive resource management, and

5. unify heterogeneous structure computing for diversity of processing modalities and exploita-
tion of accelerator micro-architectures.

The Silver model supports a work-queue model. Threads are created locally by other threads
or remotely by message-driven mechanisms (parcels) permitting work to be moved to the data.
Threads are organized within the contexts of parallel processes, each spanning potentially many
local domains (localities). Synchronization among threads is achieved through local control objects
(LCOs), providing a plethora of mechanisms from simple mutex to more complex dataflow and
future constructs. The message-driven model serves logical destinations or physical destinations,
accelerators, or output devices. Percolation supports pre-staging of data and executables at remote
resources to hide latency to these separate computing elements by overlapping communications with
computing and to avoid their overhead costs, needed to take advantage of heterogeneous processors
and precious resources.

September 14, 2009 Page 90

ECSS Report

417
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

8.5.2 Silver Stack

Silver addresses the challenges of the design and operation of a system stack for a new generation
of ultra scalable computer systems capable of extreme scale performance with technologies nearing
nanoscale feature size and the end of Moore’s Law. The overall system stack as structured by Silver
is deceptively similar to more conventional systems and comprises seven layers:

1. Driver applications — a focus on the emerging class of applications incorporating very large
sparse, irregular, and time varying data structures including science and informatics will drive
co-design across the system stack with a set of selected problems employed for experimental
pursuits.

2. Programming models, methods, and tools — provides at least three distinct but interrelated
user-level programming interfaces that serve as protocols for program requirements to system
resources and control mechanisms. These variations include a library of service calls, mapping
to this of conventional (legacy models), and an advanced low-level language optimized around
the needs of the execution model and the directed graph based applications.

3. Compiler strategies and design — combines compile time analysis, adaptive learning, just-in-
time modules, interface to advanced runtime mechanisms to control application parallelism,
data management and distribution, and physical resource allocation.

4. Runtime system software — provides dynamic application execution scheduling, synchroniza-
tion, and name space management under the control of the compiler and utilizing OS supplied
resources.

5. Operating system - manages the hardware resources, by providing control of user processes,
virtual memory allocation and name spaces, provides essential services to programs and run-
time system, and recovery response in the presence of hardware and software faults.

6. Architecture - comprises both system level and micro-architecture utilizing the underlying en-
abling technologies to provide most effective and scalable computing for the essential modal-
ities exhibited by the target applications by means of the software and programming layers.

7. Enabling technologies — defines a technology roadmap that will establish the bounding con-
ditions, opportunities, and requirements that have to be satisfied to realize efficient, scalable
computation.

For this Exascale Software Study the first and last layers of the System Stack provide boundary
conditions and the penultimate layer, architecture, is a flexible supporting medium of computation
that will be influenced by as well as influences the other layers of the software stack. We elaborate
on items 2–6 below.

8.5.2.1 Programming Methods

An important part of the programming layer of the stack is to ensure that existing applications
(so-called legacy applications) which embody a great deal of knowledge and development can be
adapted to the Silver platform. This means adapting codes that use the Message Passing Interface
(MPI). There are several approaches to this. First, it needs to be demonstrated that MPI programs
can run well on this system. The MPI Forum has begun developing the next generation of the MPI
specification. This layer of the stack must reflect the extensions to MPI that will define MPI-3.

September 14, 2009 Page 91

ECSS Report

418
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Silver-Threads will be a language for the Silver programming model. It is expected that this
effort will result in a new language, not bound by the semantic decisions of any existing languages.
This programming interface will be largely defined by what it chooses to expose to, and what it
chooses to hide from, the programmer. Low level constructs, such as synchronization through local
control objects and messaging via parcels, will be hidden by high-level descriptions of tasks. The
programmer should not be concerned with the exact locations of resources: all resources will appear
local, with the address translation and parcel system handling migration of flow control between
localities. Silver-Threads should take advantage of the advanced namespace management in the
Silver execution model, including the DGAS component and the promotion of processes and threads
to first class objects. The latter is particularly interesting, as it will allow the program to ”reason
about its execution.” Another facet of Silver-Threads programming language will be the ability to
specify optional heuristics, for providing ”hints” to the runtime system regarding expectations for
load balancing and resource management.

8.5.2.2 Compilation Methods and Tools

Substantial amount of research in parallelization has focused on “regular” programs which manipu-
late dense matrices. Unfortunately, exploiting parallelism in “irregular” programs — such as those
that operate on lists, trees and graphs — is much harder. The amount of parallelism in dynamic
graph-based computations depends on the input data and is not known until execution. The Silver
compiler approach to this problem is to develop a suite of dynamic locality-aware partitioning tech-
niques that allow hiding of global system latency. These techniques exploit significant computation-
communication overlap. For dynamic graph-based computations, effective dynamic mapping and
remapping of data will be crucial to realizing high-levels of performance. The Silver approach is
to first develop mapping and remapping techniques, which will be augmented with strategies for
deciding when it is effective to remap data. These solutions will be integrated seamlessly with the
message-driven threaded-execution model that is at the heart of Silver Execution Model. Another
task for the compiler is to extract high levels of performance from the underlying heterogeneous
architecture containing such diverse themes as streaming and PIM micro-architectures. We will
develop program partitioning strategies aimed at this.

8.5.2.3 Runtime Systems

The Silver runtime system is designed to be a modular, feature-complete, and performance-oriented
representation of the Silver execution model on conventional (Linux based) architectures, offering
an alternative to conventional computation models, such as MPI. It will also be targeted to the
advanced Silver OS described below. The Silver model is intrinsically latency hiding, delivering an
abundance of parallelism in within a hierarchical distributed global shared name-space environment.
This allows the Silver runtime to provide a multi-threaded, message-driven, split-phase transaction,
non-cache coherent distributed shared memory programming model using futures based synchro-
nization. It is a second-generation runtime system for possibly heterogeneous platforms designed
for applications handling very large dynamic distributed graphs. It can be implemented using C++
which allows combining well designed modularity with efficient runtime performance. This enables

• software optimizations at component level,

• policy based parameterization and configuration at compile time and runtime, and

• high portability to new hardware and systems architectures. The Silver runtime will support
advanced dynamic application frameworks such as Charm++.

September 14, 2009 Page 92

ECSS Report

419
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

8.5.2.4 Operating System

The Silver operating system strategy is a two-prong approach with 1) a limited-scale extended
conventional path based on emerging community-wide multicore Linux solutions, and 2) a second
transformative approach to ultra scalable operating system design based on synergistic integration
of lightweight kernel modules; the latter called “Silver-OS” or “SOS”. The first permits early in-
tegration of the Silver runtime system on conventional platforms to support the directed graph
oriented advanced programming models and applications for near term use and experimentation.
The second will empower ultra scalability to hundreds of millions of cores of diverse structure and
operational modalities for extreme scale sustained performance implemented with evolving semi-
conductor and optical technologies culminating with nano-scale devices. Integration of incremental
enhancements of Linux will be achieved by the runtime and compiler layers.

Silver-OS is a new strategy to provide global unification of system-wide services such as memory
management, thread management, and global communications for systems comprising billion-way
scale parallelism. The innovative concept to be developed and applied is that of synergistic protocols
between like services on separate compute nodes. This synergistic control model will enable the
synthesis of the physically disparate elements of like functionality to be logically integrated into
single global functions that may be dynamically managed and globally optimized in their allocation
and operation. The overriding transformative benefit from this unique strategy is its scalability
with fixed design complexity. Thus global unification is accomplished and is logically provided
to the user through local interfaces among global functional services rather than global interfaces
among local functional services. This revolutionizes the system support for user programs and
parallel programming language design for scalable systems to potentially hundreds of millions of
cores required for Exaflops scale system operation. Distributed global functionality to be realized
through synergistic lightweight kernel agents include:

• distributed global address space allocation and address translation,

• parallel process multiple locality assignment and environment context management,

• parallel thread instantiation, suspension, and context switching,

• active message (parcels) creation, routing, buffering, and acquisition,

• I/O including interactive channels and file system interface, and

• process isolation and protection.

The Silver OS will use these lightweight distributed interoperative agents to support a POSIX
equivalent API with lower overhead and greater scalability as well as provide the more dynamic
functionality required by future generation programming models (e.g., Silver-Threads) and appli-
cations.

8.5.2.5 Silver Architecture

Silver is a conceptual system (hardware and software stack) devised to support parallel computa-
tion guided by the governing principles of the Silver execution model of computation to effectively
exploit future trends of enabling technologies. The Silver architecture that is hypothesized as a
starting point for exploration is based on the Silver execution model and is envisioned as a hetero-
geneous structure of two classes of micro-architectures optimized for two modalities, or operating
points, respectively. Like conventional architectures, temporal locality is a dominant dimension.

September 14, 2009 Page 93

ECSS Report

420
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

But while conventional architectures assume good temporal locality and commit the majority of
its resources to cache hierarchies, the Silver architecture recognizes that computations exhibit dis-
parate operational modalities. Examples of high temporal locality compute elements include the
Stanford Merimac, the UT-Austin Trips, and the Cray X1 PVP. A low/no temporal locality class of
architecture elements considered as part of the Silver stack architecture layer is an advanced PIM
architecture to accelerate data intensive computation, such as dynamic directed graph processing,
exhibiting low temporal locality resulting in little data reuse and poor cache behavior. The Silver-
PIM is a lightweight multi-threaded core that exploits the low latency and high bandwidth achieved
through direct access to the wide row buffer of memory banks. Silver-PIM incorporates distributed
global address space (DGAS) virtual to physical address translation, and message-driven thread
instantiation with efficient compound atomic operations on structs for efficient local control object
synchronization overhead. It supports the message-driven work-queue method for Silver execution
Model and messages for system-wide intrinsic latency hiding.

September 14, 2009 Page 94

ECSS Report

421
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Chapter 9

Conclusions

There are several reasons for paying attention to software in the development of Extreme Scale
systems. First, the extreme scale systems that are projected for the 2015 – 2020 timeframe are
dramatically different from today’s Petascale systems and will require correspondingly fundamental
changes in the execution model and structure of system software (both of which have remained
relatively stagnant during the last two decades). Second, while there has been significant innovation
at the hardware and system level for today’s Petascale systems, previous approaches have not paid
much attention to the co-design of multiple levels in the system software stack (OS, runtime,
compiler, libraries, application frameworks) that is needed for extreme scale systems. Third, while
certain execution models such as Map-Reduce in cloud computing and CUDA in GPGPU data
parallelism have demonstrated large degrees of concurrency, they haven’t demonstrated the ability
to deliver 1000× increase in parallelism to a single job with the energy efficiency and strong scaling
fraction necessary for Extreme Scale systems.

The starting point for this study was the characterization of Exascale systems in the prior
hardware study on “Technology Challenges in Achieving Exascale Systems” [62], summarized in
Chapter 2 of this report. In this study, we identified Concurrency, Energy Efficiency and Resiliency
as fundamental challenges for Extreme Scale software, and focused on the first two. (The third
challenge, Resiliency, is addressed by a companion study.) The Concurrency and Energy chal-
lenges are further exacerbated by the lower bytes/ops ratios and the dominant contribution of data
movement to energy costs expected in Extreme Scale systems. We observed that the Concurrency
and Energy Efficiency challenges have to be addressed at all levels of the software stack, and in
conjunction with hardware interfaces and software-hardware co-design.

To better understand the software challenges for Extreme Scale systems, we first introduced a
set of desiderata for an Extreme Scale execution model and defined metrics that can be used to
compare different software stacks for Extreme Scale systems using energy-delay as the foundational
metric (Chapter 3). We then studied the challenges and implications in developing applications
for extreme scale computing by examining multiple application classes including traditional HPC
applications, coupled models, data-intensive, data mining, and real-time applications (Chapter 4).
From an application viewpoint, the Concurrency and Energy challenges boil down to the ability
to express and manage parallelism and locality in the applications. This chapter concludes that
applications can be enabled for exploiting extreme scale hardware by exploring a range of strong
scaling and new-era weak scaling techniques, but only with suitable attention to efficient parallelism
and locality.

Given this context, Chapter 5 summarized the challenges in expressing parallelism and locality
in Extreme Scale software. One of them is the ability to expose all of the intrinsic parallelism and

95

ECSS Report

422
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

locality in an application, so as to make the application forward scalable. Another is to ensure
that this expression of parallelism and locality is portable across vertical and horizontal dimension.
Additional challenges include composability of parallel programs, support for algorithmic choice
across scale, and support for heterogeneous hardware.

The challenges in managing parallelism and locality are discussed next in Chapter 6. Since the
Operating System provides the foundation for the software stack, a lot of attention was devoted to
limitations in current OS structures in addressing Extreme Scale software requirements. OS-related
challenges include parallel scalability, spatial partitioning of OS and application functionality, di-
rect hardware access for inter-processor communication, asynchronous rather than interrupt-driven
events, and fault isolation. There are additional challenges in runtime systems for scheduling, mem-
ory management, communication, performance monitoring, power management, and resiliency, all
of which will be built atop future Extreme Scale operating systems. The chapter concludes with
challenges in compilers and libraries for Extreme Scale systems.

Programming tools play an important role in making the development of parallel software more
productive. Though tools were not directly in the scope of our study, we recognized from the start of
the study that any software stack for Extreme Scale systems must be capable of supporting the tools
that we envision will be shipped in that time frame. To that end, Chapter 7 identifies a number
of challenges in supporting Extreme Scale tools including performability, scalability, abstraction,
adaptation and autotuning, multilevel integration, and availability and portability. This chapter
also lists some of the key technologies that will be necessary to address these challenges, as well as
six different scenarios that can be used to evaluate the effectiveness of an Extreme Scale system in
supporting tools.

Chapter 8 outlines key elements of a technical approach for Extreme Scale software. The aim of
this chapter is to provide examples that are indicative of the kind of software technologies that will
be needed to address the Concurrency and Energy Efficiency challenges of Extreme Scale systems,
without prescribing specific solutions. Section 8.1 highlights the importance of software-hardware
interfaces in an Extreme Scale system. Section 8.2 goes one step further and identifies opportunities
for addressing Concurrency and Energy Efficiency challenges through software-hardware co-design.
Section 8.3 discusses the importance of deconstructed operating systems in the future OS roadmap
for Extreme Scale systems. Section 8.4 presents a vision for Extreme Scale system software based
on the notions of a global OS and self-aware computing. Finally, Section 8.5 describes an example
execution model and technical approach, in an effort to encourage the community to think of
breakthrough approaches for building Extreme Scale software.

September 14, 2009 Page 96

ECSS Report

423
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Appendix A

Additional Extreme Scale Software
Ecosystem Requirements

This chapter summarizes requirements from other components of the software ecosystem that future
Extreme Scale software stacks need to be aware of. However, the core technologies needed for these
components are considered to be beyond the scope of this study. Many of these topics are being
addressed by separate studies and research programs.

A.1 Real-time and Other Specialized Requirements in Embedded
Software

Terascale embedded systems based on extreme scale technology will share some of the software
stack elements required by departmental and data center systems (Table 8.1), but will also have
additional specialized requirements not needed in the other systems. For instance, Figure A.1 (taken
from [62]) illustrates the relative importance of technology gaps in different classes of extreme scale
systems. This figure suggests that embedded extreme scale systems will need many of the same
power and concurrency management features of the software stack as the larger systems, but may
not require as many resources devoted to resiliency management. The difference in requirements at
the embedded scale was not addressed during this study, however, some of the potential differences
are summarized below. Additional studies are under way to identify and characterize requirements
particular to the embedded scale in more detail.

The primary additional requirements for embedded systems are real-time constraints and re-
strictions on the deployable form factor. Embedded systems are frequently created for scenarios in
which they operate on data that is a direct observation of an external system, obtained via sensors.
Often, the external system under observation is an independent physical system that can not be
slowed down or accelerated. For a given sensor time resolution, this results in a flow of observed
data that is input to the embedded system at a fixed rate. The behavior of the observed system
therefore imparts a “real-time” requirement on the embedded computing system. For some appli-
cations, it is possible to lower the rate of input to the embedded computing system, resulting in
outputs that are of degraded value. Depending on the mission of the embedded computing system,
this can impose throughput or latency requirements, or both. The embedded system must perform
the desired calculations at a rate that consumes the input data at least as quickly as they are
supplied. If the computing is implemented as a pipeline, then each stage of the pipeline must be
capable of keeping up with its own data input rate. Some applications (e.g., control, or interactive
applications) have an additional latency requirement. For these, throughput high enough to keep

97

ECSS Report

424
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Figure A.1: Technology gaps in Exascale System Classes [62]

pace with the source data is not sufficient — the embedded computing system must also react to
its input and produce a stimulus to the external system within some deadline in order to ensure
proper behavior of the overall system in which it is embedded.

An important implication of real-time requirements is that, for a given functionality, the utility
function for the embedded system versus throughput or latency becomes a step function. This is in
contrast to the departmental and data center systems considered in this study. If the throughput
is below the minimum required to meet performance goals, or the latency above the maximum, the
system fails and has no utility. In many cases, if the throughput is higher than the minimum or
the latency is below the maximum, no additional utility is created. In contrast, a non-real-time
system still has utility if it falls somewhat short of performance goals, and generally increases in
usefulness as its performance increases beyond the goals.

In addition to real-time requirements, embedded computing systems often need to restrict or
minimize one or more aspects of the deployed form factor, such as volume, weight, and power
consumption. For example, a computing system intended to fly on an unmanned aerial vehicle
(UAV) would be constrained in all three aspects. The physical space available to the computing
system may be limited, excess weight will reduce the range and endurance of the UAV, and excess
power decreases the power available to other subsystems while increasing the heat that must be
dissipated. As a result, the performance of embedded computing systems is frequently described
not in Floating Point Operations per Second (FLOPS) but in FLOPS per Watt, FLOPS per cubic
meter, or FLOPS per kilogram.

The step function utility of embedded computing systems’ performance, along with the presence
of form factor costs and constraints creates optimization and constraint spaces that differ from the
departmental and data center systems considered in this study. For example, a computing system
in a UAV that is able to exceed its time performance requirements is no more useful than one that
strictly meets its requirements. For such a system, if it is possible to give up some excess computing
speed in order to reduce power or space requirements, the utility of the system is improved by
doing so. Holistic optimizations are necessary to maximize the overall utility of the embedded

September 14, 2009 Page 98

ECSS Report

425
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Figure A.2: Notional utility function of real-time
system

Figure A.3: Notional utility function of non-real
time system

computing system. The software stack of current systems does not facilitate the automation of
this optimization and constraint satisfaction. Point solutions are generated by human intervention,
with coarse attempts at optimization that can, at best, locate local maxima for utility.

The ability to optimize for additional dimensions such as power, weight, and volume, as well the
ability of the software stack to solve for specific constraints in each of the optimization dimensions
is outside the scope of this study. Adding these capabilities to the proposed extreme scale software
stack would require several additional technical improvements, including at least:

1. A formal, analyzable method for describing the constraints of elements and compositions of
software, in multiple dimensions, including size, weight, power, and time.

2. A formal method to describe the utility of each dimension of the optimization space.

3. Ability at all layers of the software stack to optimize for size, weight, power, and time in
arbitrary combination, as required, while simultaneously satisfying constraints in one or more
of the dimensions.

4. A hardware/software co-design layer that allows the selection and configuration of computing
elements to support a system.

Improvements in hardware and software for extreme scale are likely to provide direct benefit to
the existing software stack for embedded systems. For example, the need for extreme scale hardware
and software stacks to optimize for power as well as execution time will improve the utility of
embedded computing systems that use them. Previous studies indicate that energy efficiency will
be a dominating factor in the design of extreme scale computing platforms. Computing platforms
designed to meet the energy efficiency needs of extreme scale systems will be attractive platforms for
embedded computing systems. For such platforms, different operations may have widely different
energy costs — for example, the cost of a memory fetch from the most distant intra-node memory
space would expend much more memory than a floating point add of two registers. Given sufficient
information about the energy cost of each operations, elements of the software stack can optimize
for power as well as execution time. This ability will be necessary for extreme scale systems, and
will likewise improve the utility of embedded systems.

September 14, 2009 Page 99

ECSS Report

426
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

A.2 Tools and Development Environments

A.2.1 Performance Tools

Given the complexity of Extreme Scale software, the role of performance tools must be expanded
beyond showing the application programmer a set of measurements of what happened, towards
synthesizing all the clues from a variety of sources and pointing the application programmer towards
solutions. Extreme Scale performance tools must provide a visual presentation of what happened
during program execution, and relate certain behaviors back to corresponding pieces of the code.

In support of this capability, data mining algorithms must be developed to detect anomalous
behavior, and to the extent possible, this must be effective during at-scale production runs of
extreme scale applications. An integration of capabilities across the software stack, as described
in Chapter 7, is also needed to provide a set of “knobs” that the programmer can turn to adjust
performance that can be guided by results from the performance tools.

As discussed in Chapter 7, autotuning technology should progress in support of a broader range
of optimizations. Today’s autotuning technology is largely focused on locality and instruction-level
parallelism, with support for multi-core code generation really just getting started. This technology
must expand beyond kernels to portions of full applications, hierarchical parallelism, management
of data movement, communication and parallelism tradeoffs, and performance and power tradeoffs.
Research towards these expanded goals will necessarily develop domain-specific pruning heuristics
and scalable empirical search techniques that make it feasible to evaluate such an expanded search
space.

A.2.2 Correctness Tools

We describe correctness tools that include debuggers, analysis to proactively improve reliability,
formal verification and validation.

A.2.2.1 Debuggers

The most commonly used correctness tools are debuggers, which present an interface to the appli-
cation programmer to view the execution state of their application as it is running. Debuggers for
parallel architectures expand the capabilities of sequential debuggers by (1) pinpointing race con-
ditions between threads on memory accesses; and, (2) identifying communication errors in message
passing code.

Debugging at extreme scale is daunting. After decades of parallel computing research, standard
practice still involves fairly primitive means of examining an application’s execution state that do
not scale beyond the standard 32 or fewer processors in most SMPs. With message passing codes,
debugging focuses on examining communication streams and incorrect placement of barriers, but
many bugs are timing sensitive and therefore intermittent. It is simply not realistic to debug each
thread as a separate unit. Aggregating data for the application programmer across all threads often
obscures information. Some middle ground is needed to group threads together, and to incorporate
information from other correctness tools described below to focus attention on specific pieces of the
computation.

New technology to increase productivity of developers during debugging of their code will rely
on new sophisticated techniques and support from the software stack to make these techniques
feasible at extreme scale. The remainder of the discussion on correctness tools focuses on ways to
prevent or pinpoint errors through sophisticated static and dynamic analysis of the application’s
execution.

September 14, 2009 Page 100

ECSS Report

427
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

A.2.2.2 Tools to Increase Reliability

Over the past decade, a large body of research and several commercial tools seek to increase the
reliability of software proactively rather than in response to observed errors. The bulk of these
tools look for errors in sequential code, such as memory leaks, buffer overflow, array out-of-bound
errors, and similar software defects that may lead to intermittent errors. For parallel codes, analysis
tools are used to detect memory race conditions, and various communication and synchronization
errors. These techniques rely on a combination of static analysis and run-time testing coupled with
lightweight instrumentation of the source code.

As discussed in Chapter 7, at extreme scale such techniques will be needed, not just in debugging
mode, but during production runs of the application to detect errors that only appear at scale.

A.2.2.3 Formal Verification

Formal methods are a broad collection of formal specification and verification techniques to provide
a rigorous verification of correctness, as an alternative to ad hoc testing. They include: (1) Formal
specification methods that can elucidate critical interactions between hybrid programs; and, (2)
Dynamic verification methods that can instrument a hybrid MPI/OpenMP program, and consider
all its relevant execution schedules. Formal approaches are superior to traditional testing based
methods in many ways. They can help verification tools automatically check for commonly commit-
ted mistakes without requiring users to create custom-made test harnesses. Many codes break only
when ported to new platforms where a hitherto un-attained process interleaving suddenly mani-
fests. Formal techniques can help identify these ‘relevant but elusive’ interleavings based on action
dependence information (e.g., access to common locks). Together with program instrumentation
and execution control, dynamic methods can help ensure that these interleavings are considered.
Last but not least, they help erect pedagogical foundations necessary for training engineers and
researchers with superior skills.

MPI program verification tools (e.g., [141]) are currently used to verify the absence of deadlocks,
resource leaks, and communication races, and in optimization, to detect and eliminate functionally
irrelevant barriers. Going into the Extreme Scale computing arena, the importance of formal
methods is bound to escalate significantly. Given the sheer scale of Extreme Scale computing system
designs, there will be an increased use of different programming models all the way from core-to-
core communication protocols to middleware that manages multi-problem integration. Handling a
plethora of such models in a seamless way, and allowing programmers to pursue efficiency while
still providing multiple safety nets, are open challenges, all needing the use of formal methods. The
increased propensity for faults (both hardware and software) to propagate unchecked coupled with
the infeasibility of taking global checkpoints to restart failed simulation runs all calls for a judicious
combination of formal methods. To be effective for Extreme Scale computing systems, we will need
a combination of many formal methods technologies. In addition to static and dynamic analysis
techniques mentioned above, we will need to consider formal models of compilation, memory model
semantics, the correctness of compiler optimizations all the way to determining how often and
what to checkpoint, defining an exception handling semantics, and last but not least, how to design
adaptive power-down protocols at the hardware and software levels.

A.2.2.4 Validation

As an alternative, or in conjunction with, the formal verification techniques described above, relia-
bility challenges at extreme scale demand new techniques for validating the correctness of a compu-
tation. Frequent non-catastrophic failures, coupled with dynamic and possibly non-deterministic

September 14, 2009 Page 101

ECSS Report

428
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

behavior, code optimized by autotuning software, and the hazards of extreme-scale parallel exe-
cution increase the likelihood that two instances of the same computation will produce different
output. Conceptually, one would want to compare output of a computation or sub-computation to
that of some previous and trusted execution. Combined with checkpointing, upon detecting invalid
output, the computation could roll back to the previous checkpoint.

Comparing output presents numerous challenges, which is why validation is something that is
currently the sole responsibility of the application programmer. Even if the amount of data to be
compared is small, floating point differences across different hardware or for different but similar
code demand a specification by the programmer of error tolerances. By far the biggest challenge in
validating software is the sheer volume of data to be compared. Collection, storage and comparison
of large volumes of output is prohibitive. Rather than full-scale comparison, simple techniques
like comparing whether an output value is within a particular range, or sampling a small but
representative subset of the data are examples of ways that application programmers validate their
software, hard-coded into the application itself. An interesting research question is whether the
extreme scale software stack can provide general support for validation, both to simplify the code
and increase the use of validation to achieve more reliable software.

A.2.3 Visualization and Knowledge Discovery

While visualization is usually considered as part of understanding the results of scientific appli-
cations, visualization also plays a unique role in developing new applications, and debugging the
results. Techniques from scientific visualization, which are really aimed at drawing insight from
large volumes of complex data, may be brought to bear on the significant data collection and
analyses involved in managing performance, power and resilience in extreme scale architectures.

The set of research challenges in this area was the subject of a Department of Energy study
group which produced a report entitled, “Visualization and Knowledge Discovery: Report from the
DOE/ASCR Workshop on Visual Analysis and Data Exploration at Extreme Scale”. The following
key findings summarize new research areas from from Appendix A of that study:

• Mathematical Foundations: new algorithms in robust topological methods, high order tensor
analysis, statistical analysis, feature detection and tracking, and uncertainty management
and mitigation.

• Data Fusion: multi-modal data understanding, multi-field and multi-scale analysis and time-
varying datasets.

• Exploiting Advanced Architectures and Systems: in situ processing, data access, distance
visualization and end-to-end integration.

• Knowledge-Enabling Visualization and Analysis: Scientist-computer interface, collaboration,
and quantitative metrics for parameter choices.

Further, related to the last item and as discussed in Scenario 6 from Chapter 7, in response
to results from visualization, the application developer may wish to steer the computation in new
directions.

A.2.4 Application and Execution Completion Tools

A.2.4.1 Workflow Systems

Scientific workflows capture the individual data transformations and analysis steps as well as the
mechanisms to execute them. Each step in the workflow specifies a process or computation to be
September 14, 2009 Page 102

ECSS Report

429
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

executed (e.g., a software program to be executed, a web service to be invoked). The steps are
linked according to the data flow and dependencies among them. Workflows can capture complex
analysis processes at various levels of abstraction, and also provide the provenance information
necessary for scientific reproducibility, result publication, and result sharing among collaborators.
By providing formalism and by supporting automation, workflows have the potential to accelerate
and transform the scientific analysis process. Workflows have also become a tool capable of bringing
sophisticated analysis to a broad range of users, enhancing scientific collaboration and education.
Today workflows are being used in astronomy, bioinformatics, earthquake science, gravitational-
wave physics, high-energy physics, and many others.

Extreme Scale workflow systems must be capable of scheduling a workflow hierarchy, formed by
individual workflow tasks, entire workflows, ensembles of workflows that form an overall analysis,
and workflow pools that represent computations that need to be performed at any given time.
Scheduling must also cooperate with data management systems that manage data in the distributed
environment at different levels of granularity from on-the-node storage associated with a node on
a cluster (site), to site storage, to archival storage. Data management also needs to adhere to
constraints of available disk space and policies that communities impose on managing the data
life-cycle, exploring the interplay between computation and data management.

Scheduling at extreme scale cannot be statics. As failures in the execution environment occur,
new failure recovery techniques need to be developed. Making sure that the computations progress
in the face of failures requires sensitive monitoring systems, adaptive scheduling, computation mi-
gration, and on-demand data recovery. To minimize failures, new resource provisioning techniques
need to be explored. Acquiring resources ahead of workflow execution can assure that processors
are available to handle the computational tasks, can make enough disk space available to handle
the data needed by and produced by computations, and reserving network bandwidth can help
stage-in data when needed and stage-it out reliably and fast enough so that the storage and com-
pute resources are available for the next set of tasks. Finally, more applications are moving into
the on-demand, near-real-time performance requirements realm, thus all the computation and data
management functions and capabilities need to perform efficiently and reliably.

A.2.4.2 Build systems

Build systems are used to compose source code, libraries and input data into executable applica-
tions. While building applications is relatively straightforward on commodity platforms, significant
challenges arise at the extreme scale from a combination of experimental hardware, experimental
software, portability issues, and simply lack of investment in tools at this scale. The following rec-
ommendations are a direct quote from the final report of a 2007 Department of Energy workshop
entitled, “Workshop on Software Development Tools for Petascale Computing”:

“The current state of tools for program configuration and construction is deplorable. Applica-
tions must be built for multiple systems, including perhaps one or more petascale machines. We
found that too much complexity results from multiple compilers, operating systems, libraries (and
their versions). Common option sets and command-line interfaces are missing. We are concerned
that the lack of shared libraries and dynamic linking capabilities on petascale systems currently in
development will contribute more difficulties. We recommend consideration of new tools (make is
still broken), improved tools (e.g., for managing linking order), and more attention to interoper-
ability of program build tools.”

September 14, 2009 Page 103

ECSS Report

430
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

A.2.5 Compilers

While it is obvious that compilers are needed to translate from the programming models discussed
in Chapters 5 and 6, we also discuss compilers as tools, since they can and should take on addi-
tional roles in the extreme scale regime. All the distinct classification of tools mentioned above
rely on compilers, coupled with the run-time environment, for program analysis, transformation,
optimization and code generation, and providing an abstraction for the application programmer
between the architecture and the application code.

Before looking at how compilers can support tools, we must talk about the need for a funda-
mental shift in how high-end application developers interact with compilers in support of all the
new requirements at extreme scale. A lesson from the past two decades is that it is too ambitious
to expect success from fully automatic techniques for mapping high-level application code to high-
performance executables. Thus, for compiler technology to be effective, it is essential to engage the
application programmer in providing domain knowledge about how tools should interact with their
code. Having said this, it is still the case that application programmers have extremely limited
means of interacting with compilers. Beyond compiler flags, and pragmas or programming model
extensions, application programmers simply treat compilers as black boxes. To change the compiled
code, they often must guess at alternative code, optimization flags, and pragmas, and empirically
evaluate what produces the best result.

Compilers will continue in their role of optimizing code to exploit architectural features and
improve performance. Locality and power optimizations will become a bigger focus of attention
for extreme scale, as the potential for impact of such optimizations grows significantly. Given the
expected dynamic and difficult-to-predict run-time behavior of extreme scale applications, opti-
mization will increasingly become a dynamic process, and adaptive optimizations that respond to
feedback from the run-time environment will grow in importance. Compilers must also provide
a portion of the autotuning infrastructure described in Chapter 7 for important computational
kernels, for automatically generating a set of alternative code variants and pruning the space of
alternatives that are considered. Autotuning frameworks must be extended to consider portions of
whole applications rather than computational kernels, consider the tradeoffs between parallelism,
locality and power, and optimize more global constructs such as data organization and communica-
tion. Compilers must in some cases generate the code for the companion computations, described
in Chapter 7, which are used not only to enhance performance but for many other purposes.

In terms of correctness tools, compilers should help application programmers develop correct
programs through analysis to detect buffer overflow or memory violations. Compiler analysis is
used in formal verification, and in generating validation code, possibly automatically. Reliability
can be enhanced by supporting programming models that actually prevent certain kinds of errors.
For example, languages such as Java enforce array bounds checking, type systems have been used
to obtain high-level intent of the programmer, and functional languages prevent side effects across
parallel threads. While such approaches are not currently in mainstream use in the HPC community,
largely due to hysteresis and performance concerns, making such techniques efficient will demand
new compiler support.

Compilers must support the types of interactions programmers have with the remainder of
the development environment. In application completion, compilers may provide the interface for
dynamic code selection and parameterized code. In general, compiler technology at extreme scale
must provide mechanisms to interact with application programmers at a high-level of abstraction.

September 14, 2009 Page 104

ECSS Report

431
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Appendix B

Definitions of Seriality, Speedup, and
Scalability

Scalability has become a golden term to much of the HPC community: “this hardware is scalable;
that algorithm is not scalable” but with little consistent formalism behind its use. This is particu-
larly true when it comes to its application to system software. This discussion tries to shed some
light on such a use of this term by relating it to other key terms of serialism, and speedup, and
trying to develop some formal definitions. While there is nothing new in the following, we do try
to relate it to exascale in a way that may help understand effects of and on software in achieving
and maintaining performance.

B.1 Definitions

B.1.1 Parallelism and Concurrency

For this discussion we will distinguish between parallelism and concurrency in a rather precise way.
Parallelism will refer to physical replication. Thus we can talk about the parallelism of function
units such as floating point units (FPUs), cores, sockets (a.k.a. multi-core microprocessor chips),
nodes, racks, etc.

Concurrency will refer to the overlap of operations as seen during the execution of a program,
and will appear in at least three forms:

• New concurrency , Cnew, will refer to the number of new operations that a program starts in
whatever time units are appropriate, as in per cycle or per second. This may be the number of
new instructions issued per cycle, or the number of floating point operations started per cycle.
We assume that the number of operations started is equivalent to the number completed.

• Active concurrency , Cactive, will refer to the total number of operations that are in some sort
of execution at the same time. This reflects the pipelined nature of most function units where
an operation is started in one cycle and is in computation for several more.

• Total concurrency , Ctotal, will refer to the total number of operations, primarily instructions,
that are ready to issue but not necessarily in active computation in hardware. This would
include, for example, register files in a multi-threaded core that hold currently ready to run
threads that are simply waiting their turn to run on the hardware.

105

ECSS Report

432
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

We note that the term “new concurrency” is most closely aligned with typical measures of
performance, as in flops per cycle, or instructions per second. Also, unless otherwise specified, we
will simply use the term concurrency to refer to new concurrency.

B.1.2 Work and Performance Metrics

For this discussion we define the work involved with solving a problem as the total number of basic
operations (flops, instructions, etc) that need to be executed in its solution. While work and time
to solution are clearly related, they are not necessarily proportional; depending on the processor’s
architecture and the selected problem size, different operations (especially memory references) may
take different amounts of time at different points in the computation. Thus a performance metric
will typically be stated in terms of work per unit of time, such as flops per second, and may be
stated in several forms. A peak performance metric is the absolute maximum amount of work that
can be done in unit time by any algorithm running on some processor, regardless of the algorithm
or the implementation of the algorithm in terms of a real program. A sustained performance metric
is one that is algorithm and problem size specific, and takes into account all the delays that may
exist when a real code is run on the system. It is typically the case that sustained performance
metrics for real systems running the same code may vary widely with the size of the problem.
Problem sizes that are, for example, “cache-resident” will exhibit far higher sustained performance
numbers than ones that exceed physical memory, and require time-consuming swaps from disk.

B.1.3 Scalability

The Webster’s online dictionary defines scalability as either “capable of being scaled” or “capable
of being easily expanded or upgraded on demand,” and as the noun scale as “a graded series of tests
or of performances used in rating individual intelligence or achievement”. Likewise, as an adjective
to scale is defined as “according to the proportions of an established scale of measurement”. As a
verb scaling means “to have a specified weight on scales”.

B.2 Approximate Inter-relationships

Numerically, if the average latency of the hardware that executes a typical operation is Lave, then
to a first approximation:

Cactive = Lave * Cnew.

Likewise, if the average thread can initiate instructions that correspond to on average Wave of
the above operations at a time, then to initiate Cnew operations per time unit requires Cnew/Wave

concurrent threads actively initiating instructions. If the longest latency for any such operation is
Lmax (typically a memory access in the hundreds or thousands of cycles), and the fraction of all
operations that are such is fmax, then using Little’s Law the number of such operations that are
active at any one time is:

(Cnew * fmax) * Lmax

This means that the number of active operations of this type that must be managed by a single
active thread is:

(Cnew * fmax) * Lmax / (Cnew/Wave) = Wave* fmax * Lmax

September 14, 2009 Page 106

ECSS Report

433
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Managing a long latency operation such as a remote memory reference typically requires some
hardware support in a processing core such as an entry in a Load/Store queue that must be
dedicated to that operation for its duration. We assume that there are Q such entries in a core.
Thus, once a thread has filled all such Q entries, no further such operations can be issued, and
when one is found, the core must block the thread, regardless of whether or not the thread still has
issuable instructions. If Q is much less than the above number of outstanding operations (which
is usually the case) then the only way to maintain the Cnew level of concurrency is to have other
threads ready to run. This can be done either by adding more processing cores to the system (and
assume each goes idle frequently) or to multi-thread each core. This core or thread multiplier is
thus:

(Wave * fmax / Q) * Lmax

As a numerical example, if we assume that Q=4, Wave=4, fmax=1%, and Lmax=1000, then the
above multiplier is 10.

We note that this is strictly a lower bound, since it assumes that a typical thread’s program is
in fact capable on average of finding at least Q independent operations that can be issued without
a data dependency. We can thus bound Ctotal as:

Ctotal ≥ (Wave * fmax / Q) * Lmax * Cnew

B.3 Algorithmic Scalability

In high performance computing, scalability has had a long history of controversy as to its meaning
and relevance [81]. We will try to be explicit by using time to solution as the basis for defining
scalability, not as a general property of a system, but as relevant to only one application at a time.
In this section we define TA,X(N, P ) as the time to solution for some algorithm A when converted
into a program and executed on some architecture X, where the size of the input in some units is
N, and the number of “processors” allocated from X to the program execution is P. We call the
combination of A and X as the system configuration.

For simplicity we will drop the subscripts A,X for the rest of this discussion. However it is
critical to remember that all of our discussions are, in fact, relevant only to a particular system
and a particular application.

To help make the following discussion more visual, we will develop a series of 3D plots of T(N,P)
as in Figure B.1 where the horizontal P axis is P — the number of processors, the N axis extending
back into the picture is N — the size of the problem instance, and the vertical T axis is execution
time in units of T(1,1) (the time to solve a problem instance of minimal size 1 on a single processor).

Within such charts, a time of C is equal to an absolute execution time of C*T(1,1). To make
the graphs easier to explore over large variations in any direction, we assume logarithmic axes; thus
the origin represents unit execution time with N=1 and P=1. In particular, N=1 here represents
the smallest problem size for which the time complexity curve is “relevant,” and is up to the user
to define.

We observe that a plot of T(N,1) represents the classical execution time curve for a single
processor, and lies wholly on the NT-plane as pictured in Figure B.1. We call it the sequential time
complexity curve. It also starts at the (1,1,1) origin. As problem size increases (larger N along the
N axis), the execution time increases. The notional curve in the figure is for some algorithm with
greater than linear time complexity on the assumed architecture.

In the following subsections we now define two classes of scaling, depending on whether or not
N is allowed to change.
September 14, 2009 Page 107

ECSS Report

434
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Figure B.1: Dimensions of Scalability

B.3.1 Strong Scaling

A system configuration A,X is said to exhibit strong scaling if, when we hold the problem size N
constant, the time to solution decreases as P is allowed to increase, that is

T(N,P1) > T(N,P2) if P1 < P2.

We say that the system exhibits perfect strong scaling if:

T(N,P) = T(N,1)/P ∀ P > 0.

In this latter case, growing the number of processors employed by some factor decreases the
execution time by the same factor. Under normal circumstances, this is as good as one can expect.

Figure B.2 extends the prior Figure B.1 to reflect this concept. The curve in the PN plane is
the mirror image of that in the NT plane, and represents perfect strong scaling where just enough
processors (namely P = T(N,1) processors) are engaged for a problem of size N to always keep the
execution time at 1 unit — that of the simplest problem on one processor. The lines from the NT
plane to the PN plane represent how the execution of problems of fixed size vary as the number
of processors increase. These lines also assume perfect strong scaling — that is the execution time
decreases as 1/P. Finally, the lines that are in planes parallel to the NT plane reflect how using a
system with some fixed number of processors works as the size of the problem changes.1

1Such curves obviously make sense if continued “below” the (P=1,N=1) plane, as here the solution times are less
than 1, i.e., faster than a standard sized problem with only 1 processor.

September 14, 2009 Page 108

ECSS Report

435
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Figure B.2: Strong Scaling

The surface in Figure B.2 is important because it represents in a real sense, an upper bound
for implementations of a particular algorithm. Any point on the surface represents a perfect strong
speedup for a particular size of problem. As such, any point “behind” this surface is highly un-
likely to be achievable (unless it demonstrates superlinear speedup – discussed later), without some
significant variation in algorithm or architecture. Thus, it is far more likely that in the real world,
strong speedups for the specified algorithm are likely to end up “in front of” this surface.

This can be bounded a bit more by adding a surface to Figure B.2 that represents “no speedup”
as P increases. Figure B.3 introduces this surface as a projection perpendicular to the NT plane.
Any point “in front of” this surface represents systems that “slow down” when adding additional
processors (a rare but not unheard of situation). Now, any system configuration exhibiting strong
scaling will correspond to a point between the two surfaces pictured.

The concept of work discussed previously also sheds some light on strong scaling. If we assume
that the curve in the NT plane — the T(N,1) curve – is in fact proportional to the work needed
(a possibly bad assumption when N is large and memory hierarchy effects come into play), and
if P processors are capable of P times the peak or sustained performance of one processor, then
for a problem size of N we need T(N,1) units of work. Now with P processors, for T(N,P) units
of time we have T(N,P)*P units of work available (the “peak” performance potential). However,
for perfect strong scaling where T(N,P) = T(N,1)/P we are using (T(N,1)/P)*P units of work —
which is exactly all that is available. To put it another way, when perfect strong scaling occurs,
the sustained performance of the processing system is independent of the size of the problem, Less
than perfect scaling means that some of the processing capability is “wasted.”

September 14, 2009 Page 109

ECSS Report

436
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Lines
are

1/P

(1,1,1)

T
(N

,P
):

 T
im

e
 t

o
 S

o
lu

ti
o

n

P: # of Processors

N: Problem
Size

T(N,1)

P=T(N,1)

Not Parallelizable Bounding Surface

Figure B.3: Strong scaling with bounding surface

B.3.2 Weak Scaling

The other major common class of algorithm scaling is designated as weak scaling. While there does
not appear to be a formal definition of weak scaling in the literature, the term commonly refers
to the case when the amount of work performed by an application increases in proportion to the
number of processors. As discussed in Section 4.2.2, the increase in work was traditionally achieved
by spatial increase of the problem size but is more recently being achieved by more performing
more computation per datum (“new-era” weak scaling).

The importance of weak scaling was stated in John Gustafson’s paper on “Reevaluating Am-
dahl’s Law” as follows [74]:

“One does not take a fixed-size problem and run it on various numbers of processors ex-
cept when doing academic research; in practice, the problem size scales with the number
of processors. When given a more powerful processor, the problem generally expands
to make use of the increased facilities. Users have control over such things as grid reso-
lution, number of timesteps, difference operator complexity, and other parameters that
are usually adjusted to allow the program to be run in some desired amount of time.
Hence, it may be most realistic to assume that run time, not problem size, is constant.”

In weak scaling, the problem size N that can be solved in constant time increases as the number
of processors P increases, that is:

For any P2 > P1, there is some N2 > N1 such that T(N2,P2) = T(N1,P1).

It is important to realize that strong and weak scaling are not necessarily mutually exclusive.
Each basically indicates how using additional processing can affect execution time in two different
directions — strong in decreasing execution time of a fixed size problem, and weak in increasing
the size of the problem without increasing time. It is not inconceivable to use additional processing
in some way to both decrease execution time and increase problem size in some intermediate way.
September 14, 2009 Page 110

ECSS Report

437
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

B.4 Speedup

A term used with perhaps even more frequency than scalability is speedup. Two definitions from
the web include:

• An acceleration, to go faster.

• A measure of how much faster a given program runs when executed in parallel on several
processors as compared to serial execution on a single processor.

B.4.1 Defining Speedup

The latter definition leads to the typical definition of speedup as the ratio of the sequential execution
time of an algorithm to its parallel execution time. In most cases, what is of real value is not the
speedup for a particular algorithm at a particular level of parallelism, but an understanding of
speedup as a function of parallelism P. Consequently in concert with our definition of time to
solution we define SA,X(N, P ) as the speedup for some algorithm A when converted into a program
and executed on some architecture X, where the size of the input in some units is N, the number of
processors allocated from X to the program execution is P, and the speedup is relative to the time
for the same sized problem on a single processor. As before we will drop the subscripts.

One can raise an argument as to whether the numerator (the single processor case) should be
assuming the same code as run on multiple processors, or for an optimal code written for exactly
one processor (and thus avoiding all the potential overheads introduced to manage parallelism that
is not used). For convention, we will assume the former, thus:

S(N,P) = T(N,1) / T(N,P).

B.4.2 Classes of Speedup

As with scalability, there are several common classes of speedup functions. Non-parallelizable code
is where the speedup is 1 (or less) for all P. Linear speedup occurs when S(N, P ) ≈ KP for some
constant K and for a range of P that is of interest. Perfect linear speedup occurs when K=1, that is
S(N,P) = P for all P. While perfect linear speedup is the “holy grail”, several other types of speedups
are actually much more common. Logarithmic speedup up occurs when S(N, P ) ≈ P/(log2(P )).
Fixed overhead speedup occurs when S(N,P) approaches some constant due to code that does not
parallelize, as P approaches ∞. Superlinear speedup occurs when the reduction in execution time
as P increases is better than the increase in processor count. Figure B.4 places all of these speedup
classes in context.

B.4.3 Fixed Overhead Speedup — Amdahl’s Law

Fixed overhead speedup typically occurs (or is believed to occur) when some fraction F of a program’s
execution is purely sequential (and thus cannot be sped up with parallelism), and the rest of the
program’s execution is sped up as the number of processors employed increases. If we assume
perfect linear speedup for the rest of the program, then

T (N, P ) = F ∗ T (N, 1) + (1 − F ) ∗ T (N, 1)/P

Expanding S(N,F) to include an extra argument F (for efficiency) yields a speedup of:

S(N, P, F ) = T (N, 1)/(F ∗ T (N, 1) + (1 − F ) ∗ T (N, 1)/P ) = 1/(F + (1 − F )/P ) → 1/FasP → ∞
September 14, 2009 Page 111

ECSS Report

438
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Figure B.4: Classes of speedup

We note the addition of the argument F to denote the percent of sequential time. As P goes
towards infinity, this asymptotically approaches 1/F – the reciprocal of the fraction of sequential
complexity that cannot be parallelized.

This is also known as Amdahl’s Law. Figure B.5 diagrams this relationship for a variety of F
values. As can be see, if expected parallelism is expected to grow into the billions, the only way
to get any useful speedup is to have essentially zero serialization. In this report, we often refer to
the “serial part” of an application for simplicity; in practice, rather than a containing a completely
serial part and a perfectly parallelizable part, an application is more likely to exhibit different scales
of parallelism in different regions of code.

B.4.4 Superlinear Speedup

It is also possible, but not frequent, to have superlinear speedup, where the growth in speedup
exceeds the growth in processors. In such cases, doubling the number of processors, for example,
more than doubles the effective speedup. In terms of slopes, a superlinear curve is one where the
slope is greater than one (the slope for a perfect linear speedup).

There are several example situations where such an implausible speedup might actually occur:

• Separating different “loop iterations” to different processors may in fact eliminate loop over-
head.

• Increasing the number of processors may in fact increase the total effective “size” of caches
near to processing cores, meaning that less latency is foisted on data memory references, and
thus each processor gets relatively speaking “faster” than it was for smaller configurations.

September 14, 2009 Page 112

ECSS Report

439
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Figure B.5: Amdahl’s Law

September 14, 2009 Page 113

ECSS Report

440
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

• Problems involving bounded search, such as alpha-beta search, may actually accelerate faster
for larger number of processors because of an increase in breadth-first searching that reveals
a tighter bound earlier than it might have in a sequential implementation, resulting in earlier
cut-offs of searches across the board, and the reallocation of processors to those depth-first
paths that still have promise of a better solution.

B.4.5 Speedup and Average Parallelism and Concurrency

The speedups discussed above, especially associated with Amdahl’s Law, all have the implicit view
that the P processors are either 100% busy during the parallel parts, or idle during the serial parts.
An alternative view is that the actual degree of parallelism – how many processors are actually
doing computation at any point in time, is very dynamic, and can change from moment to moment.
The tree-like computations associated with parallel prefix algorithms are good examples of this —
at one instant they are all busy, then only half, then 1/4th, and so on. At some time the pattern
may repeat.

With this view, we may re-interpret our speedup term as an average “sustained parallelism”
metric. A speedup of S(N,P) for some real number of processors P is equivalent to having S(N,P)
processors and an algorithm that keeps them busy 100% of the time.

In addition, if we know the average pipeline depth of function units then the product with
S(N,P) and the number of function units per processor then gives us a realistic measure of average
concurrency — the average number of operations that are in some state of computation at any one
time. This in turn is thus related to how many independent operations must be extracted from the
program on each and every clock cycle.

B.5 Efficiency

The above discussion of average parallelism leads naturally into a discussion on efficiency. Typical
definitions of this term relate it to the percentage of some resource that is effectively used during
execution of a program. In common usage, a typical parallel computing efficiency is defined as
given some set of function units, say floating point units, over the period of computation time,
what percentage actually were used in the computation. For the Linpack benchmarks used as the
basis for the TOP500 list, this efficiency is often stated as Rmax over Rpeak, where Rpeak is the
peak floating point rate the hardware of a system is capable of, with all other constraints ignored,
and Rmax is the rate that actually was used.

Different resources may have different efficiencies during the same program, and there may in
fact be a rather complex relationship between efficiencies of different resources that are “packaged”
in the same subsystem. For example, we may discuss the “efficiency” of using processors as a whole
in a computation, and yet that efficiency may be different when we look at the use of FPUs within
the processors, or of memory bandwidth between the CPU and their local memory chips.

B.5.1 Computing Efficiency

At the top level of most discussions, the key efficiency number deals with the use of processors, and
there are several different ways of determining this:

• As the ratio of total operations or instructions actually used, over the total operations or
instructions possible in the algorithm’s running time if all processors were always busy doing
useful work = “sustained” over “peak” in our prior definitions.

September 14, 2009 Page 114

ECSS Report

441
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Figure B.6: Efficiency

• As the serial execution time T(N,1) over the parallel execution time T(N,P) times the number
of processors P.

• As the average parallelism S(N,P) over the peak parallelism P.

B.5.2 Efficiency and Amdahl’s Law

If Amdahl’s Law is a reasonable view of how some particular program behaves on some parallel
computer system, then we can use the last of the above approaches to compute E(N,P,F): the
efficiency of use of processors for a problem of size N, processor count of P, and sequential percent
F as follows:

E(N, P, F ) = S(N, P, F )/P = (1/(F + (1 − F )/P ))/P = 1/(PF + 1 − F )

We note that this equation is independent of the problem size. Figure B.6 graphs this relation-
ship for a variety of F and P values. Again as can be seen, it takes a vanishingly small F value to
obtain decent efficiency when there are large numbers of processors.

With this measure a 100% efficiency occurs when all the processors are doing “useful work” all
the time, where “useful work” is computation at the same rate as single processor. Also, the lowest
possible efficiency is 1/P — the equivalent work of only one processor is being done.

An interesting side bar to the above equation is to ask at what point does the efficiency drop
below some arbitrary threshold. Reordering the above equation assuming a desired efficiency E,
we get:

September 14, 2009 Page 115

ECSS Report

442
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Figure B.7: Maximum usable parallelism for various efficiencies

P ≤ (1 + EF − E)/(EF )

.
Consider, for example, a design goal of at least 50% efficiency. Using this in the above equation

yields that to achieve at least 50% efficiency, we must constrain the number of processors as follows:

P ≤ (1 + F )/F

.
Figure B.7 diagrams these bounds as a function of F for a spectrum of target efficiencies.

B.6 More Nuanced Views of Speedup

B.6.1 Gustafson’s Law

Amdahl’s Law assumes that for any sized problem some fixed percentage of the operations “are not
parallelizable.” While this may be true for some part of a problem, such as for an outermost loop
overhead, it may not be true in general. In fact, it may be that as a percentage the serial overhead
changes, and in particular decreases, as the size of the problem is allowed to grow. An example
might be some fixed setup code at the beginning of a computation whose length is independent of
problem size. Thus as the problem increases, the percent serial decreases, and parallelism is more
effective.

September 14, 2009 Page 116

ECSS Report

443
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

This happens enough to be coined Gustafson’s Law, which states that very often, if the problem
size can be increased arbitrarily with sufficient parallelism then an arbitrarily large speedup can be
obtained. To set this up as an equation, we assume as before that T(N,P) is the time spent by a
parallel processor of parallelism P solving a problem of size N. We assume also that F(N,P) is the
percentage of T(N,P) that runs as if it is on a single processor, while 1-F(N,P) is the percentage
that runs at the equivalent of 100% efficiency on the P parallel processors. With this we get:

T (N, 1) = T (N, P ) ∗ (F (N, P ) + P ∗ (1 − F (N, P )))

Converting this into a speedup:

S(N, P ) = T (N, 1)/T (N, P ) = F (N, P ) + P ∗ (1 − F (N, P ))

The closer F(N,P) is to zero, the smaller the P needed to reach some arbitrary speedup.

B.6.2 An Example: Fixed Overhead

As an example assume the total program execution consists of a + bN instructions, where a and
b are constants, and N is related to the size of the problem We also assume that the “bN” part is
perfectly scalable, that is with P processors it takes bN/P time. This corresponds to some algorithm
of linear time complexity — a perfect weakly scalable problem. Now the parallel time is:

T (N, P ) = a + bN/P

and the serial percentage is:

F (N, P ) = a/((N, P ) = a/(a + bN/P )

As N goes towards infinity, F(N,P) approaches zero.
Plugging this into the previous speedup equation yields:

S(N, P ) = (a + bN)/(a + bN/P )

Figures B.8 and B.9 diagram a case where a = 100b, that is the non parallelizable code is 100
times the size of the parallelizable code. As can be seen, for this problem, any desired speedup can
be reached by making N (and P) big enough.

B.6.3 The Karp-Flatt Metric

The process of determining the “serial” portion of a code in advance is usually hard. An alternative
is, once a program is running, to fix the problem size at N, run the same code at different degrees
of parallelism, and then measure the execution time T*(N,P) (the wall clock time). We now define
the effective serial fraction or the Karp-Flatt metric as F*(N,P) as the fraction of time that would
still be serial if the parallelism was at 100% efficiency for the rest of the time. We can then write
an equation between the measured times T’(N,P) and T’(N,1) and the term F’(N,P) as follows:

T ′(N, P ) = T ′(N, 1) ∗ (F ′(N, P ) + (1 − F ′(N, P )) ∗ T ′(N, 1)/P )

or solving for F*(N,P):

F ∗ (N, P ) = (P ∗ T ′(N, P ) − T ′(N, 1))/(P ∗ T ′(N, 1) − T ′(N, 1))

September 14, 2009 Page 117

ECSS Report

444
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Figure B.8: Fixed overhead: Speedup as a function of N

As an example, Figure B.10 diagrams such calculations for the NAMD 2.5 code on an IBM
Blue Gene computer2. Figure B.11 diagrams the same data on a log curve. Note that these figures
show speedup as a function of the number of processors (P) rather than the problem size (N). The
latter curve in particular hints at some interesting properties as declines are interspersed with flat
areas. The declines seem to occur as we move up to a drawer full of Blue Gene nodes, and then
after passing beyond a board to a full rack. It would be interesting to see if further declines occur
when more racks are added.

Also included on Figure B.11 is a synthetic curve of the form:

−0.0045 ∗ log2(N) + 0.00578

As can be seen, this is a rather decent approximation to the observed Karp-Flatt metric up to
about 1000 processors, after which it appears the metric flattens at about a 0.13% serial fraction,
which, using Amdahl’s Law predicts a maximum speedup of about 770.

B.7 Memory and Bandwidth Scaling

Other key parameters of real interest to any scaling discussion are memory capacity and bandwidth;
both of which, if inadequate, can constrain either the size of the problems that are solvable or the
rate of their solution.

2S. Kumar, G. Almasi, and L. V. Kale, “Achieving Strong Scaling On Blue Gene/L: Case Study with NAMD,”
2006

September 14, 2009 Page 118

ECSS Report

445
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Figure B.9: Fixed overhead: Speedup as a function of P

Figure B.10: Karp-Flatt metric for NAMD on a linear scale

September 14, 2009 Page 119

ECSS Report

446
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Figure B.11: Karp-Flatt metric for NAMD on a log scale

Because of the way systems are built, total memory capacity, especially for large systems, is
directly proportional to the number of processors, since some fixed amount of memory is typically
packaged with each processor or fixed set of processors. Available bandwidth, however, is a bit
harder to extrapolate, since it is a function of both the individual nodes where the traffic is generated
and of the interconnect that ties multiple nodes together. The latter, in particular, is often a
function of the number of nodes and the topology of the interconnect.

On a notional level, we might expect at least the memory parameter to track the kind of scaling
that the applications they support exhibit. For example, a configuration that exhibits strong
scaling keeps the size of the problem constant as the number of processors increase. Thus in an
ideal situation, the total required memory capacity is constant, and thus the capacity per processor
might drop linearly with the number of processors.

Weak scaling assumes that the problem size increases as the number of processors increase. For
perfect weak scaling, the relationship is linear; if problem size and required memory capacity is
linear, then one might expect the memory capacity on a per node/processor basis to ideally stay
constant as the number of processors increase.

The following subsections explore this in a bit more detail. Several candidate data structures
are used as a basis for the study.

B.7.1 System Architecture and Baseline Assumptions

Understanding both of these parameters requires making some assumptions about the system archi-
tecture, For this section we assume a partitioned system where each “processor” in the prior sense
has an equal-sized chunk of memory. Together we call this processor plus memory combination a

September 14, 2009 Page 120

ECSS Report

447
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

node.
We also assume mechanisms exist to allow any processor to gain access to data in other nodes.

Whether this is a “pull” mechanism (as in access via load or store instructions), or “push” (as in
message passing from one node to another) depends on the exact system architecture, but for now
we simply assume that such access is possible, and that the cost of moving data across such node
boundaries is relevant.

For memory capacity, the rule of thumb for decades has been to to look at the ratio of bytes
of memory capacity to flops performed; for bandwidth it is similarly the ratio of bytes per second
transiting a node to the flops performed.

The magic number for decades for both numbers has been 1 to 1, but many of the most modern
systems, especially at the high end, have much lower numbers. Memory ratios today, for example,
run from 0.3 (commodity microprocessor-based systems) to 0.15 bytes per flop (Blue Gene-like
systems). Modern GPUs are even lower, with on the order of 1 GB for a few hundred gigaflops, for
ratios of around 0.002 to 0.01. The strawman design of the Exascale technology report was in the
same range as the GPUs at 0.0036 bytes per flop, regardless of system size. These ratios can be a
cause for concern for a) applications with computational complexity that is linearly proportional
to their working set size, and b) storage systems in which the next level of the storage hierarchy is
too slow for out-of-core algorithms to be practical. However, as discussed in Chapter 4, there are
many applications that are not limited by a). Also, recent trends in storage technologies such as
Phase Change Memory (PCM) and Flash Memory suggest that b) may not be a hard limitation
either.

Bandwidth numbers are similar, but even more difficult to pin down, primarily because of
the exploding trend toward multi-core chips with complex memory hierarchies. In such cases on-
chip inter-core bandwidths may vary widely, as area and power for processing can be traded off
for interconnect routing. Off-chip, however, is different, primarily because the number of off-chip
contacts has been relatively flat for years, and the bandwidth at which these contacts can be driven
is often fixed by external parameters such as cable characteristics, and the amount of power that
a designer wants to spend in driving them at higher rates. The strawman exascale design from
the previous report employed a tapered design, with less bandwidth available as one moved up the
hierarchy (page 180, Table 7.7). Here the bytes per second per flop per second varied from 0.25
when accessing a local cache to 0.02 when accessing the (limited) local memory, to 0.006 when
communicating with other nodes. Even at these highly reduced ratios, the estimated power of the
upper level interconnect was 27% of the total system power, meaning that increasing such numbers
can only be done at a huge power penalty. The suggested “adaptive” design was an attempt to allow
at least some flexibility in boosting these ratios in cases where the processing needs are reduced.

The reason for these lower ratios is cost — both in provisioning more memory chips and in
power consumed by them. Both come from both the memory chips themselves and the associated
I/Os (both contacts and driver/receivers), especially when additional interface chips must be added
to glue in large numbers of memory chips. This trend will continue through Exascale systems, and
thus it is crucial to understand the limitations.

B.7.2 Sample Application Patterns

Any real application will have its own unique access pattern to application instance data which will
change as we change the mapping of such data to node memories. However, to get some insight we
define here three simple application data sets, each of size “N,” and their mappings onto P different
nodes:

September 14, 2009 Page 121

ECSS Report

448
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

• Random: We assume here that major data structure for any run of the application is not
correlatable with any placement policy, meaning that any reference made by a program in a
node could be to any datum in any other node, with equal probability. Thus each node gets
N/P elements of data. GUPS is an example of such an application.

• Fully Partitioned : In contrast to the random access mapping, here we assume that the data
can be perfectly partitioned to different nodes, so that for the bulk of the application, there
is no possibility of any one node accessing any other. At the end of the major processing,
however, there may be some exchange of data among nodes, as in a parallel prefix computa-
tion. Again, each node gets N/P elements of data. Searching, max finding, and various forms
of data clustering and data mining are possible examples of such problems.

• Dense Multi-dimensional : Here the data structure is a regular-shaped “cube” of dimension
D, and width W of each face. Thus N = WD, and each node receives a unique sub-cube of
size (W/p)D where for simplicity we assume that P = pD for some p. Applications will want
to access both local data within a node, and ghost data consisting of y “layers” of data in
other nodes’ sub-cubes that are logically “at the surface” of each node’s sub-cube. Examples
of such applications in one dimension might be sub-string search in a text string, in two
dimensions of various matrix problems, and in three dimensions of many 3D physics models.

An additional factor in many problems with the latter multi-dimensional structure is that for
weak scaling, if the growth in problem set is due to grid refinement (smaller distances between
grid points), then the unit of time represented by one computation cycle also decreases, so that
additional computational cycles are needed to get to the same overall period of simulated time.

B.7.3 Off-node Data

The actual amount of physical data that must be resident in each node is a function of both the
data structure (as discussed above) and performance-driven considerations. In most real systems,
“off-node” data is significantly further away than “on-node,” and thus there may be significant
reasons to keep copies of such data in local memory. There are at least two kinds of such copied
data:

• Replicated Common Data: This is information which is identical from one node to another,
as in program code and/or lookup tables. It is typically read in at the beginning of an
application’s execution, and remains unchanged for the duration. Thus for long running
applications, while it may occupy memory space, it adds nothing in terms of inter-node
bandwidth requirements.

• Ghost Data: This corresponds to the ghost surface data when the main data structure is
multi-dimensional as described in Section B.7.2. Such data typically makes up a goodly
chunk of inter-node communication, with either a push or a pull of the current values of all
surfaces at the beginning of each iteration of the algorithm. A reasonable approximation for
the size of such ghost data is; 2D ∗ Y ∗ (W/p)(D−1), where Y is the number of layers.

B.7.4 Memory per Node

The minimum memory needed per node is the sum of the replicated and the non-replicated. For
both the Random and Fully Partitioned data structures, there is no ghost data, so that the required
memory per node should be constant for increasing P for weak scaling (problem size increases), or
September 14, 2009 Page 122

ECSS Report

449
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

decrease for increasing P for strong scaling. Whether or not the decrease in the latter case goes as
1/P depends on the size of any non-replicated data.

For the Multi-dimensional case, it is interesting to note that when we attempt strong scaling
the percentage of data in ghost cells relative to local data grows as P increases. In fact they become
equal when p = W/(2DY ) or P = (W/(2DY ))D. For the common case of 3 dimensions and one
layer of ghost cells on each sub-cube surface, this corresponds to P = N/198, or when each node
holds a cube of width 6. Further, when P=N each node holds the minimum of exactly one grid
point of real data, and for D=3 and L=1 has 6 ghost points around it. If we define R as the ratio
of the non-replicated data with ghost to just the non-replicated data, then if we keep N constant
as we increase P:

R = 1 + (2DY/W)*P1/D

For P=N/198, R=2; for P=N, R=7. Again, replicated data will change these ratios

B.7.5 Off-Node

For applications with a Random data structure as defined in Section B.7.2, the bandwidth in and
out of a node is a strong function only of the number of accesses made by each node into the global
data, and only a weak function of the number of nodes (if accesses are truly random, then only
1/P of them are local, which for large P is near zero). Thus if the size of the total table and the
total number of accesses to be made are held constant (i.e., the problem scales strongly), then
as P increases, each node holds smaller data and both generates and receives fewer accesses, but
in a shorter period of time. With perfect strong scaling, the shorter time balances out the fewer
references and the net bandwidth in and out of a node needs remain approximately constant.

If both the total table and the total number of accesses made grows with P (i.e., the problem
scales perfectly weakly), then as P increases, the number of accesses per unit time again remains
approximately constant, and the bandwidth requirement is unchanged.

Applications with the Fully Partitioned model only access their local data sets until some final
stage. Thus to a first approximation, their off-node bandwidth is zero regardless of how P or N
changes.

Multi-dimensional applications have an entirely different off-node bandwidth scaling character-
istic. In this case, the data transferred between nodes at each time step is twice the ghost data size
(the ghost data from the other nodes must come in and each node must distribute part of its data
to surrounding nodes as part of their ghost data). Thus, for strongly scaled configurations where
the total data size is constant, and the processing is a linear function of the number of local grid
points, then the off-node bandwidth is approximately twice the ghost size divided by the node’s
execution time, which is proportional to the number of local data points. This ratio is thus:

2*2D*Y*(W/p)(D−1) / ((W/p)D) = 4DYp/W

Since D and W are constant, the bandwidth thus actually climbs as the D’th root of P.
For weak scaling, the local data set size and the ghost data remains constant per node. Thus

on a per computational cycle basis the bandwidth needed remains constant.

B.8 Relevance to Exascale

This section tries to draw some lessons from the above discussion in terms of the “data center” sized
exascale system from the prior exascale report. We use as a baseline the clean sheet “aggressive”
strawman of Section 7.3 of that report.
September 14, 2009 Page 123

ECSS Report

450
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

B.8.1 Scaling Implications

The aggressive strawman of the prior report had significantly different characteristics in many of
the metrics than current generations of machines. To get some handle on what this means in terms
of supporting applications, we will use the scaling relations developed above, and extrapolate from
some existing systems, in particular from an XT4 and a Blue Gene/P system.

To start, we define Pexa as the number of cores/processors available in an exascale system (166
million in the aggressive strawman when scaled to the data center size system). Likewise Pbase will
be the equivalent number of cores in a baseline system (either the XT4 or the BG/P). Further,
we assume that the extra processors in the exascale system will be used for both strong and weak
scaling, and relate Pexa and Pbase as follows:

Pexa = Ks * Kw * Pbase

where Ks and Kw refer to how the additional processors in the exa system are used for strong
and weak scaling of applications, respectively. We are free to select any combination of Ks and Kw

as long as they obey the above relation and don’t violate any other constraints.
In particular, if we assume we can port and then weakly scale an application that runs today on

a baseline system by Kw, then this means that Kw*Pbase groups of Ks processors on the exascale
system will hold an instance whose size is Kw times that running on the baseline. Further, with
perfect weak scaling, using only one core per group should result in an execution time on the
exascale system for the Kw scaled data set that equals the time if we had used only the original
data set and Pbase cores. This can only work if the exascale system has sufficient aggregate memory,
i.e.,

Memoryexa ≥ Kw * Memorybase

As discussed earlier, for data structures such as the multi-dimensional, it may be that this ≥
relationship may require a factor of 2 or more.

Next, we assume that strong scaling will be used within each of the Kw*Pbase groups to accelerate
their solution to their part of the problem. There are Ks such processors available for each such
acceleration. With perfect strong scaling, the total solution time would thus drop by a factor of
Ks over using only one core per group in the weakly scaled version.

Finally, since the performance characteristics of the exascale system and the baseline cores are
different, we need to throw in a correction factor Kspeed to make for an apples-to-apples time to
solution comparison. As an approximation of a best case conversion factor, we compute:

Kspeed = (Clockexa/Clockbase) * (Flops-per-cycleexa/Flops-per-cyclebase)

Thus the best an exascale system can do is to speed up by a factor of Kspeed*Ks an application
that is Kw times larger than that which will run on the baseline system, as long as:

Kw ≤ Memoryexa / Memorybase

and
Ks * Kw ≤ Pexa Pbase

One additional caveat to the above is for those cases where the data structure being expanded is
a multi-dimensional data set associated with a physics problem, then the number of computational
cycles needed to simulate the same period of time grows roughly with the “width” of the overall
data structure. For dimensionality D, a growth in size by Kw corresponds to a growth in width of
(Kw)1/D. the effective speedup of the enlarged application to cover the same amount of simulated
time must be reduced to:
September 14, 2009 Page 124

ECSS Report

451
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

XT4 BG/P
Maximum Kw 78 109

Maximum Kw*Ks 7210 2535
Kspeed 1.19 1.82

Table B.1: Bounding parameters for scaling to aggressive exascale system.

1

10

100

1000

10000

0 20 40 60 80 100

Kweak = Weak Scaling Factor

M
a
x
 P

o
s
s
ib

le
 S

p
e
e
d

u
p

 o
v
e
r

B
a
s
e
li

n
e

XT4 XT4 3D BG/P BG/P 3D

Figure B.12: Speedups as a function of weakly scaled problems.

Kspeed * Ks / (Kw)1/D

Table B.1 summarizes these constants for the two baseline systems. Figure B.12 then graphs
the maximum possible speedup that an aggressive strawman exascale system might provide for
applications that are scaled in size over what could be fit on a baseline system today. The lines
labeled “3D” refer to cases where there are extra calculations needed to account for the refined
grids.

B.8.2 Implications of Amdahl’s Law

The historical records for the TOP500 indicate an average efficiency of between 70% to 80% for the
top systems over time, where efficiency here is measured in terms of flop rate, and the benchmark
is Linpack. For comparison, we can ask what is the maximum serial percentage, as seen by the
code run in the 166 million cores that would still yield 70% efficiency. Using the above equations,
this results in a ratio of about 2.6E-9, or only about one out of every 2.6 billion instructions issued
can be issued by one core when all other cores are idle. This is perhaps a million times smaller
than typical serial percentages for today’s machines, and indicates a significant potential problem
to be overcome.

September 14, 2009 Page 125

ECSS Report

452
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Sync Time (in cycles) Minimum Time between Syncs (in cycles)
400 933
4000 9,330

40,000 93,300

Table B.2: Minimum time between sync points to maintain 70% efficiency.

B.8.3 Synchronization Points

Another way to gain insight is to ask how often can a program running on all 166 million cores
go through a global synchronization before we drop to 70% efficiency. Table B.2 lists, for several
different ranges of time for all threads in all cores to synchronize, what is the minimum time between
sync points during which all cores must be running at 100% efficiency to maintain 70% efficiency,
assuming no jitter in the completion of code that leads to the synchronization. The 400 cycle
case corresponds to an architecture where direct hardware support for synchronization is provided
that can sync on chip in perhaps 10 cycles, and then requires perhaps 4 traversals of the entire
system. The 40,000 cycle case corresponds to a more software-implemented case where the barrier
is formed as a tree of smaller barriers between groups of processors. As can, be see, the resulting
times between sync points in all cases are not unreasonable.

September 14, 2009 Page 126

ECSS Report

453
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Appendix C

CUDA as an Example Execution
Model

In the last few years, as graphics processors (GPUs) have become more general purpose, execution
models have been introduced to allow them to participate in high end computationally-intensive
applications. This section overviews one such model, namely that which emerged from a line of
GPUs from NVIDIA but that has been ported to other hardware from other vendors, and has in fact
become in the last few months the basis for a new language standard called OPENCL1 adopted
by most major computer vendors. NVIDIA uses the name CUDA for Compute Unified Device
Architecture for both the overall execution model and the programming model that accompanies
it. The result is a unique combination of SPMD-like, and SIMD-like, massively multi-threaded
shared memory multi-processing, that may be particularly relevant for at least some of the types
of architectures that may emerge from Extreme computing technologies.

C.0.3.1 General CUDA Execution Model

The basic compute model behind CUDA assumes that data is organized into multi-dimensional
arrays, and that most processing involves applying same functions to different regions of these
arrays. This application of a single function to a region of data is termed a kernel. The execution
of such functions against the smallest subset of such data is called a thread, and multiple threads
are in general assumed to be able to execute logically independently of each other.

The specification of the mapping of different threads to different data subsets is termed an
execution configuration. Such configurations are themselves hierarchical, with the lowest level,
termed a thread block, representing a set of threads that are guaranteed to run more or less in
tandem on the same processor at around the same time. Each thread within a block has a unique
identifier, which a typical thread program then uses to associate itself with a different subset of
data. Thread blocks may be up to 512 threads in size.

Sets of such thread blocks, called thread grids, may also be defined within a configuration,
and while each thread within a block must be executed concurrently on the same processor, dif-
ferent blocks may execute on different processors, in arbitrary order. These grids may be multi-
dimensional, and again each such block within a grid has a unique identifier that can be used to
associated the threads with different data subsets.

In general, kernel invocation is asynchronous, that is multiple kernels may be executing con-
currently, unless they have been linked into streams, where the start of one kernel is predicated

1http://www.khronos.org/opencl/

127

ECSS Report

454
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

upon completion of another. Multiple independent streams may be executing concurrently and
interleaved in arbitrary fashions.

An explicit memory hierarchy exists, from a global memory that is visible to all threads, and
where data is persistent throughout execution, to local memory (also called shared memory) that
is allocated only for the execution period of a thread block and where only the threads started by
the kernel’s execution configuration may access, to register files that contain data that is private
to individual threads. These is, however, little coherency or consistency support to memory access
made by threads to these memories, especially global or shared.

C.0.3.2 Current CUDA Hardware Model

The current hardware model for NVIDIA processor chips that support CUDA assume a host pro-
cessor of conventional design that is separate from the CUDA device. Both the host and the device
have separate memory spaces, with only the host capable of accessing both. The device can access
only its own memory. The host executes much of the overall application program control, including
data transfer between host and device memories, and initiation of the highest level kernels into the
device.

The device has an input queue into which kernel execution configuration requests are placed.
The output of this queue schedules different thread blocks on different Stream Multiprocessors (SM)
within the device. Each SM has within it multiple (today 8) separate Stream Processors (SP), each
with their own register file of significant capacity (today 2048 words). Each SP is multi-threaded,
meaning that it can hold the current state for dozens of separate threads, and use one of these state
sets at a time to perform program computations. Each SM has a local memory (today 16384 bytes)
that is accessible to all of its associated SPs. This memory can be accessed an order of magnitude
faster than device global memory, and can be used as an explicitly managed cache, as well as a
means of inter-SP communication. The local memory is divided into a number of banks (today 16)
that allow concurrent access.

When the queue schedules a thread block, it breaks it up into fixed sized sets of threads, called
warps, which are then executed on SMs. Today there are 32 threads in a warp. When given to an
SM, the warp is distributed over the register files of the associated SPs (today 4 thread states from
the warp are placed in each of the 8 SPs). The SM maintains a common program counter for all
the threads in the warp, and fetches instructions for the warp one at a time. The same instruction
is then given (over 4 cycles today) to all threads associated with the warp, and is then executed by
each thread in the SP holding its register set.

Each thread maintains a record of whether or not it is to participate in some particular in-
struction so that even though the code is broadcast by the SM to all threads in a warp, each may
choose individually to ignore or execute it. For example, on if-then-else blocks all threads in a warp
evaluate the test condition, and then all the code associated with both the then and else paths is
broadcast by the SM. Each SP decides which instructions it executes.

Loads and stores may all be executed by the SPs associated with a warp at the same time, but
there is no requirement that the addresses generated by each SP be related to each other in any
way. Separate hardware between the SPs and the multiple off-chip device memory ports takes the
addresses generated by the SPs and coalesces them into patterns that maximizes the bandwidth
with the memory. The address patterns that can be coalesced into concurrent memory accesses are
relatively simple. Broadcast and adjacent accesses to global memory can generally be coalesced.
Accesses to local memory can be coalesced as long as there are no accesses to multiple locations
within a given bank (i.e., bank conflicts).

Several warps are simultaneously assigned to each SM, which then execute in a time multiplexed

September 14, 2009 Page 128

ECSS Report

455
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

manner, allowing latency hiding of memory accesses. The GPU supports a maximum number of
warps per multiprocessor (today 32) which may be reduced by insufficient number of threads
available for execution, exhaustion of the SM local memory, or exhaustion of the SM register file.

This conditional execution and unpredictable execution time for individual instructions in a
warp means that warps do not move in lockstep from a timing fashion. Thus each SM and its
SPs support multiple warps simultaneously, and the SM will switch to issuing instructions for a
different warp if not all threads associated with a prior warp have completed their instructions.

While there is no guaranteed memory consistency or operation ordering, the hardware does
support instructions that allow a warp to suspend until all threads in all warps associated with a
block have reached the same point.

C.0.3.3 CUDA Programming Model

For the most part, CUDA today is implemented as an extension of C, with the major differences
coming in two areas. First there are prefixes that allow a programmer to specify whether a particular
function is to be executed on the device or the host, and into which class of device memory a variable
is to be allocated. Second is some additional annotation at a device function call that specifies the
execution configuration of threads to be invoked: their number and structure both in grids and
blocks.

Additionally, a suite of predefined variables allow a thread to determine which one it is within
a block, and which block within a grid it is. Significant libraries also provide a wide range of
additional capabilities.

C.0.3.4 Current Capabilities

As an example, a Tesla C1060 Computing Processor has the following characteristics2:

• 30 separate SMs on each chip, each with 8 SPs, for a total of 240 SPs.

• Each SP is capable of executing up to 3 single precision floating point operations per cycle,
at up to 1.3GHz, for a peak of about 933 GFlops.

• An SM and its SPs may contain up to 8 separate thread blocks, consisting of up to 24 separate
active warps, for a total of up to 768 active threads per SM.

• Up to 4 GB of GDDR3 memory may be attached, at an aggregate bandwidth of up to 102
GB/sec.

These numbers translate into a device that can support up to 23,040 concurrent threads running
at an aggregate of up to about 1 Tflop single precision, with about 0.004 bytes per single precision
flop of memory, and 0.1 bytes per second of bandwidth per single precision flop.

2http://www.nvidia.com/object/product tesla c1060 us.html

September 14, 2009 Page 129

ECSS Report

456
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Appendix D

Extreme Scale Software Study Group
Members

D.1 Committee Members

Academia & Industry
Name Organization
Vivek Sarkar, Chair Rice University
Saman Amarasinghe Massachusetts Institute of Technology
William Carlson Institute for Defense Analyses
Andrew Chien Intel
William Dally Stanford University
Elmootazbellah Elnohazy IBM
Mary Hall University of Southern California Information Sciences Institute
Robert Harrison Oak Ridge National Laboratory
Charles Koelbel Rice University
David Koester MITRE
Peter Kogge University of Notre Dame
John Levesque Cray
Daniel Reed Microsoft
Robert Schreiber Hewlett-Packard Laboratories
John Shalf Lawrence Berkeley Laboratory
Allen Snavely University of San Diego & San Diego Supercomputer Center
Thomas Sterling Louisiana State University

Government and Support
William Harrod, Organizer DARPA
Daniel Campbell Georgia Tech Research Institute
Kerry Hill Air Force Research Laboratory
Jon Hiller Science & Technology Associates
Sherman Karp Consultant
Mark Richards Georgia Institute of Technology
Al Scarpelli Air Force Research Laboratory

130

ECSS Report

457
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

D.2 Biographies

Saman P. Amarasinghe is an Associate Professor in the Department of Electrical Engineering
and Computer Science at Massachusetts Institute of Technology and a member of the Computer
Science and Artificial Intelligence Laboratory (CSAIL). Currently he leads the Commit compiler
group and was the co-leader of the MIT Raw project. Under Saman’s guidance, the Commit
group developed the StreamIt language and compiler for the streaming domain, Superword Level
Parallelism for multimedia extensions, DynamoRIO dynamic instrumentation system, Program
Shepherding to protect programs against external attacks, and Convergent Scheduling and Meta
Optimization that uses machine learning techniques to simplify the design and improve the quality
of compiler optimization. His research interests are in discovering novel approaches to improve the
performance of modern computer systems and make them more secure without unduly increasing
the complexity faced by either the end users, application developers, compiler writers, or computer
architects. He was also the founder of Determina Corporation, which productized Program Shep-
herding. Prof. Amarasinghe received his BS in Electrical Engineering and Computer Science from
Cornell University in 1988, and his MSEE and Ph.D from Stanford University in 1990 and 1997,
respectively.

Daniel P. Campbell is a Senior Research Engineer in the Sensors and Electromagnetic Ap-
plications Laboratory of the Georgia Tech Research Institute. Mr. Campbell’s research focuses
on application development infrastructure for high performance embedded computing, with an
emphasis on inexpensive, commodity computing platforms. He is co-chair of the Vector Signal
Image Processing Library (VSIPL) Forum, and has developed implementations of the VSIPL and
VSIPL++ specifications that exploit various graphics processors for acceleration. Mr. Campbell
has been involved in several programs that developed middleware and system abstractions for con-
figurable multicore processors, including DARPA’s Polymorphous Computing Architectures (PCA)
program.

William W. Carlson is a member of the research staff at the IDA Center for Computing Sci-
ences where, since 1990, his focus has been on applications and system tools for large-scale parallel
and distributed computers. He also leads the UPC language effort, a consortium of industry and
academic research institutions aiming to produce a unified approach to parallel C programming
based on global address space methods. Dr. Carlson graduated from Worcester Polytechnic In-
stitute in 1981 with a BS degree in Electrical Engineering. He then attended Purdue University,
receiving the MSEE and Ph.D. degrees in Electrical Engineering in 1983 and 1988, respectively.
From 1988 to 1990, Dr. Carlson was an Assistant Professor at the University of Wisconsin-Madison,
where his work centered on performance evaluation of advanced computer architectures.

Andrew Chien is vice president of the Corporate Technology Group and director of Research
for Intel Corporation. He previously served as the Science Applications International Corporation
Endowed Chair Professor in the department of computer science and engineering, and the founding
director of the Center for Networked Systems (CNS) at the University of California at San Diego.
CNS is a university-industry alliance focused on developing technologies for robust, secure, and open
networked systems. For more than 20 years, Chien has been a global leader in research and de-
velopment of high-performance computing systems. His expertise includes networking, Grids, high
performance clusters, distributed systems, computer architecture, high speed routing networks,
compilers, and object oriented programming languages. He is a Fellow of the American Associ-
ation for Advancement of Science (AAAS), Fellow of the Association for Computing Machinery
September 14, 2009 Page 131

ECSS Report

458
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

(ACM), Fellow of Institute of Electrical and Electronics Engineers (IEEE), and has published over
130 technical papers. He serves on the Board of Directors for the Computing Research Association
(CRA), Advisory Board of the National Science Foundation’s Computing and Information Science
and Engineering (CISE) Directorate, and the Editorial Board of the Communications of the As-
sociation for Computing Machinery (CACM). From 1990 to 1998, Chien was a professor at the
University of Illinois at Urbana-Champaign. During that time, he held joint appointments with
both the National Center for Supercomputing Applications (NCSA) and the National Partnership
for Advanced Computational Infrastructure (NPACI), working on large-scale clusters. In 1999 he
co-founded Entropia, Inc., an enterprise desktop Grid company. Chien received his bachelor’s in
electrical engineering, master’s and Ph.D. in computer science from the Massachusetts Institute of
Technology.

William J. Dally is The Willard R. and Inez Kerr Bell Professor of Engineering and the Chair-
man of the Department of Computer Science at Stanford University. He is also co-founder, Chair-
man, and Chief Scientist of Stream Processors, Inc. Dr. Dally and his group have developed system
architecture, network architecture, signaling, routing, and synchronization technology that can be
found in most large parallel computers today. While at Bell Labs Bill contributed to the BELL-
MAC32 microprocessor and designed the MARS hardware accelerator. At Caltech he designed the
MOSSIM Simulation Engine and the Torus Routing Chip which pioneered wormhole routing and
virtual-channel flow control. While a Professor of Electrical Engineering and Computer Science at
the Massachusetts Institute of Technology his group built the J-Machine and the M-Machine, exper-
imental parallel computer systems that pioneered the separation of mechanisms from programming
models and demonstrated very low overhead synchronization and communication mechanisms. At
Stanford University his group has developed the Imagine processor, which introduced the concepts
of stream processing and partitioned register organizations. Dr. Dally has worked with Cray Re-
search and Intel to incorporate many of these innovations in commercial parallel computers, with
Avici Systems to incorporate this technology into Internet routers, co-founded Velio Communica-
tions to commercialize high-speed signaling technology, and co-founded Stream Processors, Inc. to
commercialize stream processor technology. He is a Fellow of the IEEE, a Fellow of the ACM, and a
Fellow of the American Academy of Arts and Sciences. He has received numerous honors including
the IEEE Seymour Cray Award and the ACM Maurice Wilkes award. He currently leads projects
on computer architecture, network architecture, and programming systems. He has published over
200 papers in these areas, holds over 50 issued patents, and is an author of the textbooks, Digital
Systems Engineering and Principles and Practices of Interconnection Networks.

Elmootazbellah N. (Mootaz) Elnozahy is a Senior Manager and Master Inventor in IBM’s
Research Division in Austin, Texas. He obtained a B.Sc. degree with Highest Honours in Electrical
Engineering from Cairo University in 1984, and the M.S. and Ph.D. degrees in Computer Science
from Rice University in 1990 and 1993, respectively. From 1993 until 1997, he was on the faculty at
the School of Computer Science at Carnegie Mellon University, where he received a prestigious NSF
CAREER award. In 1997, he moved to the IBM Austin Research Lab and started the Systems
Software Department, which today includes over 25 researchers investigating high performance
computing, low-power systems, and simulation tools. From 2005 to 2007, Mootaz joined the product
division to accelerate the productization of his research project. Prior to joining IBM, he has worked
on rollback-recovery, replication, and reliable distributed systems. While at IBM, he has worked
on code and trace compression cc-NUMA systems, acceleration of the web site performance for the
U.S. Census Bureau, blade-based servers, security of IP-based protocols, and performance tools.

September 14, 2009 Page 132

ECSS Report

459
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

He led the first two phases of the Productive, Easy-to-Use, Reliable Computing System (PERCS)
project, which is IBM’s effort under DARPA’s HPCS initiative. Mootaz is also an Adjunct Associate
Professor at the University of Texas at Austin, and has consulted with Bell Labs, Bellcore, NSF and
the state of Texas. He has served on over 30 technical program committees in the areas of distributed
operating systems and reliability. Mootaz’s research interests include distributed systems, operating
systems, computer architecture, and fault tolerance. He has published 31 refereed articles in these
areas, and has been awarded 20 patents.

William Harrod joined DARPA’s Information Processing Technology Office (IPTO) as a Pro-
gram Manager in December of 2005. His area of interest is extreme computing, including a current
focus on advanced computer architectures and system productivity, including self- monitoring and
self-healing processing, Exascale computing systems, highly productive development environments
and high performance, advanced compilers. He has over 20 years of algorithmic, application, and
high performance processing computing experience in industry, academics and government. Prior
to his DARPA employment, he was awarded a technical fellowship for the intelligence community
while employed at Silicon Graphics Incorporated (SGI). Prior to this at SGI, he led technical teams
developing specialized processors and advanced algorithms, and high performance software. Dr.
Harrod holds a B.S. in Mathematics from Emory University, a M.S. and a Ph.D. in Mathematics
from the University of Tennessee.

Mary Hall is an associate professor in the School of Computing at University of Utah. Her
research focuses on compiler technology for exploiting performance-enhancing features for novel
computer architectures. She received her PhD from Rice University in 1991. From 1996 to 2008,
she was jointly a project leader at Information Sciences Institute and a research associate professor
in the Department of Computer Science at University of Southern California. Prior to 1996, Prof.
Hall held research positions at Caltech, Stanford and Rice University. Prof. Hall is currently lead-
ing the autotuning group in the DOE SciDAC Performance Engineering Research Institute. Previ-
ously, she was principal investigator on DIVA (Data-IntensiVe Architecture), a system architecture
project that utilizes processing logic internal to memory chips as smart memory co-processors, and
on DEFACTO (Design Environment for Adaptive Computing), an end-to-end design environment
for FPGA-based computing environments. Prof. Hall has served on over 40 program committees
in compilers and their interaction with architecture, parallel computing, and embedded and recon-
figurable computing, including 2010 program chair for the ACM Principles and Practice of Parallel
Programming and 2009 program chair of the Code Generation and Optimization Conference, and
workshop co-chair for SC08, among others. She has authored over 70 papers in these areas. She is
active in the ACM, serving as chair of the ACM History Committee, and previously on the ACM
Health of Conferences Committee. She also participates in outreach programs to encourage the
participation of women in computer science.

Robert Harrison Robert J. Harrison holds a joint appointment between Oak Ridge National
Laboratory (ORNL) and the University of Tennessee, Knoxville. At the university, he is a professor
in the chemistry department. At ORNL he is a corporate fellow and leader of the Computational
Chemical Sciences Group in the Computer Science and Mathematics Division. He has many pub-
lications in peer-reviewed journals in the areas of theoretical and computational chemistry, and
high-performance computing. His undergraduate (1981) and post-graduate (1984) degrees were
obtained at Cambridge University, England. Subsequently, he worked as a postdoctoral research
fellow at the Quantum Theory Project, Univ. Florida, and the Daresebury Laboratory, England,

September 14, 2009 Page 133

ECSS Report

460
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

before joining the staff of the theoretical chemistry group at Argonne National Laboratory in 1988.
In 1992, he moved to the Environmental Molecular Sciences Laboratory of Pacific Northwest Na-
tional Laboratory, conducting research in theoretical chemistry and leading the development of
NWChem, a computational chemistry code for massively parallel computers. In August 2002, he
started the joint faculty appointment with UT/ORNL. In addition to his DOE Scientific Discovery
through Advanced Computing (SciDAC) research into efficient and accurate calculations on large
systems, he has been pursuing applications in molecular electronics and chemistry at the nanoscale.
In 1999, the NWChem team received an R&D Magazine R&D100 award, and, in 2002, he received
the IEEE Computer Society Sydney Fernbach award.

Kerry L. Hill is a Senior Electronics Engineer with the Advanced Sensor Components Branch,
Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB OH. Ms. Hill has 27
years experience in advanced computing hardware and software technologies. Her current research
interests include advanced digital processor architectures, real-time embedded computing, and re-
configurable computing. Ms. Hill worked computer resource acquisition technical management for
both the F-117 and F-15 System Program Offices before joining the Air Force Research Laboratory
in 1993. Ms. Hill has provided technical support to several DARPA programs including Adaptive
Computing Systems, Power Aware Computing and Communications, Polymorphous Computing
Architectures, and Architectures for Cognitive Information Processing.

Jon C. Hiller is a Senior Program Manager at Science and Technology Associates, Inc. Mr.
Hiller has provided technical support to a number of DARPA programs, and specifically com-
puting architecture research and development. This has included the Polymorphous Computing
Architectures, Architectures for Cognitive Information Processing, Power Aware Computing and
Communications, Data Intensive Systems, Adaptive Computing Systems, and Embedded High Per-
formance Computing Programs. Previously in support of DARPA and the services, Mr. Hiller’s
activities included computer architecture, embedded processing application, autonomous vehicle,
and weapons systems research and development. Prior to his support of DARPA, Mr. Hiller worked
at General Electric’s Military Electronic Systems Operation, Electronic Systems Division in the ar-
eas of GaAs and CMOS circuit design, computing architecture, and digital and analog design and
at Honeywell’s Electro-Optics Center in the areas of digital and analog design. Mr. Hiller has a
BS from the University of Rochester and a MS from Syracuse University in Electrical Engineering.

Sherman Karp has been a consultant to the Defense Research Projects Agency (DARPA) for the
past 21 years and has worked on a variety of projects including the High Productivity Computing
System (HPCS) program. Before that he was the Chief Scientist for the Strategic Technology
Office (STO) of DARPA. At DARPA he did pioneering work in Low Contrast (sub-visibility)
Image enhancement and Multi-Spectral Processing. He also worked in the area of fault tolerant
spaceborne processors. Before moving to DARPA, he worked at the Naval Ocean Systems Center
where he conceived the concept for Blue-Green laser communications from satellite to submarine
through clouds and water, and directed the initial proof of principle experiment and system design.
He authored two seminal papers on this topic. For this work he was named the NOSC Scientist
of the Year (1976), and was elected to the rank of Fellow in the IEEE. He is currently a Life
Fellow. He has co-authored four books and two Special Issues of the IEEE. He was awarded the
Secretary of Defense Medal for Meritorious Civilian Service, and is a Fellow of the Washington
Academy of Science, where he won the Engineering Sciences Award. He was also a member of
the Editorial Board of the IEEE Proceedings, the IEEE FCC Liaison Committee, the DC Area

September 14, 2009 Page 134

ECSS Report

461
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

IEEE Fellows Nomination Committee, the IEEE Communications Society Technical Committee on
Communication Theory, on which he served as Chairman from 1979-1984, and was a member of
the Fellows Nominating Committee. He is also a member of Tau Beta Pi, Eta Kappa Nu, Sigma
Xi and the Cosmos Club.

David Koester received his Masters in Applied Statistics (MAS) from The Ohio State Univer-
sity in 1978 and his doctorate from Syracuse University in 1996 under the guidance of Dr. Geoffrey
Fox and Dr. Sanjay Ranka. He joined the MITRE Corporation at the MITRE-Rome site in 1978
and continues to work from that office which is co-located with the Air Force Research Labora-
tory (AFRL) Site Rome, NY. Dr. Koester’s present areas of interest in High End Computing
(HEC) technologies include understanding the high-level mappings of applications to computing
architectures and metrics to evaluate system performance and productivity.

Peter M. Kogge is currently the Associate Dean for research for the College of Engineering,
the Ted McCourtney Chair in Computer Science and Engineering, and a Concurrent Professor of
Electrical Engineering at the University of Notre Dame, Notre Dame, Indiana. From 1968 until
1994, he was with IBM’s Federal Systems Division in Owego, NY, where he was appointed an
IBM Fellow in 1993. In 1977 he was a Visiting Professor in the ECE Dept. at the University of
Massachusetts, Amherst, MA, and from 1977 through 1994, he was also an Adjunct Professor of
Computer Science at the State University of New York at Binghamton. He has been a Distinguished
Visiting Scientist at the Center for Integrated Space Microsystems at JPL, and the Research Thrust
Leader for Architecture in Notre Dame’s Center for Nano Science and Technology. For the 2000-
2001 academic year he was also the Interim Schubmehl-Prein Chairman of the CSE Dept. at
Notre Dame. His research areas include advanced VLSI and nano technologies, non von Neumann
models of programming and execution, parallel algorithms and applications, and their impact on
massively parallel computer architecture. Since the late 1980s’ this has focused on scalable single
VLSI chip designs integrating both dense memory and logic into “Processing In Memory” (PIM)
architectures, efficient execution models to support them, and scaling multiple chips to complete
systems, for a range of real system applications, from highly scalable deep space exploration to
trans-petaflops level supercomputing. This has included the world’s first true multi-core chip,
EXECUBE, that in the early 1990s integrated 4 Mbits of DRAM with over 100K gates of logic to
support a complete 8 way binary hypercube parallel processor which could run in both SIMD and
MIMD modes. Prior parallel machines included the IBM 3838 Array Processor which for a time
was the fastest single precision floating point processor marketed by IBM, and the Space Shuttle
Input/Output Processor which probably represents the first true parallel processor to fly in space,
and one of the earliest examples of multi-threaded architectures. His Ph.D. thesis on the parallel
solution of recurrence equations was one of the early works on what is now called parallel prefix, and
applications of those results are still acknowledged as defining the fastest possible implementations
of circuits such as adders with limited fan-in blocks (known as the Kogge-Stone adder). More
recent work is investigating how PIM-like ideas may port into quantum cellular array (QCA) and
other nanotechnology logic, where in- stead of “Processing-In-Memory” we have opportunities for
“Processing-In-Wire” and similar paradigm shifts.

John Levesque is the Director of Cray’s Supercomputing Center of Excellence based at Oak
Ridge National Laboratory (ORNL). The group is tasked with assisting the DoE Office of Science
Researchers in porting and scaling their applications to the Petascale systems based at ORNL.
Mr. Levesque is in the Chief Technology Office of Cray Inc, responsible for Application awareness

September 14, 2009 Page 135

ECSS Report

462
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

throughout the company. Prior to joining Cray, he was the Director of the Advanced Computing
Technology Center based in IBM Research. Mr. Levesque started his career in high performance
computing 40 years ago as an application developer at Sandia Laboratory and Air Force Weapons
Laboratory in Albuquerque, New Mexico. He joined R&D Associates in Los Angeles, CA in 1972
where he ran a DARPA project to monitor ILLIAC IV code development efforts. Until joining
IBM in 1998, he ran software development groups at Pacific Sierra Research and Applied Parallel
Research. These groups pioneered parallel programming tools using “whole program” analysis in
the VAST and FORGE software. Mr. Levesque co-authored a book “Guidebook to Fortran on
Supercomputers” in 1981 and is currently working on a similar book addressing effective program-
ming for multi-core architectures. Mr. Levesque received his Master Degree in Mathematics at the
University of New Mexico in 1972.

Daniel Reed is Microsoft’s Scalable and Multicore Computing Strategist, responsible for re-
envisioning the mega-data center of the future. Previously, he was the Chancellor’s Eminent
Professor at UNC Chapel Hill, as well as the Director of the Renaissance Computing Institute
(RENCI) and the Chancellor’s Senior Advisor for Strategy and Innovation for UNC Chapel Hill.
Dr. Reed has served as a member of the U.S. President’s Council of Advisors on Science and Tech-
nology (PCAST) and as a member of the President’s Information Technology Advisory Committee
(PITAC). He recently chaired a review of the U.S. networking and IT research portfolio, and he
recently completed a term as chair of the board of directors of the Computing Research Association.
He was previously Head of the Department of Computer Science at the University of Illinois at
Urbana-Champaign (UIUC). He has also been Director of the National Center for Supercomputing
Applications (NCSA) at UIUC, where he also led National Computational Science Alliance. He
was also one of the principal investigators and chief architect for the NSF TeraGrid. He received
his PhD in computer science in 1983 from Purdue University.

Mark A. Richards is a Principal Research Engineer and Adjunct Professor in the School of
Electrical and Computer Engineering, Georgia Institute of Technology. From 1988 to 2001, Dr.
Richards held a series of technical management positions at the Georgia Tech Research Institute,
culminating as Chief of the Radar Systems Division of GTRI’s Sensors and Electromagnetic Appli-
cations Laboratory. From 1993 to 1995, he served as a Program Manager for the Defense Advanced
Research Projects Agency’s (DARPA) Rapid Prototyping of Application Specific Signal Processors
(RASSP) program, which developed new computer-aided design (CAD) tools, processor architec-
tures, and design and manufacturing methodologies for embedded signal processors. Since the
mid-1990s, he has been involved in a series of pro- grams in high performance embedded comput-
ing, including the efforts to develop the Vector, Signal, and Image Processing Library (VSIPL)
and VSIPL++ specifications and the Stream Virtual Machine (SVM) middleware developed under
DARPA’s Polymorphous Computing Architectures (PCA) program. Dr. Richards is the author of
the text Fundamentals of Radar Signal Processing (McGraw-Hill, 2005).

Vivek Sarkar (Chair) is the E.D. Butcher Professor of Computer Science at Rice University. He
conducts research in programming languages, compiler optimizations and runtime systems for par-
allel and high performance computer systems, and currently leads the Habanero Multicore Software
Research project at Rice University. Prior to joining Rice, he was Senior Manager of Programming
Technologies at IBM Research. His responsibilities at IBM included leading IBM’s research efforts
in programming model, tools, and productivity in the PERCS project during 2002- 2007 as part
of the DARPA High Productivity Computing System program. His past projects include the X10

September 14, 2009 Page 136

ECSS Report

463
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

programming language, the Jikes Research Virtual Machine for the Java language, the ASTI opti-
mizer used in IBM’s XL Fortran product compilers, the PTRAN automatic parallelization system,
and profile-directed partitioning and scheduling of Sisal programs. Vivek became a member of the
IBM Academy of Technology in 1995, the E.D. Butcher Professor of Computer Science at Rice
University in 2007, and was inducted as an ACM Fellow in 2008. He holds a B.Tech. degree from
the Indian Institute of Technology, Kanpur, an M.S. degree from University of Wisconsin-Madison,
and a Ph.D. from Stanford University. In 1997, he was on sabbatical as a visiting associate professor
at MIT, where he was a founding member of the MIT RAW multicore project.

Alfred J. Scarpelli is a Senior Electronics Engineer with the Advanced Sensor Components
Branch, Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB OH. His cur-
rent research areas include advanced digital processor architectures, real-time embedded computing,
and reconfigurable computing. Mr. Scarpelli has 33 years research experience in computer architec-
tures and computer software. In the 1970’s, he conducted benchmarking to support development of
the MIL-STD-1750 instruction set architecture, and test and evaluation work for the DoD standard
Ada language development. In the 1980’s, he was involved with the DoD VHSIC program, and
advanced digital signal processor development, a pre- cursor to the F-22 Common Integrated Pro-
cessor. In the 1990’s, his research focused on the DARPA Pilot’s Associate, the development of an
embedded, artificial intelligence processor powered by an Associative Memory CoProcessor, real-
time embedded software schedulability techniques, VHDL compilation and simulation tools, and
application partitioning tools for reconfigurable computing platforms. Since 1997, he has provided
technical support to multiple DARPA programs such as Adaptive Computing Systems, Polymor-
phous Computing Architectures, Architectures for Cognitive Information Processing, Networked
Embedded Systems Technology, Mission Specific Processing, and Foliage Penetration. He holds
a B.S. degree in Computer Science from the University of Dayton (1979) and an M.S. degree in
Computer Engineering from Wright State University (1987).

Rob Schreiber is a Distinguished Technologist in and Assistant Director of the Exascale Com-
puting Lab at Hewlett Packard Laboratories. Dr. Schreiber received an AB in mathematics from
Cornell in 1972 and a PhD in Computer Science from Yale in 1977. He is known for research in
sequential and parallel algorithms for matrix computation and compiler optimization for parallel
languages. He was a professor of Computer Science at Stanford and at RPI and was chief scientist
of the Saxpy Computer company. He was a co-developer of the sparse matrix extension of Matlab,
and a leading designer of the High Performance Fortran programming language. He was one of
the developers of the NAS parallel benchmarks. At HP, Rob helped lead the PICO Project, which
developed a system for embedded processor synthesis from high-level specifications. In 2007 he was
named as a Distinguished Scientist by the Association for Computing Machinery.

John Shalf is with the National Energy Research Scientific Computing Center of the Lawrence
Berkeley National Laboratory. His background is in electrical engineering. He spent time in grad-
uate school at Virginia Tech working on a C-compiler for the SPLASH-2 FPGA-based computing
system, and at Spatial Positioning Systems Inc. (now ArcSecond) he worked on embedded computer
systems. John first got started in HPC at the National Center for Supercomputing Applications
(NCSA) in 1994, where he provided software engineering support for a number of scientific appli-
cations groups. While working for the General Relativity Group at the Albert Einstein Institute
in Potsdam Germany, he helped develop the first implementation of the Cactus Computational
Toolkit, which is used for numerical solutions to Einstein’s equations for General Relativity and

September 14, 2009 Page 137

ECSS Report

464
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

which enables modeling of black holes, neutron stars, and boson stars. John joined Berkeley Lab
in 2000 where he co-authored he ”View from Berkeley” report with David Patterson et. al. at UC
Berkeley, which discussed the future research challenges of multicore computing. He currently leads
the Science Driven System Architecture group at the National Energy Research Supercomputing
Center and leads the Green Flash project at LBL to develop energy-efficient computer architectures.

Allan E. Snavely is an Adjunct Assistant Professor in the University of California at San Diego’s
Department of Computer Science and is founding director of the Performance Modeling and Char-
acterization (PMaC) Laboratory at the San Diego Supercomputer Center. He is a noted expert in
high performance computing (HPC). He has published more than 50 papers on this subject, has
presented numerous invited talks including briefing U.S. congressional staff on the importance of
the field to economic competitiveness, was a finalist for the Gordon Bell Prize 2007 in recognition
for outstanding achievement in HPC applications, and is primary investigator (PI) on several fed-
eral research grants. Notably, he is PI of the Cyberinfrastructure Evaluation Center supported by
National Science Foundation, and Co-PI in charge of the performance modeling thrust for PERI
(the Performance Evaluation Research Institute), a Department of Energy SciDAC2 institute.

Thomas Sterling is the Arnaud and Edwards Professor of Computer Science at Louisiana State
University and a member of the Faculty of the Center for Computation and Technology. Dr.
Sterling is also a Faculty Associate at the Center for Computation and Technology at California
Institute of Technology and a Distinguished Visiting Scientist at Oak Ridge National Laboratory.
Sterling is an expert in the field of parallel computer system architecture and parallel programming
methods. Dr. Sterling led the Beowulf Project that performed seminal pathfinding research estab-
lishing commodity cluster computing as a viable high performance computing approach. He led
the Federally sponsored HTMT project that conducted the first Peta ops scale design point study
that combined advanced technologies and parallel architecture exploration as part of the national
peta ops initiative. His current research directions are the ParalleX execution model and processor
in memory architecture for directed graph based applications. He is a winner of the Gordon Bell
Prize, co-author of five books, and holds six patents.

September 14, 2009 Page 138

ECSS Report

465
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Appendix E

Extreme Scale Software Study
Meetings, Speakers, and Guests

Meeting # 1 (Kickoff Meeting)

June 17, 2008, Boston, MA
Host: Massachusetts Institute of Technology

Committee members present

Dan Campbell, Andrew Chien, Bill Dally, Mootaz Elnohazy, Mary Hall, Robert Harrison, Bill
Harrod, Jon Hiller, Sherman Karp, David Koester, John Levesque, John Shalf, Vivek Sarkar, Allan
Snavely

Visitors

• Anant Agarwal, Massachusetts Institute of Technology

• Guy Steele, Sun Microsystems

Presentations

• “Introduction” — Vivek Sarkar:

• “Project Overview” — Bill Harrod

• “Software Challenges and Approaches for 1000 Cores: the CSAIL Angstrom Project” —
Anant Agarwal

• “Breaking Sequential Habits of Thought” — Guy Steele

Meeting # 2

July 9, 2008, Atlanta, GA
Host: Georgia Institute of Technology

139

ECSS Report

466
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Committee members present

Saman Amarasinghe, Bill Carlson, Dan Campbell, Andrew Chien, Bill Dally, Mootaz Elnohazy,
Bill Harrod, Jon Hiller, Sherman Karp, Peter Kogge, John Levesque, Mark Richards, Vivek Sarkar,
Allan Snavely

Visitors

• David Bader, Georgia Institute of Technology

• Guy Steele, Sun Microsystems

Presentations

• “Status Update” — Vivek Sarkar

• “Concurrency at Exascale” — Peter Kogge

• “Exascale Analytics in Biology, Social Networks, and Security” - David Bader

Meeting # 3

July 31, 2008, Argonne, IL
Host: Argonne National Laboratory

Committee members present

Saman Amarasinghe, Dan Campbell, Bill Dally, Thomas Dunning, Mootaz Elnohazy, Mary Hall,
Robert Harrison, Bill Harrod, Jon Hiller, Sherman Karp, Charles Koelbel, John Levesque, Vivek
Sarkar, Allan Snavely

Visitors

• Peter Beckman, Argonne National Laboratory

• William Gropp, University of Illinois at Urbana-Champaign

• Rusty Lusk, Argonne National Laboratory

• Arvind Mithal, Massachusetts Institute of Technology

• Rob Pennington, University of Illinois at Urbana-Champaign

• Rob Schreiber, Hewlett-Packard Laboratories

• Marc Snir, University of Illinois at Urbana-Champaign

• Guy Steele, Sun Microsystems

September 14, 2009 Page 140

ECSS Report

467
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Presentations

• “Status Update” — Vivek Sarkar

• “Programming models for Petascale Computing, and beyond” — Marc Snir

• “Scalability Challenges in System Software” — Pete Beckman

• “Reliability in Large-Scale Systems (DARPA Exascale Computing Resiliency Study)” —
Mootaz Elnozahy

Meeting # 4

August 12, 2008, Houston, TX
Host: Rice University

Committee members present

Saman Amarasinghe (via teleconference), Dan Campbell, Mootaz Elnohazy, Mary Hall, Bill Harrod,
Jon Hiller, Sherman Karp, Charles Koelbel, David Koester, Peter Kogge, John Levesque, Mark
Richards, Vivek Sarkar, Allan Snavely, Tom Sterling

Visitors

• Jack Dongarra, University of Tennessee at Knoxville

• John Mellor-Crummey, Rice University

• Krishna Palem, Rice University

• Rob Schreiber, Hewlett-Packard Laboratories

Presentations

• “Status Update” — Vivek Sarkar

• “Scheduling for Numerical Linear Algebra Library at Scale” — Jack Dongarra

• “Tool Challenges for Exascale Computing” — John Mellor-Crummey

• “Compiler Optimizations for Power Aware Computing” — Krishna Palem

Meeting # 5

September 16, 2008, Stanford, CA
Host: Stanford University

Committee members present

Saman Amarasinghe, Dan Campbell, Andrew Chien, Bill Dally, Mootaz Elnohazy, Mary Hall (via
teleconference), Robert Harrison, Bill Harrod, Jon Hiller, Sherman Karp, Charles Koelbel (via
teleconference), David Koester, Mark Richards, Vivek Sarkar (via teleconference), John Shalf,
Allan Snavely
September 14, 2009 Page 141

ECSS Report

468
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Visitors

• Ron Brightwell, Sandia National Laboratories

• G. R. Gao, University of Delaware

• Kathy Yelick, University of California, Berkeley

Presentations

• “Status Update” — Vivek Sarkar

• “Presentation” — Kathy Yelick

• “FAST-OS” — Ron Brightwell

• “Cyclops System Software” — G. R. Gao

Meeting # 6

November 11, 2008, Stanford, CA
Host: Stanford University

Committee members present

Dan Campbell, Bill Carlson (via teleconference), Andrew Chien, Bill Dally, Mootaz Elnohazy, Mary
Hall, Bill Harrod, Jon Hiller, Sherman Karp, David Koester, Peter Kogge, Mark Richards, Vivek
Sarkar, John Shalf, Allan Snavely, Tom Sterling

Visitors

• Anant Agarwal, Massachusetts Institute of Technology

Presentations

• “Status Update” — Vivek Sarkar

• “Self-Aware Computing Presentation” — Anant Agarwal

Meeting # 7

February 25, 2009, Stanford, CA
Host: Stanford University

Committee members present

Bill Dally, Mootaz Elnohazy, Mary Hall, Bill Harrod, Jon Hiller, Sherman Karp, Peter Kogge, Mark
Richards, Vivek Sarkar, John Shalf, Allan Snavely, Tom Sterling

Visitors

• None
September 14, 2009 Page 142

ECSS Report

469
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

Presentations

• “Status Update” — Vivek Sarkar

September 14, 2009 Page 143

ECSS Report

470
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Bibliography

[1] http://top500.org/.

[2] http://www.er.doe.gov/ASCR/ProgramDocuments/TownHall.pdf.

[3] http://hpcrd.lbl.gov/E3SGS/main.html.

[4] http://computing.ornl.gov/workshops/town hall/.

[5] https://www.cels.anl.gov/events/workshops/townhall07/index.php.

[6] http://www.zettaflops.org/fec07/index.html.

[7] http://www.lanl.gov/roadrunner/.

[8] http://www.ncsa.uiuc.edu/BlueWaters/.

[9] http://portal.acm.org/ft gateway.cfm?id=1188502&type=pdf&coll=ACM&dl=
GUIDE&CFID=1529677&CFTOKEN=97129850.

[10] http://www.gaussian.com/.

[11] http://www.msg.ameslab.gov/GAMESS/.

[12] http://www.simulia.com/.

[13] http://www.emsl.pnl.gov/docs/global/ga.html.

[14] http://www.csm.ornl.gov/workshops/HPA/documents/1-arch/hpa-xmt.pdf.

[15] http://en.wikipedia.org/wiki/Little’s law.

[16] http://www.vni.com/products/imsl/fortran/overview.php.

[17] http://en.wikipedia.org/wiki/Basic Linear Algebra Subprograms.

[18] http://www.netlib.org/blas/.

[19] http://www.netlib.org/lapack/.

[20] http://math-atlas.sourceforge.net/.

[21] http://icl.cs.utk.edu/plasma/index.html.

[22] http://www.fftw.org/.

[23] http://www.ffte.jp/.
144

ECSS Report

471
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

[24] http://www.vsipl.org/.

[25] http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm.

[26] http://www-03.ibm.com/systems/p/software/essl/index.html.

[27] http://www.mpi-forum.org/docs/.

[28] http://www.emsl.pnl.gov/docs/parsoft/tcgmsg/tcgmsg.html.

[29] http://www.emsl.pnl.gov/docs/parsoft/tcgmsg-mpi/.

[30] http://www.mhpcc.edu/training/workshop2/mpi io/MAIN.html.

[31] http://www.emsl.pnl.gov/docs/parsoft/ma/MA.html.

[32] http://www.emsl.pnl.gov/docs/parsoft/armci/.

[33] http://www.emsl.pnl.gov/docs/parsoft/chemio/chemio.html.

[34] http://www.windriver.com.

[35] http://www-unix.mcs.anl.gov/zeptoos.

[36] Anant Agarwal and Bill Harrod. Organic computing, August 2006.

[37] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley, August 2006.

[38] E. Allan et al. The Fortress language specification version 0.618. Technical report, Sun
Microsystems, April 2005.

[39] Jonathan Appavoo, Dilma Da Silva, Orran Krieger, Marc Auslander, Michal Ostrowski,
Bryan Rosenburg, Amos Waterland, Robert W. Wisniewski, Jimi Xenidis, Michael Stumm,
and Livio Soares. Experience distributing objects in an smmp os. ACM Trans. Comput.
Syst., 25(3):6, 2007.

[40] David A. Bader. Petascale Computing: Algorithms and Applications. Chapman & Hall/CRC,
2007.

[41] Pavan Balaji, Wu-chun Feng, Jeremy Archuleta, Heshan Lin, Rajkumar Kettimuthu, Rajeev
Thakur, and Xiaosong Ma. Semantics-based distributed i/o for mpiblast. In PPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming, pages 293–294, New York, NY, USA, 2008. ACM.

[42] Guy Blelloch. NESL: A Nested Data-Parallel Language. Technical Report CMU-CS-92-103,
Carnegie Mellon University, January 1992.

[43] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime system. In
PPOPP ’95: Proceedings of the fifth ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 207–216, New York, NY, USA, 1995. ACM.

[44] Fred Brauer and Carlos Castillo-Chavez. Mathematical Models in Population Biology and
Epidemiology, volume 40 of Texts in Applied Mathematics. Springer, 2001.

September 14, 2009 Page 145

ECSS Report

472
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

[45] Ian Buck. Brook Specification v0.2.

[46] Zoran Budimlić, Aparna Chandramowlishwaran, Kathleen Knobe, Geoff Lowney, Vivek
Sarkar, and Leo Treggiari. Multi-core implementations of the concurrent collections program-
ming model. In CPC ’09: 14th International Workshop on Compilers for Parallel Computers.
Springer, January 2009.

[47] Zoran Budimlic, Aparna M. Chandramowlishwaran, Kathleen Knobe, Geoff N. Lowney, Vivek
Sarkar, and Leo Treggiari. Declarative aspects of memory management in the concurrent
collections parallel programming model. In DAMP ’09: Proceedings of the 4th workshop on
Declarative aspects of multicore programming, pages 47–58, New York, NY, USA, 2008. ACM.

[48] Mary Carrington and Stephen J. O’Brien. The influence of hla genotype on aids. Annual
Review of Medicine, 54(1):535–551, 2003. PMID: 12525683.

[49] Mark J. Chaisson and Pavel A. Pevzner. Short read fragment assembly of bacterial genomes.
Genome Research, 18(2):324–330, 2008.

[50] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra,
Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented approach
to non-uniform cluster computing. In OOPSLA ’05: Proceedings of the 20th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applications,
pages 519–538, New York, NY, USA, 2005. ACM.

[51] Francis S. Collins, Michael Morgan, and Aristides Patrinos. The human genome project:
Lessons from large-scale biology. Science, 300(5617):286–290, 2003.

[52] Willem de Bruijn and Herbert Bos. Pipesfs: fast linux i/o in the unix tradition. SIGOPS
Oper. Syst. Rev., 42(5):55–63, 2008.

[53] Steven J. Deitz, David Callahan, Bradford L. Chamberlain, and Lawrence Snyder. Global-
view abstractions for user-defined reductions and scans. In PPoPP ’06: Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and practice of parallel programming,
pages 40–47, New York, NY, USA, 2006. ACM.

[54] Jack B. Dennis. Data Flow Supercomputers. IEEE Computer, 13(11):48–56, November 1980.

[55] Jack Dongarra. Manycore computing: The impact on numerical software for
linear algebra libraries. http://www.netlib.org/utk/people/JackDongarra/SLIDES/
sc07-wksh-mcore-1107.pdf.

[56] Jack Dongarra, Pete Beckman, Patrick Aerts, Frank Cappello, Thomas Lippert, Satoshi Mat-
suoka, Paul Messina, Terry Moore, Rick Stevens, Anne Trefethen, and Mateo Valero. The
international exascale software project: A call to cooperative action by the global high perfor-
mance community. The International Journal of High Performance Computing Application,
23(4), November 2009.

[57] H. Carter Edwards. Software environment for developing complex multiphysics applications.
2002.

[58] D. J. Eisenstein and P. Hut. Hop: A new group-finding algorithm for n-body simulations.
Astrophysical Journal, 498:137–142, May 1998.

September 14, 2009 Page 146

ECSS Report

473
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

[59] D. J. Eisenstein and P. Hut. Hop: A new group-finding algorithm for n-body simulations.
Astrophysical Journal, 498:137–142, May 1998.

[60] Tarek El-Ghazawi, William W. Carlson, and Jesse M. Draper. UPC Language Specification
v1.1.1, October 2003.

[61] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: an operating system architec-
ture for application-level resource management. pages 251–266, 1995.

[62] Peter Kogge et al. Exascale computing study: Technology challenges in achieving exascale
system.

[63] J. Fass. Personal communication, 2008.

[64] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem, Mike Houston,
Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken, William J. Dally, and Pat Hanrahan.
Sequoia: programming the memory hierarchy. In SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, page 83, New York, NY, USA, 2006. ACM.

[65] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the cilk-5
multithreaded language. In PLDI ’98: Proceedings of the ACM SIGPLAN 1998 conference
on Programming language design and implementation, pages 212–223, New York, NY, USA,
1998. ACM.

[66] A. Funk, V. Basili, L. Hochstein, and J. Kepner. Analysis of parallel software development
using the relative development time productivity metric. CTWatch Quarterly, 2(4).

[67] Anwar Ghuloum. Ct: channelling nesl and sisal in c++. In CUFP ’07: Proceedings of the
4th ACM SIGPLAN workshop on Commercial users of functional programming, pages 1–3,
New York, NY, USA, 2007. ACM.

[68] G. Gilder. Telecosm: The World After Bandwidth Abundance. Free Press, New York, NY,
2002.

[69] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli, Andrew A.
Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze, and Saman Amarasinghe.
A stream compiler for communication-exposed architectures. In ASPLOS-X: Proceedings of
the 10th international conference on Architectural support for programming languages and
operating systems, pages 291–303, New York, NY, USA, 2002. ACM.

[70] GPFS V3.2.1 Concepts, Planning, and Installation Guide. IBM Corporation., August 2008.

[71] Jim Gray and Alexander S. Szalay. Where the rubber meets the sky: Bridging the gap
between databases and science, 2004.

[72] B. Graybill, G. Allen, K. Alvin, A Atashi, M. Drahzal, D. Fisher, M. Giles, B. Lu-
cas, T. Mattson, H. Morgan, E. Schnetter, B. Schott, E. Seidel, J. Shalf, S. Shamsian,
and S.S. Tong. Hpc application software consortium summit (hpcasc) - concept paper.
http://www.cct.lsu.edu/gallen/Reports/HPCASC March2007.pdf, March 25-26, 2008.

[73] Yi Guo, Rajkishore Barik, Raghavan Raman, and Vivek Sarkar. Work-First and Help-First
Scheduling Policies for Async-Finish Task Parallelism. In Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS), May 2009.

September 14, 2009 Page 147

ECSS Report

474
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

[74] John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31(5):532–533, 1988.

[75] Mary Hall, David Padua, and Keshav Pingali. Compiler research: the next 50 years. Commun.
ACM, 52(2):60–67, 2009.

[76] Robert Halstead, Jr. Multilisp: A Language for Concurrent Symbolic Computation. ACM
Transactions of Programming Languages and Systems, 7(4):501–538, October 1985.

[77] HDF5 User’s Guide, HDF5 Release 1.8.2. HDF Group., November 2008.

[78] Patrick Heimbach, Chris Hill, and Ralf Giering. An efficient exact adjoint of the parallel
mit general circulation model, generated via automatic differentiation. Future Generation
Computer Systems, 21(8):1356–1371, 2005.

[79] David Hernandez, Patrice Franois, Laurent Farinelli, Magne Ø ster̊as, and Jacques Schrenzel.
De novo bacterial genome sequencing: Millions of very short reads assembled on a desktop
computer. Genome Research, 18(5):802–809, 2008.

[80] Dean Hildebrand and Peter Honeyman. Exporting storage systems in a scalable manner with
pnfs. In MSST ’05: Proceedings of the 22nd IEEE / 13th NASA Goddard Conference on
Mass Storage Systems and Technologies, pages 18–27, Washington, DC, USA, 2005. IEEE
Computer Society.

[81] Mark D. Hill. What is scalability? SIGARCH Comput. Archit. News, 18(4):18–21, 1990.

[82] Kenneth Iverson. A Programming Language. John Wiley and Sons, New York, NY, 1962.

[83] Efrat Jaeger-Frank, Christopher Crosby, Ashraf Memon, Viswanath Nandigam, J. Arrow-
smith, Jeffery Conner, Ilkay Altintas, and Chaitan Baru. chapter A Three Tier Architecture
for LiDAR Interpolation and Analysis, pages 920–927. 2006.

[84] L Kale and S Krishnan. CHARM++: A Portable Concurrent Object-Oriented System based
on C++. ACM Sigplan Notices:Proceedings of the Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA), 28(10):91–108, October 1993.

[85] K. Kennedy and J. R. Allen. Optimizing compilers for modern architectures: a dependence-
based approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[86] Michael Kistler, John Gunnels, Daniel Brokenshire, and Brad Benton. Petascale computing
with accelerators. In PPoPP ’09: Proceedings of the 14th ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 241–250, New York, NY, USA, 2009.
ACM.

[87] David Koester. Exascale study application footprints. https://pastec.gtri.gatech.edu/
ECSS/images/c/c5/Exascale App Footprints 07-1449.pdf, October 2007.

[88] Mike Kravetz and Hubertus Franke. Implementation of a multi-queue scheduler for linux.
http://lse.sourceforge.net/scheduling/mq1.html, 2001.

[89] Andres Kriete and Roland Eils. Computational Systems Biology. Academic Press, 2005.

[90] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. Dependence Graphs
and Compiler Optimizations. Conference Record of 8th ACM Symposium on Principles of
Programming Languages, 1981.

September 14, 2009 Page 148

ECSS Report

475
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

[91] S. Kumar, H. Raj, K. Schwan, and I. Ganev. The sidecore approach to efficient virtualization
in multicore systems. 2007.

[92] James R. Larus and Ravi Rajwar. Transactional Memory. Morgan & Claypool, 2006.

[93] Edward A. Lee and David G. Messerschmitt. Synchronous data flow. Proceedings of the
IEEE, 75(9):1235–1245, 1987.

[94] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna, Jonathan Babb, Vivek
Sarkar, and Saman Amarasinghe. Space-Time Scheduling of Instruction-Level Parallelism on
a Raw Machine. Proceedings of the Eighth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-VIII), October 1998.

[95] Tong Li, Dan Baumberger, David A. Koufaty, and Scott Hahn. Efficient operating system
scheduling for performance-asymmetric multi-core architectures. In SC ’07: Proceedings of
the 2007 ACM/IEEE conference on Supercomputing, pages 1–11, New York, NY, USA, 2007.
ACM.

[96] W. B. Ligon and R. B. Ross. Implementation and performance of a parallel file system for
high performance distributed applications. In HPDC ’96: Proceedings of the 5th IEEE In-
ternational Symposium on High Performance Distributed Computing, page 471, Washington,
DC, USA, 1996. IEEE Computer Society.

[97] Ying Liu, Wei keng Liao, and Alok Choudhary. Design and evaluation of a parallel hop
clustering algorithm for cosmological simulation. In IPDPS ’03: Proceedings of the 17th
International Symposium on Parallel and Distributed Processing, page 82.1. IEEE Computer
Society, 2003.

[98] William Loging, Lee Harland, and Bryn Williams-Jones. High-throughput electronic biology:
mining information for drug discovery. Nature Reviews Drug Discovery, 6(3):220–230.

[99] Lustre 1.6 Operations Manual. Sun Microsystems., Nov 21 2008.

[100] J. McGraw, S. Skedzielewski, S. Allan, R. Oldehoeft, J. Glauert, C. Kirkham, B. Noyce,
and R. Thomas. SISAL: Streams and Iteration in a Single Assignment Language Reference
Manual Version 1.2. Technical report, Lawrence Livermore National Laboratory, 1985. No.
M-146, Rev. 1.

[101] Paul E. McKenney and Jonathan Walpole. Introducing technology into the linux kernel: a
case study. SIGOPS Oper. Syst. Rev., 42(5):4–17, 2008.

[102] M Metcalf and J Reid. Fortran 90 Explained. Oxford Science Publications, Oxford, England,
1990.

[103] R. G. Minnich, M. J. Sottile, S.-E. Choi, E. Hendriks, and J. McKie. Right-weight kernels: an
off-the-shelf alternative to custom light-weight kernels. SIGOPS Operating Systems Review,
40, 2006.

[104] E Mohr, D Kranz, and JR. Halstead, R. Lazy Task Creation: A Technique for Increasing the
Granularity of Parallel Programs. IEEE Transactions on Parallel and Distributed Systems,
2(3):264–280, July 1991.

September 14, 2009 Page 149

ECSS Report

476
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

[105] José Moreira, Michael Brutman, José Castanos, Thomas Engelsiepen, Mark Giampapa, Tom
Gooding, Roger Haskin, Todd Inglett, Derek Lieber, Pat McCarthy, Mike Mundy, Jeff Parker,
and Brian Wallenfelt. Designing a highly-scalable operating system: the blue gene/l story. In
SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, page 118, New
York, NY, USA, 2006. ACM.

[106] MPI: A Message-Passing Interface Standard, Version 2.1. Message Passing Interface Forum.,
June 2008.

[107] David Nagle, Denis Serenyi, and Abbie Matthews. The panasas activescale storage cluster:
Delivering scalable high bandwidth storage. In SC ’04: Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, page 53, Washington, DC, USA, 2004. IEEE Computer Soci-
ety.

[108] Jarek Nieplocha, Holger Dachsel, and Ian Foster. Distant i/o: One-sided access to secondary
storage on remote processors. In HPDC ’98: Proceedings of the 7th IEEE International
Symposium on High Performance Distributed Computing, page 148, Washington, DC, USA,
1998. IEEE Computer Society.

[109] Robert W. Numrich and John Reid. Co-Array Fortran for parallel programming. ACM
SIGPLAN Fortran Forum Archive, 17:1–31, August 1998.

[110] J. Michael Oakes and Jay S. Kaufman. Methods in Social Epidemiology: Research Design
and Methods. Wiley Default, 2006.

[111] R.A. Oldfield, P. Widener, A.B. Maccabe, L. Ward, and T. Kordenbrock. Efficient data-
movement for lightweight i/o. Cluster Computing, IEEE International Conference on, 0:1–9,
2006.

[112] Swapnil V. Patil, Garth A. Gibson, Sam Lang, and Milo Polte. Giga+: scalable directories
for shared file systems. In PDSW ’07: Proceedings of the 2nd international workshop on
Petascale data storage, pages 26–29, New York, NY, USA, 2007. ACM.

[113] F. Petrini, D. Kerbyson, and S. Pakin. The case of missing supercomputer performance:
Achieving optimal performance on the 8,192 processors of asci q. In Proceedings of the 2003
ACM/IEEE Conference on Supercomputing (SC03), 2003.

[114] Removing the big kernel lock. http://kerneltrap.org/Linux/Removing the Big Kernel
Lock, May 2008. Viewed on September 27, 2008.

[115] Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, and Ed Hartnett. The NetCDF
Users Guide. NetCDF Version 4.0.1. Unidata Program Center., March 2009.

[116] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors. Pitman,
London and The MIT Press, Cambridge, Massachusetts, 1989. In the series, Research Mono-
graphs in Parallel and Distributed Computing.

[117] Vivek Sarkar. Automatic Partitioning of a Program Dependence Graph into Parallel Tasks.
IBM Journal of Research and Development, 35(5/6), 1991.

[118] Vivek Sarkar. The PTRAN Parallel Programming System. In B. Szymanski, editor, Parallel
Functional Programming Languages and Compilers, ACM Press Frontier Series, pages 309–
391. ACM Press, New York, 1991.

September 14, 2009 Page 150

ECSS Report

477
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

[119] Vivek Sarkar. Automatic Selection of High Order Transformations in the IBM XL Fortran
Compilers. IBM Journal of Research and Development, 41(3), May 1997.

[120] Vivek Sarkar, William Harrod, and Allan E. Snavely. Software challenges in extreme scale
systems. In 2009 Conference on Scientific Discovery through Advanced Computing Program
(SciDAC), June 2009.

[121] E. Schnetter, C. D. Ott, G. Allen, P. Diener, T. Goodale, T. Radke, E. Seidel, and J. Shalf.
Cactus framework: Black holes to gamma ray bursts. 2007.

[122] Charles Semple and M. A. Steel. Phylogenetics. Oxford University Press, 2003.

[123] John Shalf, Shoaib Kamil, Leonid Oliker, and David Skinner. Analyzing ultra-scale ap-
plication communication requirements for a reconfigurable hybrid interconnect. In SC ’05:
Proceedings of the 2005 ACM/IEEE conference on Supercomputing, page 17, Washington,
DC, USA, 2005. IEEE Computer Society.

[124] Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N. Scherer III. Phaser accumula-
tors: a new reduction construct for dynamic parallelism. In Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS), May 2009.

[125] Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N. Scherer. Phasers: a unified
deadlock-free construct for collective and point-to-point synchronization. In ICS ’08: Pro-
ceedings of the 22nd annual international conference on Supercomputing, pages 277–288, New
York, NY, USA, 2008. ACM.

[126] Jun Shirako, Jisheng Zhao, V. Krishna Nandivada, and Vivek Sarkar. Chunking parallel
loops in the presence of synchronization. In ICS ’09: Proceedings of the 23rd International
Conference on Supercomputing. ACM, June 2009.

[127] Stephen C. Simms, Gregory G. Pike, S. Teige, Bret Hammond, Yu Ma, Larry L. Simms,
C. Westneat, and Douglas A. Balog. Empowering distributed workflow with the data capaci-
tor: maximizing lustre performance across the wide area network. In SOCP ’07: Proceedings
of the 2007 workshop on Service-oriented computing performance: aspects, issues, and ap-
proaches, pages 53–58, New York, NY, USA, 2007. ACM.

[128] S. Skedzielewski and J. Glauert. IF1 – An Intermediate Form for Applicative Languages.
Technical report, Lawrence Livermore National Laboratory, 1985. No. M-170.

[129] A. Snavely, R. Pennington, and R. Loft. Workshop report: Petascale computing in the
biological sciences. www.sdsc.edu/∼allans.

[130] A. Snavely, R. Pennington, and R. Loft. Workshop report: Petascale computing in the
geosciences. www.sdsc.edu/∼allans.

[131] MSC Software. Simenterprise extending simulation to the enterprise. 2007.

[132] Guy Steele. The Future Is Parallel: What’s a Programmer to Do? Breaking Sequential Habits
of Thought. One-hour talk presented at the 5 March 2009 meeting of the New England
Programming Languages and Systems (NEPLS) Symposium at Mitre. http://research.
sun.com/projects/plrg/Publications/NEPLSMarch2009Steele.pdf, 2009.

September 14, 2009 Page 151

ECSS Report

478
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

[133] Draft OSD Standard. T10 Committee. Storage Networking Industry Association (SNIA).,
July 2004.

[134] Alexander Szalay and Jim Gray. 2020 computing: Science in an exponential world. Nature,
440(7083):413–414, Mar 2006.

[135] Nathan R. Tallent and John M. Mellor-Crummey. Effective performance measurement and
analysis of multithreaded applications. In PPoPP ’09: Proceedings of the 14th ACM SIG-
PLAN symposium on Principles and practice of parallel programming, pages 229–240, New
York, NY, USA, 2009. ACM.

[136] Nathan R. Tallent, John M. Mellor-Crummey, and Michael W. Fagan. Binary analysis for
measurement and attribution of program performance. In PLDI ’09: Proceedings of the 2009
ACM SIGPLAN conference on Programming language design and implementation, pages 441–
452, New York, NY, USA, 2009. ACM.

[137] Ani R. Thakar. Lessons learned from the sdss catalog archive server. Computing in Science
and Engineering, 10(6):65–71, 2008.

[138] Christophe Tretz. Cmos transistor sizing for minimization of energy-delay product. In
GLSVLSI ’96: Proceedings of the 6th Great Lakes Symposium on VLSI, page 168, Wash-
ington, DC, USA, 1996. IEEE Computer Society.

[139] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111,
1990.

[140] Bryan Veal and Annie Foong. Performance scalability of a multi-core web server. In ANCS
’07: Proceedings of the 3rd ACM/IEEE Symposium on Architecture for networking and com-
munications systems, pages 57–66, New York, NY, USA, 2007. ACM.

[141] Anh Vo, Sarvani Vakkalanka, Michael DeLisi, Ganesh Gopalakrishnan, Robert M. Kirby, and
Rajeev Thakur. Formal verification of practical mpi programs. In PPoPP ’09: Proceedings
of the 14th ACM SIGPLAN symposium on Principles and practice of parallel programming,
pages 261–270, New York, NY, USA, 2009. ACM.

[142] Thorsten von Eicken, David E. Culler, Klaus Erik Schauser, and Seth Copen Goldstein. Ret-
rospective: active messages: a mechanism for integrating computation and communication. In
ISCA ’98: 25 years of the international symposia on Computer architecture (selected papers),
pages 83–84, New York, NY, USA, 1998. ACM.

[143] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Miller, and Carlos Maltzahn.
Ceph: a scalable, high-performance distributed file system. In OSDI ’06: Proceedings of the
7th symposium on Operating systems design and implementation, pages 307–320, Berkeley,
CA, USA, 2006. USENIX Association.

[144] Michael E. Wolf and Monica S. Lam. A Data Locality Optimization Algorithm. Proceedings
of the ACM SIGPLAN Symposium on Programming Language Design and Implementation,
pages 30–44, June 1991.

[145] Michael E. Wolf and Monica S. Lam. A Loop Transformation Theory and an Algorithm to
Maximize Parallelism. IEEE Transactions on Parallel and Distributed Systems, 2(4):452–471,
October 1991.

September 14, 2009 Page 152

ECSS Report

479
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Exascale Software Study

[146] C. Wunsch and P. Heimbach. Practical global oceanic state estimation. Physica D Nonlinear
Phenomena, 230:197–208, June 2007.

[147] Yonghong Yan, Jisheng Zhao, Yi Guo, and Vivek Sarkar. Hierarchical place trees: A portable
abstraction for task parallelism and data movement. In Proceedings of the 22nd International
Workshop on Languages and Compilers for Parallel Computing, LCPC’09, 2009.

[148] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik Datta, Jason Duell,
Susan L. Graham, Paul Hargrove, Paul Hilfinger, Parry Husbands, Costin Iancu, Amir Kamil,
Rajesh Nishtala, Jimmy Su, Michael Welcome, and Tong Wen. Productivity and performance
using partitioned global address space languages. In PASCO ’07: Proceedings of the 2007
international workshop on Parallel symbolic computation, pages 24–32, New York, NY, USA,
2007. ACM.

[149] D.G. York. The sloan digital sky survey astronomical journal. http://www.sdss.org/, 2000.

[150] Daniel R. Zerbino and Ewan Birney. Velvet: Algorithms for de novo short read assembly
using de bruijn graphs. Genome Research, 18(5):821–829, 2008.

[151] Shujia Zhou, Amidu Oloso, Megan Damon, and Tom Clune. Application controlled parallel
asynchronous io. In SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercom-
puting, page 178, New York, NY, USA, 2006. ACM.

September 14, 2009 Page 153

ECSS Report

480
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

 

APPENDIX C 

FINAL REPORT OF EXASCALE COMPUTING RESILIENCY STUDY 

 

 

481
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

Technical Report, Contract FA8650-07-C-7724 
ECE Project E-21-67V (PeopleSoft ID 210667) 

Exascale Computing Study Report: 
Software Resiliency Study 
Reporting Period: April 2008 – October 2008 

By: 

Mark A. Richards 
School of Electrical and Computer Engineering  
 
 
Submitted to: 
AFRL/SNDI 
Building 620, Room 3 DU57 
2241 Avionics Circle 
Wright-Patterson AFB, OH 45433-7320 
ATTN: Ms. Kerry Hill 

Submitted by: 

GEORGIA INSTITUTE OF TECHNOLOGY 
A Unit of the University System of Georgia 
Georgia Tech Research Institute 
Atlanta, Georgia 30332-0800 

Cage No. 1G474 

Contracting through: 

GEORGIA TECH RESEARCH CORPORATION 
Centennial Research Building 
Georgia Institute of Technology 
Atlanta, Georgia 30332 

November 2008 

ECRS Report

482
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

mr22
Rectangle

mr22
Text Box
The views expressed are those of the authors and do not reflect theofficial policy or position of the Department of Defense or the U.S. Government.APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



i 

TABLE OF CONTENTS 

Paragraph  Page

PREFACE  ...............................................................................................................................................ii

SECTION 1: EXASCALE COMPUTING STUDIES............................................................................... 1
1.1 Introduction ................................................................................................................................... 1

1.1.1 ECSS ......................................................................................................................................... 1
1.1.2 ECRS......................................................................................................................................... 2

1.2 Summary of ECRS Study Focus and Results ............................................................................ 2

SECTION 2: RESILIENCY STUDY.......................................................................................................... 3

ECRS Report

483
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



ii 

PREFACE

This document is a release of the Exascale Computing Study technical report documenting the 
Software Resiliency Study.  This report was prepared under Georgia Institute of Technology 
(GIT) Project E-21-67V, “Exascale Computing Study.”  This project is sponsored by the Defense 
Advanced Research Projects Agency (DARPA), contracting through the Air Force Research 
Laboratory (AFRL), and is conducted under AFRL contract FA8650-07-C-7724. 

The author would like to thank DARPA, the U. S. Air Force, Dr. William Harrod of DARPA, 
and Ms. Kerry Hill of AFRL for their support of this work.  

ECRS Report

484
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1 

SECTION 1: EXASCALE COMPUTING STUDIES 

1.1 Introduction 

An ExaScale computer system is a computer system with approximately a one thousand-fold 
increase in capabilities relative to the computer systems currently under development by 
DARPA’s High Productivity Computing Systems (HPCS) program.  In 2007-2008, DARPA has 
conducted an Exascale Computing Study addressing hardware and system architecture issues 
in the development of exascale computing systems.  Georgia Tech (GT) has provided technical 
support to that study under this contract. 

Two critical issues identified by the ECS are the development of effective parallel programming 
methodologies for systems having extreme degrees of concurrency, and exascale system 
resiliency.  In 2008, the original ECS study was augmented with two supplemental studies to 
further define the technologies and investments needed by 2010 to enable the development of 
ExaScale computing systems by 2015.  These two additional studies are denoted the ExaScale 
Computing Software Study (ECSS) and the ExaScale Computing Resiliency Study (ECRS). 

1.1.1 ECSS 

The ECSS, which is still ongoing at this writing, convened a group of academic and industry 
experts to explore the issue of effective programming for extreme concurrency by addressing at 
least the following issues: 

� Intelligent management of the increasingly complex computational resources 

� Energy requirements for the execution of an application code 

� Multiple classes of computing systems: ExaScale data centers, PetaScale 
departmental systems, and TeraScale embedded systems 

Key study topics include: 

� Development Environment: Languages, compilers, tools, runtime systems 

� Applications: Challenges, characteristics, & benchmarks 

� Energy: Managing data movement to optimize energy and parallel efficiency 

� System architectures: Concurrency, memory hierarchies, protocols, functional 
partitioning, execution models 

The goal of the ECSS study is the development of a technical report that 

� Identifies the key software technologies, approaches, and methodologies that must 
be in place to effectively utilize the extreme levels of concurrency expected in 
Exascale computing technology, and 

� Specifies the research problems that must be solved so that these key technologies 
can be in place in time to support initial deployment of Exascale technology in 2015. 

ECRS Report

485
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



2 

1.1.2 ECRS 

The ECRS, which has been completed, convened a group of academic and industry experts to 
explore the issue of resiliency of ExaScale systems with the principal goal of achieving a 1000x 
improvement in mean time to failure (MTTF) scalability for ExaScale systems by avoiding 
global checkpointing as used in present-day systems.  Key study topics included: 

� Programming using transactional models and network-accessible memories 

� Effective use of CMOS stable semiconductor memories and optical links 

The goal of the ECRS study was the development of an extended technical white paper that 

� Identifies the key technologies, approaches, and methodologies that must be in place 
to ensure scalability of MTTF in ExaScale systems, and 

� Specifies the research problems that must be solved so that these key technologies 
can be in place in time to support initial deployment of Exascale technology in 2015. 

The Editor and Study Lead of the ECRS was Dr. E.N. (Mootaz) Elnozahy, IBM, Austin.  The 
ECRS study committee consisted of the following subject matter experts: 
 

Prof. Tarek El-Ghazawi George Washington University 
Prof. Armando Fox University of California 
Forest Godfrey Cray 
Dr. Adolfy Hoisie Los Alamos National Laboratory 
Prof. Kathryn McKinley University of Texas 
Prof. Rami Melhem University of Pittsburgh 
Prof. James Plank University of Tennessee 
Dr. Partha Ranganathan HP Labs 
Josh Simons Sun Microsystems 

 

This report documents the results of the ECRS study. 

1.2 Summary of ECRS Study Focus and Results 

Today, 20% or more of the computing capacity in a large high-performance computing system 
is wasted due to failures and recoveries. Typical MTBF is from 8 hours to 15 days. As systems 
increase in size to field petascale computing capability and beyond, the MTBF will go lower and 
more capacity will be lost. 

The ECRS study analyzed the current problem in reliable systems and suggests new avenues 
for research in resilient systems at extreme scale. It showed that central to the current problem 
in providing reliability is the programming model based on flat message passing using MPI. 
This model does not offer any failure containment, and thus a failure in one node in the system 
triggers an entire system failure. As systems continue to increase in size, this is not tenable. 

ECRS Report

486
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



3 

The study also analyzed the new trends in technology and showed that power management, 
the recent trend toward heterogeneous computing and the expected increase in system size all 
will interact negatively with resilience at the system level. 

The study proposed new avenues in research that have a promise of mitigating the situation. 
This approach consists of two parts, one is to exploit existing technology trends such as the 
proliferation of multi-core systems and flash memory, and the expanded use of virtualization. 
The second part consists of opening new areas of research based on exploiting new emerging 
programming models, as well as system-level implementation of resilience. New directions in 
statistical machine learning and compiler and run-time support for resilience are also 
suggested. 

The criterion of success in the proposed research is to reduce the computing capacity that is 
wasted due to failure from today’s 20% to within 2% in future systems of larger size. 

 
SECTION 2: RESILIENCY STUDY 

The detailed analysis, conclusions, and recommendations of the ECRS study are given by the 
System Resilience at Extreme Scale White Paper, attached on the following pages.  This white 
paper was delivered to DARPA by Dr. Elnohazy on  or about November 9, 2008. 

ECRS Report

487
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



System Resilience at Extreme Scale 

White Paper 

Contributors:

Professor Ricardo Bianchini, Rutgers University, Piscataway 
Professor Tarek El-Ghazawi, George Washington University, Washington D.C. 
Professor Armando Fox, University of California, Berkeley 
Forest Godfrey, Cray, Minneapolis 
Dr. Adolfy Hoisie, Los Alamos National Laboratory, Los Alamos 
Professor Kathryn McKinley, University of Texas, Austin 
Professor Rami Melhem, University of Pittsburgh, Pittsburgh 
Professor James Plank, University of Tennessee, Knoxville 
Dr. Partha Ranganathan, HP Labs, Palto Alto 
Josh Simons, Sun Microsystems, Cambridge 

Editor and Study Lead: 
Dr. E.N. (Mootaz) Elnozahy, IBM, Austin 

Prepared for Dr. William Harrod, Defense Advanced Research Project 
Agency (DARPA).  

ECRS Section 2
ECRS White Paper, Page 1

ECRS Report

488
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Executive Summary 

Today, 20% or more of the computing capacity in a large high-performance computing system is 
wasted due to failures and recoveries.  Typical MTBF is from 8 hours to 15 days.  As systems 
increase in size to field petascale computing capability and beyond, the MTBF will go lower and 
more capacity will be lost.   

This document analyzes the current problem in reliable systems and suggests new avenues for 
research in resilient systems at extreme scale.  We show that central to the current problem in 
providing reliability is the programming model based on flat message passing using MPI.  This 
model does not offer any failure containment, and thus a failure in one node in the system 
triggers an entire system failure.  As systems continue to increase in size, this is not tenable. 

We also analyze the new trends in technology and show that power management, the recent trend 
toward heterogeneous computing and the expected increase in system size all will interact 
negatively with resilience at the system level. 

We then propose new avenues in research that have a promise of mitigating the situation.  This 
approach is depicted in the figure below.  It consists of two parts, one is to exploit existing 
technology trends such as the proliferation of multi-core systems and flash memory, and the 
expanded use of virtualization.  The second part consists of opening new areas of research based 
on exploiting new emerging programming models, as well as system-level implementation of 
resilience.  New directions in statistical machine learning and compiler and run-time support for 
resilience are also suggested. 

The criterion of success in the proposed research is to reduce the computing capacity that is 
wasted due to failure from today’s 20% to within 2% in future systems of larger size. 

Scope:
Operating systems 
Compilers
Runtime systems 
Programming

Key needs: 
Broader failure 
detection & 
containment

Program

Compiler-
inserted

resilience
technology

ProgramProgramProgramProgramProcesses

Runtime: Resilience support 

Resilience-friendly 
power management

Exploitation of new hardware: 

Resilience-
oriented

programming
models

Application of Machine 
Learning for detection & 

recovery

Virtualization Efficient
state

capture & 
recovery

Stable
semiconductor 

memory

Monitoring
hw threads

ECRS Section 2
ECRS White Paper, Page 2

ECRS Report

489
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Table of Contents 
1 Introduction............................................................................................................................. 4 
2 Understanding Failures ........................................................................................................... 5 

2.1 Failures in Commercial Systems .................................................................................... 6 
2.2 Failures Sources in Large-Scale Systems ....................................................................... 7 
2.3 Failures and Scalability................................................................................................... 8 
2.4 Current State of the Art: Checkpoint and Rollback ........................................................ 9 
2.5 Checkpointing Implementations ................................................................................... 11 

2.5.1 Checkpointing Frequency ..................................................................................... 11 
2.5.2 Possible Optimizations.......................................................................................... 12 
2.5.3 Current State of the Art......................................................................................... 13 

3 Future Trends and Impact on Resilience .............................................................................. 13 
3.1 Power Management ...................................................................................................... 14 
3.2 System Size................................................................................................................... 16 
3.3 Heterogeneity................................................................................................................ 16 

4 Plausible Fields of Research ................................................................................................. 17
4.1 Exploiting New Technology Trends............................................................................. 17 

4.1.1 Exploiting Multi-Core Systems ............................................................................ 17 
4.1.2 Exploiting Semiconductor-based Stable Storage.................................................. 20 
4.1.3 Exploiting Virtualization ...................................................................................... 21 

4.2 New Technologies ........................................................................................................ 21 
4.2.1 New Programming Models ................................................................................... 21 

4.3 Application of Machine Learning................................................................................. 22 
4.4 Compiler Support for Resilience .................................................................................. 23 

5 Bibliography ......................................................................................................................... 23 

ECRS Section 2
ECRS White Paper, Page 3

ECRS Report

490
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



1 Introduction
As systems continue to grow in size and capabilities, the current state of the art in system 
reliability is being pushed to its limit.  This document summarizes the current and future trends 
in large-scale systems, with emphasis on how they affect the reliability problem.  It then presents 
potential venues for research and innovations that exploit these trends and improve the reliability 
of the system in the face of current and anticipated future problems.  

At the dawn of the Peta-scale computing era, it is remarkable that the current state of the art in 
reliability for large-scale systems has barely advanced beyond the concepts of the early 1990’s. 
The current prevailing programming model in large-scale systems is based on message passing, 
with coordinated periodic checkpointing the method of choice to provide fault tolerance in 
practical installations.  Coordinated checkpointing worked well for early ASC machines such as 
ASC Blue and ASC White. But the performance and recoverability of these techniques are 
inadequate for modern systems that include 100,000’s of cores. Notable are the performance 
overhead due to saving the entire system state periodically to a centralized stable storage, and the 
failure of these methods to protect healthy nodes from the effects of failed nodes, leading to 
cascading aborts throughout the system due to a single node failure.  The performance overhead 
is due to the need to save the state of the application to stable storage made out of a centralized, 
slow and expensive disk storage facility.  This state size is measured in Tera Bytes and soon in 
Peta Bytes, while disk speeds have barely improved in the past decade. A member of the team 
has related that current systems in his organization are typically stopped for about 10 minutes 
each hour to perform the checkpointing operation.  This translates to about 16% performance and 
power waste in failure-free operation alone. In the Peta-scale era, the increase in size and the 
reduction of the Mean Time Between Failure (MTBF) of future systems will only push the 
frequency of checkpointing higher, in turn increasing the overhead in power and performance 
and exacerbating the pressure on the network and the stable storage devices. These projections 
are not tenable.

Reliability in future systems will also be affected by the system interaction with power 
consumption.  At the current rate of 3MW/PF, multi-petaflop systems will require data centers 
that are capable to provide 10’s of megawatts from the power grid. System vendors will have to 
deploy power management technologies to minimize the energy spent in a given computation, 
but the impact of these technologies on system reliability is not at all understood. For example, 
exploiting idle cycles in the system to reduce power will reduce system temperature, which in 
turns reduce leakage and improve immunity against soft errors in the electronic components. 
However, the continuous change in voltage and frequency will introduce thermal and 
concomitant mechanical stresses on the electronic chips and board-level electrical connections. 
These stresses may cause device damage and failures.  Another example is power management 
techniques for disks.  Today’s enterprise-level disks that are typically used in large-scale systems 
are not designed to withstand many power cycles.  Any power management technique therefore 
is bound to reduce the Mean Time to Failure of the storage subsystem.  If one considers that 
many applications in a large-scale system have synchronized computation, file access and 
communication phases. The effect of employing power management in for these applications 
will subject the power grid in the data center to power swings measured in megawatts over as 
little as microseconds. It is not even clear that the current design of data centers can sustained 
such swings. 

ECRS Section 2
ECRS White Paper, Page 4

ECRS Report

491
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



We also observe a trend toward integrating the data center facilities into the computing systems. 
For example, future large scale systems will likely use water cooling, with the water being drawn 
from the data center cooling subsystem. The computer management subsystem will expand 
beyond the traditional boundaries of the computing system to include control over the data center 
cooling and thermal management. Thus, new modes of failures are likely to be present as the 
failure in the devices that were traditionally outside the domain of the computing system will be 
manifested directly into system outages. Furthermore components such as board-level fans and 
power supplies will be stressed by the variation due to power management, and these may 
accelerate their failure rates. Current reliability models do not address these problems, and one 
must conclude then that the interactions between reliability and power is not understood, and the 
magnitude of the problem must be studied. 

Another trend that we predict is the heterogeneity of future systems. The only Peta-scale system 
that exists today is composed of two heterogeneous processors. Other accelerators such as Field 
Programmable Arrays (FPGA), vector accelerators and special-purpose computers will be 
common in future systems. These accelerators may not run a conventional operating system, may 
not offer the usual detection of failures that we are used to in conventional architectures, and it 
may not be straightforward to capture their state into the system’s state as part of a checkpoint, 
for instance. Handling the failure itself is not well understood. For example, if a failure in an 
FPGA occurs, do we declare the entire machine as failed, even though the “main node” remains 
healthy?  

Even the question of what constitutes a failure will be an important field of study. Today, the 
reliability technology that we have handles only what is commonly referred to as “crash” 
failures. In reality, system crashes result from detected hardware failures that force a system 
check, or from operating system failures (e.g. hangs). But the systems of the future will be 
complex, where a computation unit or a node will consist of possibly heterogeneous multicore 
chips, and it is worth exploring if a partial failure in the node could be handled in a manner that 
would allow the node to continue operation, albeit at a reduced performance while recovery is 
attempted. In other words, a “crash” may not be the only type of failure that the system should 
detect and recover from. Partial failures must be contained and tolerated, and every effort must 
be made to prevent the partial failure of a node from propagating throughout the system.  This 
also should extend the ability of the system to detect and recover from the effects of soft error 
beyond the traditional machine check. Soft errors occur in hardware and their rate is likely to 
increase because of the continuous shrinking of computer chips. It is both desirable and 
necessary to avoid converting such errors into machine crashes as occurs today. The system 
should be able to detect and partially recover from such errors, so as to contain the effect of 
failures over the entire system. The same applies to failures that occur to the software. With the 
increasing complexity of having virtualized system software and potentially multiple images of 
operating system within a node, it will be desirable to ensure that the state of each operating 
system is continuously monitored and any anomalous situations detected and fixed in a manner 
that does not force the application to running on that node to fail. 

2 Understanding Failures 
Computer system failures occur due to a variety of sources, including hardware, software and 
human errors.  Many studies have been conducted to understand the nature of these failures, their 

ECRS Section 2
ECRS White Paper, Page 5

ECRS Report

492
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



occurrence frequency and their impact on system’s mission.  These failures impact the system in 
different ways, depending on the nature of the solution deployed and its size. 

2.1 Failures in Commercial Systems 
It is useful to consider how failures are handled in the commercial domain before we delve into 
how they are handled in large-scale systems that are typically used for scientific computing.  In 
the commercial domain, data processing systems have a typical mission of conducting a large 
number of relatively independent operations that affect a large, shared database.  A typical 
commercial system consists of a 3-tiered structure, namely the presentation or Web layer, the 
application or logic layer, and the data or database layer (see Error! Reference source not 
found. [1]).  This popular model has become the prevailing one in commercial applications.   

Figure 1. An example of a 3-tiered commercial application. 

Hardware failures, software bugs and human errors affect commercial systems .  Over the years, 
a certain practice has developed in which the application is structured as a collection of short 
running transactions that perform atomic updates to a replicated or data-redundant database [1].
A transaction processing system is provided to guarantee the so-called ACID properties, namely 
Atomicity, Consistency, Isolation and Durability.  Replication and other techniques have been 
developed to make the database highly available in face of failures. These properties provide a 

ECRS Section 2
ECRS White Paper, Page 6

ECRS Report

493
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



very useful abstraction to the transaction writer: A transaction takes place in an ideal failure-free 
environment in which the transaction appears to operate on durable data in isolation of other 
transactions.  Failures have an all or nothing effect—either the transaction completes or it has 
never run, and a failed transaction never affects the database.  The transaction processing system 
transparently manages concurrency control and failure atomicity.   

Transactions enable the programmer to avoid the issues of concurrency control and failure 
recovery to a large degree and thus simplify application programming.  And because transactions 
are short, their failures do not have a high cost associated with them.  Of course, transaction 
processing impacts performance, and data redundancy consumes additional storage and data 
bandwidth resources.  Furthermore, as more transactions attempt to manipulate shared data, the 
scalability of the system is tested. 

Yet, despite of the costs associated with transaction processing, it has become the method of 
choice in commercial data processing systems.  One of its particular advantages is that a failure 
tends to have an isolated effect on the system.  A failure affects only a limited number of 
transactions, which can be restarted with relatively a small cost.  Thus, a failure is not an 
impediment to scalability.  In practice, we see that transactions enable commercial systems to be 
built at a very large scale.  This is in stark contrast with scientific computing systems as will be 
discussed.

2.2 Failures Sources in Large-Scale Systems 
Large-scale systems are relatively few and inaccessible, and therefore studies to assess their 
reliability and failures are rare.  Recently, Schroeder and Gibson published a study on the 
sources of failures in two large-scale parallel systems [ 4].  The study surveyed over 22 
production-level systems of different sizes and processor types at the Los Alamos National 
Laboratory.  The study also included one large Non-Uniform Memory Access (NUMA) system 
of 512 processors per node.  Various failures have been observed and tabulated.  Failures 
included hardware failures in CPU and memory; software failures in operating systems, parallel 
file systems, middleware and applications; and human errors in system configuration and 
administration.  Figure 1 shows distribution of failure sources and their respective frequencies in 
two different systems in the study. 

ECRS Section 2
ECRS White Paper, Page 7

ECRS Report

494
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



14
2 23 HardwareHardware

SoftwareSoftware
2 NetworkNetwork

Human18
64

Human

22

53
EnviornmentEnviornment
UnknownUnknown

Figure 2 Failures in two sample systems.

The data show that in the two systems, hardware failures dominate the other sources.  This 
contrasts with previous studies in commercial systems which have shown software and human 
errors as the dominating sources, while hardware failures tend to be limited and declining over 
time [ 1].  We believe that there are two reasons for the dominance of hardware failures in a 
large-scale system devoted to scientific computing.  First, the software stack tends to be 
relatively simple.  Most programs tend to be numeric intensive, rarely exercise the operating 
system, and the only middleware they use is the Message Passing Interface (MPI).  Therefore, it 
is reasonable to expect that the simplicity of the software will cause relatively fewer failures, in 
contrast with commercial systems in which software complexity is rampant.  The second reason 
for the dominance of hardware failures is the cheer scale of the system.  With a very large 
number of hardware components, the system-level probability that one of them fails will be more 
significant than in the smaller scale commercial systems that were studied before. 

The study shows also that failures occur with a surprising frequency.  It appears that compute-
intensive applications stress system hardware in ways that commercial systems do not.  The 
systems under study had Mean Time Between Failures (MTBF) ranging from eight hours to 15 
days, and a Mean Time To Repair (MTTR) ranging from about one hour to one day.  The large 
MTTR time requires that large-scale systems must be provisioned with spare compute nodes that 
can be brought on line immediately to compensate for the nodes that fail.  Otherwise, the 
computation will have to run on a fewer number of nodes.  Often, this is simply not possible 
given that many applications for examples require a number of computing nodes that is a power 
of 2, or have built-in load management and distribution algorithms that will break if the number 
of machines is reduced.  Generally, application code is not written to show flexibility in face of 
failures, and thus the failed components must be replaced for the computation to continue.  This 
is a common practice in large installations.  This provisioning, however, is a waste of resources 
if no failure occurs.

2.3 Failures and Scalability 
A particular problem that compute-intensive parallel systems suffer from is the lack of failure 
containment.  Programs in these environments tend to deploy a large number of nodes to 

ECRS Section 2
ECRS White Paper, Page 8

ECRS Report

495
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



implement a single computation, and use MPI with a flat model of message exchange in which 
any node can communicate with another.  As a result, a node that participates in a computation 
acquires dependencies on the states of the other nodes.  A failure in one node, thus, is a failure of 
the entire computation, since the computation cannot continue until the failed node is brought 
back to a state that is consistent with all the nodes in the computation.  But repairing the node 
may require other healthy nodes to roll back their state to regenerate messages that are necessary 
for repair.  As a result, all nodes that participate in the computation may have to roll back 
because one of them failed.  A theory of distributed system has been developed to reason about 
this problem [ 2].  This theory states that fundamentally, message-passing systems are complex 
because messages induce inter-process dependencies during failure-free operation.  Upon a 
failure of one or more processes in a system, these dependencies may force some of the 
processes that did not fail to roll back, creating what is commonly called rollback propagation.
To see why rollback propagation occurs, consider the situation where a sender of a message m
rolls back to a state that precedes the sending of m.  The receiver of m must also roll back to a 
state that precedes m’s receipt; otherwise, the states of the two processes would be inconsistent
because they would show that message m was received without being sent, which is impossible 
in any correct failure-free execution.  Under some scenarios, rollback propagation may extend 
back to the initial state of the computation, losing all the work performed before a failure.  This 
situation is known as the domino effect. 
Several solutions have been developed for the problem of recovering from a failure in a parallel 
systems based on message passing (such as MPI).  All these solutions deploy some form of 
checkpointing during failure free operation, with an assortment of message logging variations 
that offer different tradeoffs between the performance impact of checkpointing and logging 
during free failure operation on one hand, and the extent of rolling back among healthy node 
upon a failure on the other hand.  The checkpoint typically is taken to a stable storage device that 
is redundant and highly available.  A network storage system based on disks and equipped with 
redundant connections to the system is typically used for the purpose of storing the checkpoints 
from the various nodes in the system.  We note here that taking the checkpoint to a local disk 
within a node is not a good solution because if that node becomes disabled due to a failure, the 
disk is no longer accessible, and the computation cannot be restarted.

The lack of failure containment and the fact that one node failing may affect the entire 
computation limits the scalability of the system.  If the probability of one node failing remains 
constant, increasing the system size simply increases the probability of a failure in one of its 
nodes.  Ultimately, the rate of failures can be such that the computation ceases to make any 
progress, suffering from a repeated occurrence of failures and repairs. Given that the 
computations are often long-running and may exceed the time during which the system stays 
healthy, it follows that failures and recoveries may impede the scalability of the system.  We now 
turn to how these issues are being solved today and the current state of the art in dealing with 
failures. 

2.4 Current State of the Art: Checkpoint and Rollback 
All available studies have shown that writing the state of a process to stable storage is the largest 
contributor to the performance overhead of checkpointing [ 2].  The simplest way to save the state 
of a system is to suspend execution of all processes at all nodes, wait for all messages that are 
currently in transit to reach their destinations, wait for all message queues to be emptied, then 

ECRS Section 2
ECRS White Paper, Page 9

ECRS Report

496
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



save to stable storage the process’s address space, register values, and all necessary data to 
reconstruct the process if necessary in the future.  The execution is then resumed.  This scheme 
can be costly for programs with large address spaces if stable storage is implemented using 
magnetic disks, as it is the custom.   

The above mechanism is often referred to as system-level checkpointing.  If a failure occurs 
in any node in the system, all processes are restored from the state that was last saved on 

stable storage.  Execution then resumes from that point.
Figure 3 shows a timeline of system-level checkpointing regularly during failure-free (or normal) 
operation and restarting from an earlier saved state if a failure occurs.

Figure 3 Failure and recovery action over time.

System-level checkpointing is expensive, and yet it is currently the state of the art in 
implementing checkpointing in production systems.  The expense is due to stable storage access 
and the fact that the system stops doing useful work while the checkpoint is taken.  Consider a 
system where the amount of main memory available on the aggregate is 1 Petabytes. It would 
take 1000 seconds for a sophisticated stable storage device that can store data at an effective rate 
of 1 Terabyte/second.  This is obviously absurd, and shows that the next generation parallel 
systems will have to pay a tremendous premium on provisioning stable storage systems. Post 
petascale systems will require even more expensive resources in data bandwidths and stable 
storage bandwidth.  Clearly, the situation is not tenable. 

ECRS Section 2
ECRS White Paper, Page 10

ECRS Report

497
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



2.5 Checkpointing Implementations 

2.5.1 Checkpointing Frequency Checkpointing Frequency 
There is a tradeoff between the frequency of checkpointing and cost of rollback during failures.  
More frequent checkpoints reduce the amount of work that is at risk to be lost due to a failure.  If 
a system takes a checkpoint every hour, then on average, about half-an-hour worth of work could 
be lost if a failure occurs.  A large amount of work has been devoted to analyzing and deriving 
the optimal checkpointing frequency and placement.  The problem is usually formulated as an 
optimization problem subject to constraints.  The current practice however considers the MTBF, 
the amount of overhead of checkpointing and the amount of work at risk as the main driving 
factors in choosing the frequency of checkpointing.  We explain how this is typically done by an 
example. 

There is a tradeoff between the frequency of checkpointing and cost of rollback during failures.  
More frequent checkpoints reduce the amount of work that is at risk to be lost due to a failure.  If 
a system takes a checkpoint every hour, then on average, about half-an-hour worth of work could 
be lost if a failure occurs.  A large amount of work has been devoted to analyzing and deriving 
the optimal checkpointing frequency and placement.  The problem is usually formulated as an 
optimization problem subject to constraints.  The current practice however considers the MTBF, 
the amount of overhead of checkpointing and the amount of work at risk as the main driving 
factors in choosing the frequency of checkpointing.  We explain how this is typically done by an 
example. 

If the system is expected to have an MTBF of 1 day, then in theory the minimum number of 
checkpoints is twice that rate per day to ensure that the system will ultimately finish the 
computation.  However, failures do not occur exactly according to the stated MTBF.  Also, the 
user may not be comfortable with the notion of losing half-a-day worth of work due to a failure.  
Therefore, in situation of this sort, a more frequent checkpointing rate is typically desired to limit 
the amount of work at risk.  Today, a checkpoint on the hour is the typical frequency deployed in 
many systems.  It is also reported that for current systems of 100TF or more, a checkpoint 
typically requires 10 minutes to complete. 

If the system is expected to have an MTBF of 1 day, then in theory the minimum number of 
checkpoints is twice that rate per day to ensure that the system will ultimately finish the 
computation.  However, failures do not occur exactly according to the stated MTBF.  Also, the 
user may not be comfortable with the notion of losing half-a-day worth of work due to a failure.  
Therefore, in situation of this sort, a more frequent checkpointing rate is typically desired to limit 
the amount of work at risk.  Today, a checkpoint on the hour is the typical frequency deployed in 
many systems.  It is also reported that for current systems of 100TF or more, a checkpoint 
typically requires 10 minutes to complete. 

As the system scale increases, the MTBF will go down, requiring or forcing a higher frequency 
of checkpointing.  Eventually, the system may be simply bound in taking checkpointing with 
very little work done if the MTBF goes down to a few hours.  This situation is depicted by   

 showing how the overhead of checkpointing varies with the MTBF.  The overhead in 
the figure takes into account the expected overhead due to failure restart.  As seen from the 

As the system scale increases, the MTBF will go down, requiring or forcing a higher frequency 
of checkpointing.  Eventually, the system may be simply bound in taking checkpointing with 
very little work done if the MTBF goes down to a few hours.  This situation is depicted by   

 showing how the overhead of checkpointing varies with the MTBF.  The overhead in 
the figure takes into account the expected overhead due to failure restart.  As seen from the 

Cost of Reliability (at 10min/ckp)

0%

20%

40%

60%

80%

100%

0.3 0.6 1.2 2.4 4.8 9.6 19.2

MTBF (in days)

O
ve

rh
ea

d

Figure 3Figure 3

Hourly Every 2 hours Every 6 hours Daily

Figure 4. Cost of reliability as a function of MTBF.

ECRS Section 2
ECRS White Paper, Page 11

ECRS Report

498
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



figure, as the MTBF drops to 8 hours, the system is expected to spend 40% of its time doing 
checkpointing and recovery if a checkpoint is taken on the hour.  Less frequent checkpoints, say 
at one/6 hours, will cost the system more than 90% of its time, most likely because of the 
checkpointing rate leaves a lot of work at risk due to the high frequency of failures.  This is not 
tenable, and is another aspect of how the current practice is limited in its upward scalability.

2.5.2 Possible Optimizations 
Checkpointing implementation can be improved by reducing the overhead of the checkpointing 
process itself, specifically by reducing the amount of state that must be saved and by overlapping 
the execution of the application with the saving of the state.  Concurrent checkpointing relies on 
the memory protection hardware available in modern computer systems to continue the 
execution of the process while its checkpoint is being saved on stable storage.  The address space 
is protected from further modification at the start of a checkpoint and the memory pages are 
saved to disk concurrently with the program execution.  If the program attempts to modify a 
page, it incurs a protection violation.  The checkpointing system copies the page into a separate 
buffer from which it is saved on stable storage.  The original page is unprotected and the 
application program is allowed to resume.  Implementations that do not incorporate concurrent 
checkpointing may pay a heavy performance overhead unless the checkpointing interval is set to 
a large value, which in turn would increase the time for rollback. 

Adding incremental checkpointing to concurrent checkpointing can further reduce the overhead.  
Incremental checkpointing avoids rewriting portions of the process states that do not change 
between consecutive checkpoints.  It can be implemented by using the dirty-bit of the memory 
protection hardware or by emulating a dirty-bit in software. 

Incremental checkpointing can also be extended over several processes. In this technique, the 
system saves the computed parity or some function of the memory pages that are modified across 
several processesError! Reference source not found..  This technique is very similar to parity 
computation in RAID disk systems.  The parity pages can be saved in volatile memory of some 
other processes thereby avoiding the need to access stable storage.  The storage overhead of this 
method is very low, and it can be adjusted depending on how many failures the system is willing 
to tolerate. 

Another technique for implementing incremental checkpointing is to directly compare the 
program’s state with the previous checkpoint in software, and writing the difference in a new 
checkpoint.  The required storage and computation overhead to perform such a comparison may 
waste the benefit of incremental checkpointing.  Another variation on this technique is to use 
probabilistic checkpointing.  The unit of checkpointing in this scheme is a memory block that is 
typically much smaller than a memory page.  Changes to a memory block are detected by 
computing a signature and comparing it to the corresponding signature in the previous 
checkpoint.  Probabilistic checkpointing is portable, and has lower storage and computation 
requirements than required by comparing the checkpoints directly.  On the downside, computing 
a signature to detect changes opens the door for aliasing.  This problem occurs when the 
computed signature does not differ from the corresponding one in the previous checkpoint, even 
though the associated memory block has changed.  In such a situation, the memory block is 
excluded from the new checkpoint, which therefore becomes erroneous.  A probabilistic analysis 
has shown that the likelihood of aliasing in practice is negligible, but an experimental evaluation 
has shown that probabilistic checkpointing could be unsafe in practice. 

ECRS Section 2
ECRS White Paper, Page 12

ECRS Report

499
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



A compiler can be instrumented to generate code that supports checkpointing.  The compiled 
program contains code that decides when and what to checkpoint.  The advantage of this 
technique is that the compiler can decide on the variables that must be saved, therefore avoiding 
unnecessary data.  For example, dead variables within a program are not saved in a checkpoint 
though they have been modified.  Furthermore, the compiler may decide the points during 
program execution where the amount of state to be saved is small.  Despite these promising 
advantages, there are difficulties with this approach.  It is generally undecidable to find the point 
in program execution most suitable to take a checkpoint.  There are, however, several heuristics 
that can be used.  The programmer can provide hints to the compiler about where checkpoints 
should be inserted or what data variables should be stored.  The compiler may also be trained by 
running the application in an iterative manner and by observing its behavior.  The observed 
behavior could help decide the execution points where it would be appropriate to insert 
checkpoints.  Compiler support could also be simplified in languages that support automatic 
garbage collection.  The execution point after each major garbage collection provides a 
convenient place to take a checkpoint at a minimum cost. 

2.5.3 Current State of the Art 
Checkpointing implementations available to production systems tend to be fragile.  Operating 
System-level implementations have been available on some commercial systems, but they tend 
to be accompanied with a long list of caveats that make it difficult for the programmer to assert 
whether it can be safe to deploy it for a particular program.  Open-source and public-domain 
implementations that operate at the user-level have also been available, but since they cannot 
capture the state of the system, they may not be sufficiently robust to handle all applications.  
Frustrated with this state of affair, most programmers have taken matters into their hands, 
implementing routines to support application checkpointing specifically designed for their 
programs.  The advantage of this approach is that it allows the programmer to decide what to 
save and when to save it.  Yet, this is also the disadvantage of this method.  A mistake by the 
programmer in implementing the checkpointing process may make it impossible for the 
application to restart correctly if a critical variable was not saved, or if the checkpointing is not 
done frequently enough.  Also, it requires the programmer to complicate the logic of the program 
with checkpointing, and understand the MTBF terms of the system, hardly a recipe for 
portability or robustness.  The performance overhead in this user-level checkpointing is also 
high, for instance, because the programmer has to use the file system interface to write the 
checkpoints and cannot rely on any system-level optimization of the storage structure and since 
everything has to be done from the program level, additional layers of overhead make the 
process more complex and expensive. 

3 Future Trends and Impact on Resilience 
Several trends in technology are emerging and will affect the construction of future systems.  We 
explore some of the trends and how they will affect system resilience.  The purpose of this 
exploration is to understand how incremental improvement in resilience will be effective in face 
of these technology trends, and identify areas where investments need to be directed to prepare 
future systems. 

ECRS Section 2
ECRS White Paper, Page 13

ECRS Report

500
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



3.1 Power Management 
For environmental as well as economical reasons, power consumption of computing systems is a 
major concern for system designers and users.  A full survey of the state of the technology in 
power management is not in the scope of this report.  What is relevant here is how power 
management will interact with system resilience. 

Current and future power management technologies will encompass all system components, 
including processor cores, memories, storage, I/O circuitry, power supplies, service processors, 
etc.  These technologies include slowing components down, such as Dynamic Voltage and 
Frequency Scaling (DVFS) of processor and memory chips, slowing down the rotational speed 
of magnetic disks, and speed control of data communication on external network fiber or 
network switches.  More aggressive power management techniques will also include resource 
deactivation such as turning off individual cores within a multi-core processor chip, disabling 
some cache lines and turning off specific memory banks.  Turning off disks has been used in 
mobile systems for years and is finding its way into large-scale server environments.  We will 
also see power supplied to a specific subsystems being capped. 

Power management will be performed voluntarily under application control or involuntarily 
under operating system or even hardware control.  For example, power management can be 
instigated by programmer control by providing hints to the operating system about the parts of 
the program where processor speed can be reduced (e.g. while waiting for a message).  But the 
programmer may not have ultimate control, for example the hardware may decide to slow the 
processor down to reduce thermal stresses and hot spots under extreme conditions of workload 
intensity.  

0
50000

100000
150000
200000
250000
300000
350000
400000

Number of Changes Till
Failure

Full
55C
10C

Figure 5  Effects of continuous power on and off of a chip on its 
longevity.

The interaction of power management with system resilience is likely to be negative.  Power 
management will create thermal variations that will induce mechanical stresses at chip and board 
levels.  Furthermore, the continuous change in the disk rotational speed or the frequent activation 
and deactivation of disks will create unprecedented reliability challenges to the mechanical 
components of the disks.  For example, enterprise-class disks are designed to sustain a power on-
off every 8 hours, certainly less frequent than power management systems are expected to 

ECRS Section 2
ECRS White Paper, Page 14

ECRS Report

501
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



change the disk speeds.  The mechanical stresses, when accumulated over time, may lead to 
board-level failures in the form of separated or shorted connections.  Additionally, the 
accumulated effects of mechanical and thermal stress will reduce the longevity of individual 
chips and magnetic disks.  Figure 5 shows the expected number of turn on-off cycles as a 
function of the thermal swing.  Notice the order of magnitude reduction in chip longevity when 
the thermal swing increases from 10C to 55C.  The net effect of all the failure acceleration may 
be the reduction of the expected reliability of the individual components (component Mean Time 
To Failure, MTTF), which in turn may negatively affect the system’s overall MTBF.  
Alternatively, it may also cause more expensive qualification and components testing, which 
may drive a large system cost beyond the realm of affordability. 

At the large scale, there may be some electrical stresses at the data center level.  For example, if 
power management is applied to reduce the voltage and power of 100,000’s of processors 
simultaneously will create large power swings of megawatts within a few microseconds.  We 
note today that large-scale installations have a routine by which machine bring up and down are 
cascaded through out the system to avoid these swings. 

Another area where our understanding is incomplete is the interaction of power management 
with soft errors.  There will be two opposing effects at play due to the operation at lower 
voltages.  On one hand, the threshold for errors will be reduced and thus tolerance to soft errors 
at the system level will be reduced.  On the other hand, lower power consumption will reduce 
temperature and white noise, which will counter act the first effect, potentially.  Models need to 
be developed to study the effects of these interactions.

Figure 6 Variation of SER with voltage for 3 Silicon generations.

ECRS Section 2
ECRS White Paper, Page 15

ECRS Report

502
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Power management also may interact in interesting ways with existing software.  So far, 
software has been designed and tested with all components running at the same speed. It is 
conceivable that with power management changing the speeds of these components, some timing 
bugs may be uncovered.  It is reasonable to argue that software should not have any bugs, but the 
reality is that functioning software often contains latent bugs that could get exposed if power 
management starts interacting with the system in ways that were not tested before.  At the very 
least, software testing has to include regression tests that mitigate these effects. 

The interactions of power management with resilience, thus, are conjectured to be negative, and 
we emphasize that no one currently has sufficient experience to assess these interactions and 
their impact.  Also, it is clear that resilience-aware power management algorithms need to be 
developed at all levels of software and hardware design.  We therefore believe that studying the 
effect of applying power management on the reliability of the system should be an area of 
research worthy of pursuit.

3.2 System Size 
Processor speed improvement due to technology is essentially over.  Going forward, Moore’s 
law will allow only denser integration of transistors, which means that systems will grow 
horizontally.  Also, disk speeds are not likely to improve much.  Performance demands will force 
designers to a brute force approach in which more performance will be met by incorporating 
more components in a system.  We already know that the Blue Gene super computer includes 
about 128,000 processor cores in its maximal configuration.  We also know that HPCS-class 
machines will likely include 100,000’s of processor cores, and thus, beyond petascale systems 
could possibly include millions of processors, memory chips and disks.  Assuming the traditional 
improvement in component-level reliability, the rapid increase in the number of system 
components will likely reduce the MTBF of the system to a few days or even hours.  As 
discussed in Section  2, the lower MTBF may well force existing techniques for reliability out of 
consideration.  For example, an MTBF of 8 hours may yield an unacceptable overhead of 40% at 
10 minutes/checkpoint at the system level.  Also, preserving the checkpoint duration may require 
a non linear increase in the number of disks that are devoted to save the checkpoints, merely to 
keep up with the checkpoint demands.  This may not be even affordable from a financial 
standpoint.  For example, today’s system balances are typically 0.5B/F for memory capacity and 
0.01 B/F for memory bandwidth.  For these balances, the checkpointing time would be about a 
minute, ideally. System inefficiencies tend to push this figure higher.  At any case, the balance 
appears impossible to sustain at much higher system compute capability.  Therefore, it is clear 
that the current practice must be revised at the envisioned level of system sizes for the petascale 
systems and beyond.  New techniques for resilience, possibly impacting the existing practice of 
writing large-scale programs must be developed. 

3.3 Heterogeneity 
The studies performed under the HPCS program and others have pointed out the serious 
limitations of the current model of writing parallel programs based on MPI.  Besides its 
scalability limits, we have pointed out in Section  2 that it has an inherent problem with failure 
containment, which will likely limit the scalability even further.  Recently, we have seen a new 
trend toward incorporating heterogeneous processors in the system in the form of accelerators, 

ECRS Section 2
ECRS White Paper, Page 16

ECRS Report

503
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Field Programmable Gate Arrays (FPGA), and processors of different types.  An example of 
these new systems is the Road Runner system at the Los Alamos National Laboratory.

It is not clear at this point how one can produce a portable technology of providing reliability for 
these heterogeneous systems.  For the current practice of checkpoint/restart, for instance, will 
require support in capturing the states of the various components.  This is not straightforward, for 
instance, the state of an FPGA may not be captured easily, and some additional support for 
capturing a meaningful state of the system is needed.  Also, application software on these 
systems will be more complex than the versions that are targeting a single, homogeneous 
platform.  Therefore, it is conceivable that the reliability of the software (operating system, 
middleware and applications) will reduce the MTBF of the system further. We believe that 
further research must be directed at developing new algorithms and protocols for building 
reliable heterogeneous systems.  The current status quo is inadequate and will not field the new 
challenges on the horizon. 

4 Plausible Fields of Research 
In the preceding sections, we have established that the current practice in building resilient 
systems will not carry through with the larger systems envisioned at petascale and beyond.  New 
research is needed to develop the necessary technology that will achieve the goal of ensuring 
acceptable levels of resilience in future systems.  In this section, we study potential fields and 
directions of innovations toward this goal. Some of these directions are inspired by new 
technology trends that can be exploited to improve system resilience.  Others are insights that we 
have gained by observing what happens in other fields.

4.1 Exploiting New Technology Trends 

4.1.1 Exploiting Multi-Core Systems 
Future systems will feature processors with many cores.  Limitations on memory bandwidth, 
cache capacity and application software may prevent some of these cores from being put to 
profitable use all the time.  A simple idea is to dedicate some of this processing capability to 
handle recovery chores and support an increased level of system reliability.  This approach seeks 
to create a different value out of the additional cores other than mere performance. 

As an example to illustrate the point, consider the study shown in Figure 7, depicting the 
performance of four applications on a 4-threaded core.  It is clear that there is very little 
performance improvement that can result from increasing the number of threads from 1 to 2, 
much less from 2 to 4.  In all but one commercial application (JBB), performance hardly 
improves.  

ECRS Section 2
ECRS White Paper, Page 17

ECRS Report

504
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



0

0.2

0.4

0.6

0.8

1

1.2

1.4

CG LU JBB MG

1T
2T
4T

Figure 7 Performance study on a 4-threaded core performance.

Exploiting multi-core systems can take the form of allocating one core (or more) to perform all 
the monitoring logic that is required by higher level algorithms for providing reliability.  For 
example,  shows an example of an 8-core processor chip, in which 2 cores are set aside 
for resilience support.  This support may include diagnosis and error checking, or could be made 
available to the compiler to include reliability support.  How to do this requires a lot more 
research, but it appears a plausible and promising approach.   

Figure 8

Figure 9 shows another potential use of multi-core systems, in which the cores are paired in the 
modules, each consisting of a primary and a backup.  This approach could be used to detect and 
recover from soft errors, and could yield substantial redesign of the processor logic system.  For 
example, this design allows less emphasis on diagnostic and error checking circuitry in the logic, 
which could reduce the design complexity and power consumption.  Again, how to do this 
requires further research both in hardware and software (e.g. the operating system must be 
involved).  The approach again appears plausible and promising. 

A research agenda can be built around exploiting multicore systems for reliability purposes, 
including further investigations of the examples provided here and others.  There is a need to 
prototype and explore these possibilities to determine the most effective exploitation of 
additional cores and threads.  System software will also be impacted and it may not be trivial to 
include such support (e.g. compiler exploitation of multicore for the purpose of reliability).  We 
also need to assess the interactions with power management, and how it affects resilience in such 
configurations.  Finally, this has to be integrated into an overall strategy for providing resilience 
in future systems. 

ECRS Section 2
ECRS White Paper, Page 18

ECRS Report

505
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Core 

L1

Core 

L1

Core 

L1

Core 

L1

Monitor

L1

Core 

L1

Monitor

L1

Core 

L1

L2

L2

Coherence bus

Memory 
Controller 

Monitor performs 
diagnosis & error 
checking, compiler-
reliability support, 
etc.

Memory 
Controller 

Figure 8 A multicore system with two cores devoted to resilience support.

Primary/backup 
approach can detect 
soft errors that 
escape hw checking 

Primary Backup Primary Backup

L1 L1 L1 L1

Primary

L1

Backup

L1

Primary

L1

Backup

L1

L2

L2

Coherence bus

Memory 
Controller 

Memory 
Controller 

Figure 9 A multicore system with a primary/backup approach. 

ECRS Section 2
ECRS White Paper, Page 19

ECRS Report

506
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



4.1.2 Exploiting Semiconductor-based Stable Storage 
As described in Section  2, a central stable storage facility is required to support resilience and 
reliability in today’s systems.  We argued that this approach, however, is not scalable, especially 
when we consider that future systems may have lower MTBF and therefore a requirement for 
more frequent checkpointing.  We also know that the focus on strong scaling with require at least 
a 10X reduction in checkpoint latency.  These requirements cannot be met by incremental 
improvement of existing checkpointing techniques and disk-based stable storage.  A new trend in 
technology is the availability of semiconductor-based stable storage, e.g. in the form of flash 
memory. 

Flash memory can be exploited to extend the life of existing checkpointing techniques.  For 
instance, it can be used as a local flash disk to store the checkpoints within each system.  Then, 
when all checkpoints have been captured, which would be much faster than today’s approach, 
the checkpoints are staggered to the disk in a manner that reduce the overall contention on the 
disks.  This may allow existing disk-based checkpointing to continue to be useful while coping 
with the requirements of increasing the checkpointing scheme.  This 2-level approach is shown 
in Figure 10. 

CPU

Memory 

Local flash disk

CPU
Local flash disk

CPU

.

.

Local flash disk

Memory 

Memory 

Centralized 
checkpoint 
facility

Figure 10 A 2-level checkpointing approach that exploits flash memory.

Another approach is to eliminate disk-based checkpointing altogether, and use the flash memory 
in a neighboring system instead.  Figure 11 shows this proposal.  The exploitation of flash 
memory is certainly a vast area of research, and we have only shown two proposals.  Many 
others are possible and certainly this is one of the most promising approaches going forward. 

ECRS Section 2
ECRS White Paper, Page 20

ECRS Report

507
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Memory

Local flash disk

Figure 11 Distributed checkpointing using flash memory. 

4.1.3 Exploiting Virtualization 
Virtualization is gaining momentum in the commercial domain.  Virtualization can be leveraged 
in high-performance computing systems as it provides a robust state capture and migration.  This 
can be used as a robust building block to implement failure recovery, for example through 
checkpointing an entire partition.  This relieves the application programmer from having to 
manage reliability and closes the gap in robustness between existing fragile checkpointing 
techniques and the desired level of robustness.

4.2 New Technologies 

4.2.1 New Programming Models 
We have established that the flat message passing model based on MPI is at the root of the 
failure containment problem, which we perceive as the most severe going into petascale systems 
and beyond.  Other programming style are emerging (or re-emerging).  For example, what used 
to be called the “bag of tasks model” in the 1990’s is back under the name of map-reduce.  Other 
models such as the one employed in X10 confines the communication into semantically 
controlled interactions that could be constrained for the purpose of reliability.  These 
programming models do not suffer from the legacy of MPI, and therefore it is useful to re-
examine the current practice of checkpoint restart as the main method to provide resilience in 
such systems.   

CPU

CPU

Memory

Local flash disk

Checkpoints
and other 
recovery 
information is 
distributed
across the 
system, no 
central
bottleneck.

.
Memory

Local flash disk
CPU

ECRS Section 2
ECRS White Paper, Page 21

ECRS Report

508
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Some of these new programming models is inherently fault-tolerant, and thus is more scalable.  
For example in Figure 12 shows how the map-reduced model can help failure containment.  In 
this model, the tasks communicate through data repository such as a histogram or input files.  As 
a result, if one of the processing nodes fails, it can be restarted on any other system, unlike in 
MPI system when a single failure requires the entire system to be restarted. 

The failure of a 
processing node is limited 
to the failed node, and 
can be recovered by 
remapping the 
corresponding data item 
to a functioning 
processing node 

Histogram
Application

Data

Figure 12 Containment in the map-reduce model.

4.3 Application of Machine Learning 
Machine learning techniques use monitoring to build a finger print of the normal system 
behavior such that over time, any deviation from this normal behavior can be detected and 
handled.  For example, machine learning techniques can be used to sift through the massive 
amount of data in system logs, which are intended for system administrators but are never read.  
Also, over time, these statistical machine learning techniques can build fingerprints for different 
pathological system behaviors.  A database of fingerprints can thus be built over time and 
analyzed continuously to detect and potentially correct (or help in correcting) errors.

ECRS Section 2
ECRS White Paper, Page 22

ECRS Report

509
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



4.4 Compiler Support for Resilience 
Software remains an important source of failures in high-performance computing systems.  
Currently, software verification and exhaustive testing are still beyond the capability of today’s 
systems.  Also, there are environment-dependent bugs such as memory exhaustion timing 
anomalies that cause problems that are not detected during normal operation.  Bug detection 
logic inserted into the application by the compiler is an open area of research that has so far not 
been tapped.

A potential structure of the solution would add modules to automatically patch software while it 
is operational, modules for error detection and tolerance, including for instance detection of 
memory leaks, races, and monitoring techniques for anomaly monitoring.  Coupled with the 
abundance of cores that we described in Section  4.1.1, there is a new promising field of research 
on how to equip code to cope with all sorts of failures in a programmer-transparent manner. 

5 Bibliography
1. K. Birman. “How and Why Computer Systems Fail,” in Reliable Distributed Systems, 

Springer New York, pp. 237—246. 
2. E.N. Elnozahy, L. Alvisi, Y-M. Wang, and D. Johnson. “A Survey of Rollback-Recovery 

Protocols in Message-Passing Systems.” In ACM Computing Surveys, vol. 34, Sep 2002. 
3. J. Gray and A. Reuter. “Transaction Processing: Concepts and Techniques”, Morgan 

Kaufmann, 1993.  
4. B. Schroeder and G. Gibson. “A Large Scale Study of Failures in High-Performance 

Computing Systems”, in Proceedings of the International Symposium on Dependable 
Systems and Networks (DSN2006).

5. Wikipedia. “Multitier Architecture”, the Wikimedia Foundation. 

ECRS Section 2
ECRS White Paper, Page 23

ECRS Report

510
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

 

APPENDIX D 

FINAL REPORT OF EMBEDDED EXTREME SCALE SYSTEMS STUDY 
 

511
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 Technical Report, Contract FA8650-07-C-7724 
GT Fund R8251, ECE Project 210667V 

Embedded Terascale System 
Analysis and Design Environment 
Report 
Mark A. Richards, Timothy Scott 
School of Electrical and Computer Engineering, 
Georgia Institute of Technology 

Daniel P. Campbell 
Georgia Tech Research Institute, Georgia Institute of Technology 

Thomas Conte, Jason Poovey 
College of Computing, Georgia Institute of Technology 
 
Submitted to: 

U.S. Air Force Research Laboratory 
AFRL/SNDI 
Bldg. 620, Room 3 DU57 
2241 Avionics Circle 
Wright-Patterson AFB, OH 45433-7320 
ATTN: Ms. Kerry Hill 

Submitted by: 

GEORGIA INSTITUTE OF TECHNOLOGY 
A Unit of the University System of Georgia 
Georgia Tech Research Institute 
Atlanta, Georgia 30332-0800 

Contracting through: 

GEORGIA TECH RESEARCH CORPORATION 
Centennial Research Building 
Georgia Institute of Technology 
Atlanta, Georgia 30332 

May 2011 

 
The views expressed are those of the authors and do not reflect the 

official policy or position of the Department of Defense or the U.S. Government. 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

mr22
Text Box
EES Report

mr22
Text Box
512APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



TABLE OF CONTENTS

Paragraph Page

i 

PREFACE VIII 

1. INTRODUCTION .................................................................................................................................. 1 

1.1 DARPA’s Extreme Scale Computing Studies ........................................................................... 1 

1.2 The Embedded Extreme Scale Study ......................................................................................... 1 

2. PREDICTABLE DESIGN OF EMBEDDED EXTREME SCALE COMPUTING SYSTEMS .......... 3 

2.1 Introduction ................................................................................................................................... 3 

2.2 Some Common Processor Design Approaches......................................................................... 3 

2.2.1 Incremental System Design ................................................................................................... 3 

2.2.2 Analytical Performance Approximation ............................................................................. 3 

2.2.3 Simulation-Based Design ...................................................................................................... 4 

2.3 Predictable Design ........................................................................................................................ 6 

2.3.1 Sources of Unpredictability ................................................................................................... 7 

2.3.2 Simulation-Based Uncertainties ........................................................................................... 8 

2.3.3 Architectural-Based Uncertainties ....................................................................................... 9 

2.4 Overview of Statistical Sampling ................................................................................................ 9 

2.4.1 Confidence Intervals ............................................................................................................ 10 

2.4.2 Types of Statistical Sampling .............................................................................................. 10 

2.5 Summary: Predictable Design ................................................................................................... 13 

3. APPLICATION ANALYSIS AND BENCHMARKS FOR EMBEDDED EXTREME SCALE 
SYSTEMS ............................................................................................................................ 14 

3.1 Introduction ................................................................................................................................. 14 

3.2 Computational Requirements for Examples of Embedded Extreme-Scale Computing 
Applications ......................................................................................................................................... 15 

3.2.1 KAPE ...................................................................................................................................... 15 

3.2.2 Persistent Wide-Area Radar Surveillance ......................................................................... 20 

3.2.3 Streaming Sensor Challenge Problem Development ...................................................... 22 

3.2.4 Autonomous Vehicles .......................................................................................................... 27 

4. DATA MOTION ANALYSIS FOR LOW POWER ALGORITHMS .............................................. 34 

4.1 Locality Analysis of Algorithms ............................................................................................... 34 

4.1.1 Locality Metrics .................................................................................................................... 34 

4.1.2 Locality Analysis Tools ........................................................................................................ 37 

4.1.3 Spatial and Temporal Locality Experiments .................................................................... 39 

4.2 Data Motion Metric ..................................................................................................................... 40 

4.3 Data Motion Analysis Conclusions .......................................................................................... 41 

EES Report

513
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



TABLE OF CONTENTS

Paragraph Page

ii 

5. HIGH PERFORMANCE LIBRARIES FOR MULTICORE PROCESSORS ................................... 43 

5.1 Background .................................................................................................................................. 43 

5.2 VSIPL ............................................................................................................................................ 44 

5.3 GPU VSIPL ................................................................................................................................... 45 

5.4 Progress in the Development of GPU VSIPL .......................................................................... 46 

6. METRICS FOR EXTREME SCALE SYSTEMS .................................................................................. 47 

6.1 Introduction ................................................................................................................................. 47 

6.2 Measuring Programmability ..................................................................................................... 48 

6.2.1 Cognitive Dimensions and Programmability ................................................................... 48 

6.3 Parallel Programming Patterns ................................................................................................. 49 

6.3.1 Standard Parallel Problems ................................................................................................. 50 

6.4 Proposed Methodology .............................................................................................................. 51 

6.5 Experiments ................................................................................................................................. 53 

6.5.1 Example 1 - Quicksort .......................................................................................................... 54 

6.5.2 Example 2 - MapReduce ...................................................................................................... 55 

6.6 Programmability Metric Conclusions ...................................................................................... 57 

REFERENCES ........................................................................................................................................... 58 
 

EES Report

514
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



LIST OF FIGURES

Figure Page

iii 

Figure 1. Hierarchical design levels and corresponding simulation levels in the RASSP program. 
After [6]. ................................................................................................................................. 5 

Figure 2: As performance increases, the a priori ability to predict the performance before the 
design is built decreases. ...................................................................................................... 6 

Figure 3: Cluster sampling for multiprocessor architectures. ........................................................... 12 

Figure 4. General structure of an embedded streaming sensor signal processing system. ........... 14 

Figure 5. Functional overview of KAPE detection processor. ........................................................... 16 

Figure 6. Example of KAPE detection performance improvement. From [23]. .............................. 17 

Figure 7. Top-level SAR-based persistent WAS processing flow...................................................... 21 

Figure 8. Processing flow for optional digital spotlighting step. ...................................................... 21 

Figure 9. Backprojection algorithm. ...................................................................................................... 22 

Figure 10. Top-level SSCP processing flow. ......................................................................................... 23 

Figure 11. Affine registration processing flow. .................................................................................... 25 

Figure 12. Thin spline registration processing flow. ........................................................................... 26 

Figure 13. GT’s Sting autonomous vehicle. .......................................................................................... 28 

Figure 14. Sting hardware architecture. ................................................................................................ 29 

Figure 15. Sting software architecture. .................................................................................................. 30 

Figure 16. Major steps in the LOIS lane tracking algorithm. ............................................................. 30 

Figure 17. Major steps in the stopline algorithm. ................................................................................ 31 

Figure 18. Major steps in the (a) mapper, (b) planner, and (c) controller algorithms. ................... 32 

Figure 19. Major steps in the robust lane detection algorithm. ......................................................... 33 

Figure 20. Abstract memory hierarchy for binning locality scores. .................................................. 36 

Figure 21. “Binned” temporal locality LT vs. trace length for a basic matrix multiplication 
algorithm. ............................................................................................................................. 37 

Figure 22. Temporal and spatial locality vs. algorithm size. ............................................................. 39 

Figure 23. Data motion metric for several numerical algorithms. .................................................... 41 

Figure 24. Growth of GPU single precision floating point performance. ........................................ 43 

Figure 25. Output of GPU VSIPL range-Doppler map application showing three targets with 
sidelobes in both range (vertical) and Doppler (horizontal) dimensions. .................. 45 

Figure 26. OPL 2.0 Patterns. .................................................................................................................... 49 

EES Report

515
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



LIST OF FIGURES

Figure Page

iv 

Figure 27. “Temperature chart” indicating reliance of various application codes on the 13 
canonical parallel programs. From [53]. .......................................................................... 51 

Figure 28. Cognitive dimension scores for two implementations of the Quicksort algorithm. .... 55 

Figure 29. Programmability score for two Quicksort implementations. .......................................... 55 

Figure 30. Cognitive dimension scores for two implementations of the MapReduce algorithm. 56 

Figure 31. Programmability score for two MapReduce implementations. ...................................... 57 

EES Report

516
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



LIST OF TABLES

Table Page

v 

Table 1. KAPE System Parameters for Various Operational Modes   ................................................ 18

Table 2. KAPE Systems Computational Summary.   ............................................................................ 19

Table 3. Computational load for SAR-based persistent WAS image formation.   ............................ 21

Table 4. Tentative Challenge Problem Scenarios.   ................................................................................ 26

Table 5. Scenario Loadings.   .................................................................................................................... 27

Table 6. Computational Style of Major Functions.   .............................................................................. 27

Table 7. Estimated computational requirements of the LOIS lane tracking algorithms.   ............... 30

Table 8. Estimated computational requirements of the stopline algorithm.   ................................... 31

Table 9. Example of spatial locality stride calculation with W=4.   .................................................... 35

Table 10. Example of reuse distance calculation.   ................................................................................. 36

Table 11. Cognitive Dimensions   ............................................................................................................ 48

Table 12. Thirteen Canonical Algorithms.   ............................................................................................ 50

Table 13. Potential for Automated Measurement.   ............................................................................... 53

Table 14. Measurements for Quicksort program.   ................................................................................ 54

Table 15. Measurements for MapReduce program.   ............................................................................ 56
 

EES Report

517
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



LIST OF ACRONYMS

vi 

  

AFRL Air Force Research Laboratory 

API Application Programming Interface 

CCD Coherent Change Detection 

CFAR Constant False Alarm Rate 

CP Challenge Problem 

DARPA Defense Advanced Research Projects Agency 

DFT Discrete Fourier Transform 

DSM Distributed shared Memory 

ECS Exascale Computing Study 

ECRS Exascale Computing Resiliency Study 

ECSS Exascale Computing Software Study 

EES Embedded Extreme Scale 

Eflops Exa floating point operations per second (1018 flops) 

EMI Electromagnetic Interference 

EO/IR Electro-Optic/Infrared 

flops Floating point Operations Per Second 

FFT Fast Fourier Transform 

FIR Finite Impulse Response 

FPGA Field Programmable Gate Array 

fps Frames Per Second 

Gbps Giga bits per second (109 bps) 

Gflops Giga floating point operations per second (109 flops) 

Gops Giga operations per second (109 ops)

GPU Graphical Processing Unit 

GT Georgia Tech 

GTRI Georgia Tech Research Institute 

HCI Human-Computer Interface 

HPEC-SI High Performance Embedded Computing Software Initiative  

HPCS High Productivity Computing Systems 

IPC Instructions Per Clock Cycle 

EES Report

518
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



LIST OF ACRONYMS

vii 

KAPE Knowledge-Aided Parameter Estimation 

KASSPER Knowledge-Aided Sensor Signal Processing and Expert 
Reasoning 

LRU Least Recently Used 

Mops Million operations per second (106 ops) 

OPL Our Pattern Language 

Pflops Peta floating point operations per second (1015 flops) 

QRD Q-R Decomposition 

RAMP Research Accelerator for Multiple Processors 

RASSP Rapid Prototyping of Application-Specific Signal Processors 

RF Radio Frequency 

ROI Region of Interest 

SAR Synthetic Aperture Radar 

SBD Simulation-Based Design 

SLAM Simultaneous Location and Mapping 

SSCP Streaming Sensor Challenge Problem 

STAP Space-Time Adaptive Processing 

SVD Singular Value Decomposition 

SVM Support Vector Machine 

TASP Tactical Advanced Signal Processor 

Tflops Tera floating point operations per second (1012 flops) 

UAV Unmanned aerial vehicle 

UCB University of California, Berkeley 

UHPC Ubiquitous High Performance Computing 

VHDL VHSIC Hardware Design Language 

VHSIC Very High Speed Integrated Circuit 

VSIPL Vector, Signal, Image Processing Library 

WAS Wide Area Surveillance 

EES Report

519
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



viii 

PREFACE

This document is a Technical Report under Georgia Institute of Technology (Georgia Tech, GT) 
Project 210667V, “Exascale Computing Study”, but focused specifically on the portion of the 
project identified as “Characterization and Design of Embedded Terascale Computing Systems 
Based on Exascale Computing Technology”. This project was sponsored by the Information 
Processing Technology Office (IPTO) of the US Defense Advanced Research Projects Agency 
(DARPA) and was administered by the U.S. Air Force Research Laboratory under contract 
FA8650-07-C-7724. 

The authors would like to thank Dr. William Harrod of DARPA/IPTO, the Exascale Computing 
Study program manager, and Ms. Kerry Hill of AFRL for their support of this effort. 

EES Report

520
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

1 

SECTION 1
INTRODUCTION

1.1 DARPA’s Extreme Scale Computing Studies

The U.S. Defense Advanced Research Projects Agency (DARPA) [1] is conducting a series of 
studies under the umbrella of the “Exascale Computing Study”. An exascale computer system is 
a computer system with approximately a one thousand-fold increase in capabilities relative to 
the computer systems currently under development by DARPA’s High Productivity 
Computing Systems (HPCS) program [2]. In 2007-2008, DARPA conducted an Exascale 
Computing Study (ECS) addressing hardware and system architecture issues in the 
development of exascale computing systems. The ECS identified the development of effective 
parallel programming methodologies for systems having extreme degrees of concurrency, and 
exascale system resiliency, as critical issues. The final report of the ECS has been publicly 
released [3]. 

DARPA then initiated two supplemental studies to further define the technologies and 
investments needed by 2010 to enable the development of exascale computing systems by 2015, 
the Exascale Computing Software Study (ECSS) and the Exascale Computing Resiliency Study 
(ECRS). The goal of the ECSS study, which is finalizing its report at this writing, is to identify 
the key software technologies, approaches, and methodologies that must be in place to 
effectively utilize the extreme levels of concurrency expected in exascale computing technology. 
The goal of the ECRS study was to identify the key technologies, approaches, and 
methodologies that must be in place to ensure scalability of mean time to failure (MTTF) in 
exascale systems. Both the ECSS and ECRS shared the additional goal of specifying the research 
problems that must be solved so that the key technologies identified can be in place in time to 
support initial deployment of exascale technology in 2015. The final report of the ECSS has been 
publicly released [4]. A “white paper” summarizing the ECRS conclusions is publicly available 
from the DARPA web site at this writing [5]. 

From the beginning of these studies, the exascale studies have considered not only true exascale 
data center class systems, but also smaller-scale systems that would be enabled by the 
development of exascale technology. Specifically, it is assumed that “departmental” systems, 
physically on the order of one or two cabinets, could be constructed that operate at petascale 
levels, and that “embedded” systems, typically at the VME chassis physical scale, could be 
constructed that operate at terascale levels. The moniker extreme scale systems has been adopted 
to refer collectively to this range of computing capabilities and physical sizes. 

1.2 The Embedded Extreme Scale Study

Georgia Tech (GT) serves as the prime contractor for the organization and conduct of these 
studies, as well as a participant in them. In 2008, DARPA added a task funding GT to study 
several key issues in realizing embedded extreme scale (EES) computing systems. The EES 
study comprised three principal sub-tasks. The first sub-task, analysis of terascale embedded 
applications, focused on identifying embedded computing applications projected to require 
terascale computing capability in the 2015 time frame. GT analyzed the computational, 

EES Report

521
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

2 

communication, memory, and other requirements of the selected applications. Key functional 
kernels and application benchmarks representative of the selected applications were identified. 

The second sub-task focused on a design environment for terascale embedded computing. GT 
assessed current performance modeling and prediction methods applicable to embedded 
computing systems. Based on this review, GT proposed new approaches for the hardware and 
software architecture of a design environment for terascale embedded computing systems. 

The third sub-task considered new concepts for inherently low-power computational 
algorithms. Under this part of the effort, GT investigated techniques for developing new 
algorithms and improvements to existing algorithms that jointly optimize the energy and 
runtime required for computation of selected functional kernels. 

Sections 2 through 4 of this report describe the research conducted and results obtained under 
each of these subtasks, respectively. Section 5 describes additional related work in the 
development of high performance computational libraries for advanced graphical processing 
units (GPUs). 

 

EES Report

522
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

3 

SECTION 2
PREDICTABLE DESIGN OF EMBEDDED EXTREME SCALE

COMPUTING SYSTEMS

2.1 Introduction

Embedded extreme scale computing systems (EES) and their associated software require tens of 
terascale performance in a chassis-sized package. This presents major design challenges. Chief 
among these problems is that tight constraints limit the potential for high performance. It is a 
maxim today that if a design has tight constraints, the ability of a designer to find a design that 
achieves high performance is compromised. It is beyond argument that embedded chassis-sized 
systems are tightly constrained. The required performance of tens of teraflops makes finding a 
design particularly difficult. 

2.2 Some Common Processor Design Approaches

There are several known techniques for developing embedded computer designs. The major 
approaches can be grouped into incremental system design; analytical performance 
approximation; and simulation-based design. Each of these techniques suffers from different 
drawbacks. In general, a desirable property of a design approach is that it generate designs 
whose ultimate performance, when built, matches the predicted performance derived a priori. 
This property is referred to herein as predictable design. While this may seem a bare minimum 
requirement for any design method, in practice it is difficult to achieve. 

2.2.1 Incremental System Design

Rarely is a new processor designed entirely from a clean sheet of paper. Instead, incremental 
system design is very commonly used to design EES systems. In this approach, designers adapt 
an existing design to new requirements by a process of incremental updates. The existing 
design is analyzed for bottlenecks. The faulty design aspects responsible for the bottlenecks are 
then repaired or replaced. That the resulting system performs at a higher level than the original 
system cannot be denied. However, this incremental approach is similar in theoretical 
optimization to finding a local minima or maxima. Other designs that may produce 
revolutionary EES systems are not explored. Often this approach results in a faulty conclusion 
that it is impossible to improve a particular system beyond a given physical, process or 
algorithmic bottleneck. 

2.2.2 Analytical Performance Approximation

Analytical performance approximation is a technique wherein the potential systems are 
modeled using approximate mathematical techniques such as Petri nets or queuing system 
models. Because of the complexity of these models, analytical solutions are often intractable 
without some standard assumptions about the processor workload (e.g., a Poisson-distributed 
random process, a balanced birth-death process, etc.). These assumptions are the crux of the 
drawback with the analytical approach: real workloads do not behave as random processes. 
Furthermore, it is often the exceptional (rare) workload case that limits the system’s overall 

EES Report

523
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

4 

capacity and performance, not the common case. The impact of these stressing workloads is 
difficult to capture with standard analytical approximations. 

2.2.3 Simulation-Based Design

Simulation-based design (SBD) refers here to comprehensive modeling of potential systems 
using event-based or time-step-based modeling techniques to write simulation programs. These 
simulators take in stimulus recorded from actual running workloads and create a “virtual 
environment” in which to process these workloads. The advantages of this approach are 
numerous. Simulation-based design uses engineering science to simulate several candidate 
systems, selecting from among the candidates based on performance criteria. The performance 
estimates can be highly accurate. Workloads are exactly modeled because every action of a 
particular workload is taken into account. 

SBD has some drawbacks, however. Architectures that require significant porting of 
applications may require too much effort to simulate, especially given the likelihood that the 
ported application effort will be wasted if the architecture does not meet performance goals. 
However, if automated porting tools are used (i.e., via auto-tuning), this hurdle can be 
overcome. The most daunting limitation of SBD, though, is the simulation speed. A simulator 
simulating a system that performs 100 billion operations per second will typically run many of 
orders of magnitude slower, for example, at only 1 million operations per second. Simulation of 
long designs may stretch into weeks or months, even on the fastest hardware available. Long 
simulation times can be reduced by increasing the granularity of the system. For example, task 
interactions could be simulated instead of individual instruction interactions. The drawback of 
this acceleration approach is that it necessarily leads to less accurate performance predictions. 

An extension of the idea of granularity/accuracy tradeoffs to control simulation time is the idea 
of hierarchical simulation. This idea was explored extensively in DARPA’s Rapid Prototyping 
of Application-Specific Signal Processors (RASSP) program in the mid-1990s [6]. The RASSP 
program advocated a detailed, multi-level hierarchical design approach with the design levels 
and corresponding simulation and prototyping levels shown in Figure 1. While RASSP relied 
entirely on VHDL simulation, the concepts are applicable to any simulation environment. 

The RASSP hierarchical design and simulation environment was closely tied to an iterative-
refinement “spiral” design methodology applied to both hardware and software in a co-design 
methodology [7], as well as to an extension of the Gajski-Kuhn “Y chart” division of simulation 
into functional, behavioral, architectural, structural, and physical levels of specificity [8]. The 
concept is to have relatively coarse but fast simulation accuracy at the higher levels, refining the 
accuracy (and therefore increasing simulation time) in successive iterations as one works down 
the hierarchy to more detailed design levels. However, with good design practices, it is possible 
to reduce the amount of the system that must be simulated at slower run speeds at each level, so 
that total simulation time becomes manageable. 

EES Report

524
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

5 

Figure 1. Hierarchical design levels and corresponding simulation levels in the RASSP program. 
After [6]. 

 

Excessive SBD simulation times can also be mitigated through various simulation acceleration 
techniques. One approach is the use of parallel computers for simulation acceleration. Another 
acceleration approach is the use of emulators, special-purpose computers, often based on field-
programmable gate array (FPGA) technology, to accelerate time-consuming portions of a 
simulation with good hardware fidelity. A currently-popular example of this approach is the 
Berkeley “Research Accelerator for Multiple Processors” (RAMP) emulator [9], developed 
primarily for simulating multiprocessor-based systems. Emulators have several advantages 
over software simulation. They can be mapped relatively quickly; can be placed in a real 
environment, and are typically substantially faster than software simulation. However, they are 
expensive to develop and own, and are typically a limited resource as a result. 

Requirements 
Capture

Algorithm & 
Functional 

Designl

Data/Control 
Flow Design

HW/SW 
Architectural 

Design

Hardware 
Virtual 

Prototype

Detailed 
HW/SW 
Design

Final 
Prototype

To SW Design

Exectuable
Requirements 

Modeling

Executable 
Specification 

Modeling

Data/Control 
Flow 

Modeling

Performance 
Modeling & Analysis, 

HW/SW Partition

Fully Functional and 
Interface Modeling

RTL Modeling

Prototype HW

Simulation 
Abstraction LevelDesign Level

EES Report

525
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



6 

2.3 Predictable Design

Predictable design is the property wherein a system’s performance is predictable to within some 
certain acceptable error margin, before the construction of the system. Another way to state this 
is that it is particularly desirable to have a design whose ultimate performance is predictable a 
priori. This is not a given. Many techniques to accelerate computer architecture performance, 
such as the use of caches and branch prediction, result in an unpredictable ultimate 
performance. Stated another way, given an application, the goal is to find a design optimized 
for a set of performance criteria subject to a set of constraints (power, form factor, etc.). From an 
optimized design and an application, the goal is to accurately predict performance. Any 
performance prediction scheme short of custom prototyping (i.e., building the thing) introduces 
uncertainty.  

Figure 2 illustrates the issue and importance of predictable design. The x-axis is the 
predictability a priori of the performance before the design is reduced to practice. A low value of 
predictability means the design must be actually prototyped to know its true performance; a 
high value represents a design whose performance can be accurately predicted prior to 
prototyping. The y-axis represents the observed performance for a particular design approach. 
Each curve represents a set of implementation methods. The lowest curve (“A”) represents a 
typical tradeoff in the design of systems today. Many aggressive, speculative and dynamic 
techniques are used to achieve high performance. Although these are useful techniques, their 
dynamic nature introduces significant unpredictability in the performance of the ultimate 
system before it is built. 

 

Figure 2: As performance increases, the a priori ability to predict the performance before the design is 
built decreases. 

EES Report

526
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

7 

The goal of predictable design is to find design and implementation technologies that can be 
used to achieve high performance yet yield flatter performance vs. predictability curves. If the 
horizontal dashed line represents a desired level of performance, the higher curve “B” in Figure 
2 constitutes a more desirable set of high performance techniques than does the “A” set of 
techniques. Design “B” can be thought of as having fewer “unpleasant surprises” than design 
“A”. Similarly, technique set “C” is even more desirable than “B.” 

2.3.1 Sources of Unpredictability

As Figure 2 illustrates, the current techniques for accelerating the performance of EES systems 
lead to designs that may miss the target performance goal. There are two general reasons for 
this unpredictability: (1) reliance on flawed simulation results, and (2) dynamically sensitive 
architectural tricks.  

Simulation of EES systems is an arduous task that takes a considerable amount of compute 
resources. There exist few compute platforms up to the task of simulating future high-
performance EES systems in real time (or even tractable time). As discussed above, the 
granularity of the simulation can be traded for simulation speed, but at a penalty of reduced 
accuracy. Simulation uncertainties are discussed in more detail in the next section. 

Architectural tricks that accelerate a design exploit one of two common properties of 
workloads: they are predictable in nature, and they exhibit inherent parallelism. Prediction and 
parallelism form the basis of most architectural “tricks.” For example, caches work well because 
the memory reference behavior of a section of a workload is self-similar. Thus caches predict the 
future re-references to memory based on the past. Other prediction techniques include branch 
prediction, data and instruction prefetching, and, although generally less reliable, prediction of 
computation results themselves. 

Parallelism occurs in any design, often at multiple levels (task, data, and instruction) because 
there is rarely only one computational result being carried out in a workload. A matrix multiply 
of two N×N matrices involves independent calculations of N2 results, for example. Amdahl’s 
law predicts that for any time fraction f of a computation that is parallelizable, the maximum 
speedup Smax through parallelism (corresponding to P ����������	����
�	��
��������	��
��
�	�
than 

max
1

1
S

f
�

�
(1)

One aspect of parallelism as a speedup mechanism that is distinct from prediction is that it 
produces predictable performance gains when the fraction, f, can be measured before runtime. 
However, by considering maxdS df , it is easy to see that, for a given uncertainty in the 
parallelizable fraction, �f, the resulting uncertainty in the speedup is 

� �
2

max max2
1

1
S f S f

f
� � � � �

�
(2)

Thus, increased reliance on parallelism for speedup also creates an increased sensitivity to 
errors in estimating speedup when attempting to assess design predictability. Put another way, 

EES Report

527
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

8 

maintaining a given level of predictability when increasing parallelism requires increasing 
accuracy of speedup estimation. 

2.3.2 Simulation-Based Uncertainties

Simulation is perhaps the most reliable way to design an EES system. Simulation-based design 
uses engineering science to simulate several candidate systems, selecting from among the 
candidates based on performance criteria. There are many challenges to this approach. For 
example, the system must be simulated performing a given workload (i.e., an application, 
benchmark or kernel). Architectures that require significant porting of workloads may require 
too much effort to simulate, especially given the likelihood that the ported workload effort will 
be wasted if the architecture does not meet performance goals. However, if automated porting 
tools are used (e.g., auto-tuning compilation systems), this hurdle can be scaled. 

Another potentially deadly limitation of simulating systems is poor performance of the 
simulation itself, as opposed to the system being simulated, as discussed above. This “meta-
performance” can readily become a bottleneck to exploring more than a handful of potential 
designs. The meta-performance problem is due to the complexity of the design simulations: one 
simulated cycle of the potential future architecture may take several million real-world 
simulator cycles to simulate with sufficient accuracy. There are three approaches to mitigating 
this problem: accelerating the simulation algorithmically, exploiting parallelism in the 
simulation, and trading off simulation accuracy for simulator meta-performance. 

There have been several approaches to accelerating computer-system simulation 
algorithmically. One of the most famous is the use of the least-recently-used (LRU) inclusion 
property to simulate an entire design space of cache memories with one simulation. It is well-
known that certain cache or paging-system replacement policies follow a priority scheme that 
operates as a stack. These so-called “stacking algorithms” can be simulated in one pass by 
explicitly modeling the priority stack. In the case of LRU, for example, new data not present in 
the stack are pushed onto the stack, whereas existing data may be found at a given stack depth. 
When it is found at a given stack depth, it is “re-pushed” to the top of the stack. This allows for 
the simulation of an entire space of caches by declaring data found at stack depths beyond the 
capacity of the hardware cache as “misses,” and those above this critical depth as “hits.” 
Limited associativity and even direct-mapped cache policies can be simulated using these 
approaches. A related approach is to use grain-size of the simulation selectively: simulating the 
most critical aspects of a system in great detail, while simulating others at a very coarse level. 

Unfortunately, although there are single-pass algorithms for caches that fully account for 
hardware configurations, the same is not true for hardware techniques that execute code in 
parallel. The performance of code in a parallel EES system is a function of many hardware 
parameters that have a “brittle” impact on ultimate performance. Thus changing just one of 
these parameters slightly, such as the bandwidth of the interconnect between processing 
elements, can greatly impact overall performance. Techniques to accelerate the simulation of 
parallelism are an open topic subject to much active research. 

One self-evident approach to speeding up the simulation of parallel computing is to execute the 
simulator itself as a set of parallel threads or “logical processors.” This has many advantages, 
but the simulation speedup is modest because the degree of parallelism only has a small 

EES Report

528
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

9 

multiplicative aspect on the meta-performance of the simulator. This occurs because the 
extensive interaction between the simulated elements of the processor being designed requires 
both large amounts of communication and frequent synchronization between the simulated 
elements. The overhead in communication and synchronization required for coordinating a 
high-performance simulation is significant and quickly erases performance gains as the number 
of threads in the parallel simulation is increased. 

The most common technique for speeding up simulation of EES systems is through statistical 
sampling. This process, and its implications for predictable design, is considered in detail in the 
next section. 

2.3.3 Architectural-Based Uncertainties

Computer architecture is, in some senses, a study of “tricks” to speed up a computer. Some of 
these tricks are done behind the scenes and without the knowledge of the programmer. For 
example, when code is executed on a pipelined uniprocessor, a branch instruction causes a 
pipeline stall that robs the overall system of performance. To address this, these control 
instructions (branches) are predicted at run time and a particular path in the code is 
speculatively executed. The performance reduction is now a direct function of how accurately 
the predictor can guess the performance of the branches. The problem with this approach is 
subtle: the behavior of the system cannot be accurately guessed a priori without running the 
workload through a very detailed simulation. 

However, there are other approaches to the same class of problems. In the above example, code 
from beyond the branch can be moved before the branch to reduce the branch’s impact on 
performance, provided the code is independent of the branch. This approach is often carried out 
in the compiler, and is invisible to the programmer. The advantage of this approach is that the 
dependence of the performance prediction on the program’s dynamic behavior is greatly 
reduced. A similar and related approach is to use predicated execution to turn conditional code 
into straight-line code [10]. 

Another contrast can be drawn in the realm of explicitly parallel workloads. Most programming 
paradigms fall within one of two large classes: shared memory or message passing paradigms. 
In the shared memory approach, such as a DSM (distributed shared memory, the OpenMP 
programming model) machine, the hardware is responsible for transferring shared data from 
one computational element (processor) to another. This is done via coherence techniques, for 
example. The DSM approach works well, but it provides a high level of variability in 
performance due to variations in the actual run-time behavior of the workload. In contrast, a 
message passing approach (the MPI programming model) leaves it to the programmer to 
explicitly move data from where it is calculated to where it is needed. Although this puts more 
work on the programmer, the performance of resultant code is much easier to predict a priori. 

2.4 Overview of Statistical Sampling

Statistical sampling relies on statistical techniques to reduce the number of events (instructions, 
messages, etc.) that must be simulated in order to produce accurate predictions of system 
behavior. An important advantage of this method is that, when used to accelerate simulation, it 
also allows for the prediction of the confidence (error) in the result, which ultimately leads to 
more predictable designs. If uncertainty is not bounded, even if a simulation could be 

EES Report

529
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

10 

performed instantaneously, its results would be meaninglessly random. The goal in accelerating 
simulation is to sacrifice a measurable amount of accuracy in order to accelerate simulation. 
Without observing this, there is no confidence in the results. By using statistical theory, the 
uncertainty of a measurement can be bounded without having to simulate every event of the 
workload. 

2.4.1 Confidence Intervals

In parametric statistics, which rely upon a normal distribution, one measure of uncertainty is 
the confidence interval CI. The confidence interval defines a range of values wherein the true 
mean of a parameter is expected to be contained. In order to calculate a confidence interval, a 
confidence level must first be selected. The confidence level is the probability with which the true 
mean would be expected to be within the confidence interval. It is common for scientific and 
engineering studies to select a 95% confidence interval. The reason for this is that 99% 
confidence intervals are too broad (e.g., “it is known with 100% confidence that the true mean is 
between 0 and infinity”). On the other hand, 90% confidence intervals are unnecessarily 
conservative in their estimations of error bounds while also requiring significantly more 
simulation effort for marginally small confidence gains. 

Given a sample , 1, ,ix i n� �  of measured data, the standard deviation s and sample mean x  are 

 
� �

,
1

ii
ii

x x
x x s

n

�
� �

�
��  (3) 

Assuming normal statistics, the 95% confidence interval is then 

  (95%) 1.96 sCI x
n

� �  (4) 

It has been often claimed that in computer architecture, the parameter(s) of interest will not be 
normally distributed, thereby violating the assumption of normality. This would require 
resorting to nonparametric tests. However, the Central Limit Theorem may be leveraged if one 
only cares about average metric performance.1

2.4.2 Types of Statistical Sampling

 Since nearly all computer architecture metrics of 
interest are such summary metrics (e.g., instructions per clock cycle, or IPC), the assumption of 
normality can be assumed to hold and Student-t statistics can be applied. Student-t statistics 
compare the distribution of a sampled population to a known distribution and calculate the 
probability that the two distributions are different. 

There are three general techniques of statistical sampling: simple random sampling, stratified 
sampling, and cluster sampling. Simple random sampling (i.e., sampling individual instructions) 
is cost-prohibitive for processor simulations, so researchers have typically relied on either 
cluster sampling or stratified sampling [11],[12],[13]. Stratified sampling refers to the process of 

1 The Central Limit Theorem states that the distribution of metric averages will be normally distributed if 
the number of data points is sufficiently large (typically, n>30). 

EES Report

530
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

11 

sampling where the population (e.g., the memory accesses) is divided into non-overlapping 
groups, or strata. For example, simulating only particular sets in a cache would be stratified 
sampling [12]. Stratified sampling focuses on a subpopulation, and predicts that this population 
behaves the same as the whole. Once the strata have been defined, then each stratum is 
randomly sampled (e.g., each selected set in the cache is randomly sampled). All elements of the 
population must be included into one (and only one) stratum, and the strata should generally 
be homogeneous in nature. However, stratified sampling requires accurate information about 
the population being sampled in order to classify the population elements. For processor 
simulation, the act of profiling the instruction stream in order to define the stratum is expensive, 
and so stratified sampling is not widely used. However, in multiprocessor simulations, 
stratified sampling is possible by picking a subset of the cores as the strata to sample. Tractable 
approximations to stratified sampling techniques have been proposed in [14]. 

Cluster sampling is typically used when “natural” groups are evident in the population. Like 
stratified sampling, the population is divided into groups (or clusters), and the groups are 
randomly selected for inclusion in the sample. All elements in the population must be assigned 
to a cluster, and no element can be in more than one cluster. From these groups, the metrics of 
interest are measured. Cluster sampling differs from stratified sampling in that only the clusters 
that have been randomly selected are used for measurement. In addition, the entire cluster is 
measured, whereas in stratified sampling, each stratum is sampled. Clusters should generally 
be heterogeneous in nature. Given a fixed cluster size, cluster sampling may be less precise than 
stratified sampling or simple random sampling, but it incurs a smaller cost on each individual 
sampling unit. Consequently, the loss of precision can be diminished by increasing the overall 
sample size (i.e., the number of clusters times the cluster size). 

In the context of processor simulation, a cluster is a contiguous group of cycles from the 
simulation [15]. Because the behavior of such a cluster is hard to measure without full 
simulation, instructions from the dynamic instruction stream are often used as a proxy for 
cycles. Each of the randomly chosen clusters is then simulated in order to estimate any attribute 
desired by the user (e.g. IPC, cache performance, speedup, etc.). The larger the sample, the more 
likely the estimates obtained from that sample will be correct. Very large samples will be 
extremely accurate, but at the cost of long simulation times. Small samples will be simulated 
very rapidly, but may yield inaccurate estimates. Therefore, care must be taken to select an 
appropriate sampling regimen [15],[16]. The sampling regimen defines the number of clusters 
and the cluster size for a particular workload. 

In multiprocessor simulations, the approximation that cycles equal instructions is highly 
inaccurate. Figure 3 helps to explain why. The figure details the per-thread warming period, 
cluster/detailed execution, and functional simulation and warmup phases for a multiprocessor 
executing a single multithreaded application. The number of cycles needed to execute a 
sequence of instructions is dependent on the degree of parallelism, and thus a complex function 
of the workload. Finding an appropriate substitute proxy for cycles is an open research topic. 

 

EES Report

531
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



12 

Figure 3: Cluster sampling for multiprocessor architectures. 

As with processor simulation, it is still desirable for cluster locations to be selected randomly 
from executing threads throughout the program. In between clusters, new functional warming 
algorithms combined with detailed warming are required to recover state that is lost while 
skipping cycles. The region between cluster measurements is referred to as the skip-region, or 
simply the gap. Functional warming uses data obtained during the functional emulation of the 
workload in order to approximate the system state. During this phase of execution, events are 
immediately processed and timing information is omitted. (For example, reference streams 
operating on caches are applied immediately without simulating those latencies such operations 
would incur.) Techniques used in the functional warming of simulator state are called warmup 
methods. An optional detailed warming period follows functional warming and can be used to 
reconstruct state in a timing-specific manner. Detailed warming simulation and cluster 
simulation are similar, except the warming region doesn’t influence collected statistics in the 
detailed warming simulation, whereas it does in cluster simulation. Either reduces nonsampling 
bias encountered during detailed warming from significantly affecting sample accuracy. 

Utilizing these three phases of execution, the workload will transition between regions of serial 
and parallel execution. During serial execution, single-core cluster sampling techniques can be 

EES Report

532
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

13 

applied to warm system state because the interleaving of thread events and timing behaviors do 
not exist. Once threads are spawned, cluster phases are randomly collected across all system 
threads simultaneously. In other words, the location of the cluster is random, but all clusters 
occur temporally at the same time. Since threads may progress at different rates, functional 
warming should approximate their relative progress before the next detailed warming and 
cluster quantum are measured. 

Several functional warming techniques have been studied to efficiently recreate simulator state 
(originally for cache simulation [12],[13],[17],[18],[19] and then later extended to processor 
simulation [14]). Since detailed execution occurs on only a small fraction of the entire program, 
simulation times are now bounded by skip-region processing between clusters. The most 
accurate warmup method is SMARTS [20], because all data in the skip-region are functionally 
applied. Consumption of all skip-region data provides an accurate representation of system 
state, but is also heavy-handed and expensive in terms of simulation effort. Due to locality, the 
functional execution of many instructions could be omitted with minimal effects on sampling 
accuracy. Warmup methods may exploit system characteristics to infer state properties [11], 
[12],[13],[21] in order to approximate the functional state produced through SMARTS-style 
functional simulation. 

Another popular technique used to accelerate simulation is SimPoint [10],[22]. SimPoint uses 
data obtained from a fast functional simulation of the program to classify program behavior. 
Using BBV (Basic Block Vector) information, clustering techniques are applied to condense the 
workload behavior into a small number of representative data points. SimPoint has been 
successfully used to accurately estimate entire workload behaviors, and can be thought of as a 
type of sampling. However, due to the systematic sampling of events from the program, 
program periodicity may cause sampling bias effects to skew measured results. Although 
extending SimPoint to multiprocessors is an interesting research direction, it has not yet been 
studied. 

2.5 Summary: Predictable Design

The approach advocated here for predictable design is based primarily on simulation of the 
desired processor. The simulation is accelerated using statistical techniques that allow the error 
in the results to be predicted. Moreover, in terms of choosing between architectural approaches, 
predictable design also advocated choosing architectural approaches that allow for accurate 
performance estimations with less reliance on detailed simulation, for instance, using message 
passing paradigms instead of shared memory paradigms. By reducing the cost of simulating a 
given architecture, predictable design methodologies will allow EES systems to be optimized 
for high performance subject to very tight design constraints through affordable exploration of 
many alternatives in the design space. 

EES Report

533
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



14 

SECTION 3
APPLICATION ANALYSIS AND BENCHMARKS FOR

EMBEDDED EXTREME SCALE SYSTEMS

3.1 Introduction

The space of embedded high performance applications includes several computing styles, 
including at least streaming applications, graph applications, unstructured knowledge 
extraction, and combinations of these into an overall multi-stage processing flow. Traditionally, 
the greatest emphasis in embedded HPC for DoD platforms has been streaming applications, 
often associated with radar, sonar, EO/IR, and similar sensors. Figure 4 illustrates the general 
structure of an embedded streaming sensor signal processing system. This figure implies one 
processing system shared by several sensors. This may be the case for some scenarios, while in 
others each sensor may have its own dedicated processing system. In still other cases, there may 
be a hybrid structure, where each system has some amount of front-end processing, while the 
back-end processing and knowledge generation occurs in a shared processing system. 

 

 

Figure 4. General structure of an embedded streaming sensor signal processing system. 

Streaming sensor computing is primarily characterized by high throughput numeric processing 
of a flow of input data from external sensors. Typically, this flow consists of discrete blocks of 
data of a fixed volume, arriving at a fixed cadence. Representative sensor types include 
multichannel radar and electro-optic, infrared, and video imagers. Typical application domains 
include multi-modal image formation, surface moving target indication, computer vision for 
robotics and autonomous vehicles, surveillance, and communications. Streaming sensor 

Sensor1

Sensor0

Sensor2

Sensorn-1

M
U
X

Front-end Processing Back-end Processing
Knowledge
Generation

Actionable
KnowledgeDynamic 

Digital
Sensor Data

... UHPC Processing SystemSensor
Data Input 

Subsystem

EES Report

534
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

15 

processing is frequently used in interactive systems or as a component of feedback control 
systems that also impose a latency requirement. 

Challenging streaming applications present large volumes of data generated by the sensors, 
large volumes of intermediate data, relatively low arithmetic intensity (math operations per 
data word read or written), large volumes of computations repetitively applied to advancing 
frames of data, predictable data access patterns, relatively low portions of data flow that 
constitute feedback, and relatively small numbers of dynamic branches within the calculations. 
The latency requirement is often equivalent to many input block periods, making pipelined task 
parallelism an effective acceleration approach. 

Traditional streaming sensor data is captured as fixed-point numbers at bit depths of 16 or less 
and organized into two- or three-dimensional data arrays representing a discrete frame of data. 
The data may pass through front-end processing performed with fixed-function or 
reconfigurable hardware to transform their domain, reduce their size, and convert them to the 
appropriate numerical format (which is usually single- or double-precision floating point) for 
further processing. Subsequent processing typically consists of fast Fourier transforms (FFTs) 
and related transforms, n-dimensional (n-d) convolutions and correlations, n-d covariance 
estimations, linear solvers for structured systems, thresholding, low-order spatial averaging, 
and similar localized signal processing and linear algebra operations. These kernels differ 
widely in their spatial and temporal locality characteristics, as well as their opportunities for 
fine-grain parallelism. Corner turn operations to optimize access patterns are common. The 
final output of this processing chain is a relatively small number of results, such as potential 
objects of interest for a processor imaging system or language tokens for a speech processing 
system. 

The emergence of exascale technology will enable more complex and challenging streaming 
sensor applications to be deployed. The availability of large numbers of floating point 
operations per time enables more complex operations on larger data sets. Examples of these 
operations are full-rank space-time adaptive processing systems and thin-plate-spline modeling 
for frame-to-frame registration of high resolution images. Such operations increase the 
arithmetic load of the algorithms and can also cause intermediate data set sizes to increase 
through the processing chain. These changes enable more demanding applications domains 
such as persistent, wide-area surveillance with knowledge extraction. Future streaming sensor 
applications will therefore have increased requirements in arithmetic capability, external I/O 
capabilities, internal memory capacity, and bandwidth. Future streaming sensor processing 
may add new layers of processing, such as self-aware, self-tuning capabilities to improve 
processor efficiency, load balancing, and resiliency. 

3.2 Computational Requirements for Examples of Embedded Extreme-Scale
Computing Applications

3.2.1 KAPE

STAP (space-time adaptive processing) relies on an estimate of the statistics of the interference 
components (clutter, jamming, electromagnetic interference [EMI]) of the radar data to extract 
signals of interest. These statistics must represent the radar environment when it is free of 
targets. Here the focus on the clutter statistics. The traditional approach is to test for a target at a 

EES Report

535
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



16 

particular range while estimating the clutter statistics from other nearby ranges. This approach 
assumes that the interference statistics don’t vary as a function of range, so that averaging over 
nearby ranges can provide a good estimate of the true statistics at the range of interest. In many 
cases this assumption is not valid, for example in urban settings where the terrain 
characteristics change over short distances. The object of KAPE [23] (Knowledge-Aided 
Parameter Estimation) is to estimate the clutter statistics without training on nearby ranges. 
Instead, prior knowledge of the scene is used to construct the covariance matrix needed for the 
adaptive processing. 

Conventional STAP computes a covariance matrix by averaging the outer-product of data 
vectors for a number of neighboring range bins. KAPE computes an initial “bootstrap” guess at 
this covariance matrix and then tests it against the measured data. This procedure involves 
perturbing the covariance matrix parameters and testing for the “best fit” with the measured 
radar data. This testing procedure primarily involves solving systems of linear equations. 

KAPE is a GTRI algorithm developed in the mid-2000’s and derived from research originated 
under DARPA’s KASSPER (Knowledge-Aided Sensor Signal Processing and Expert Reasoning) 
program. Figure 5 illustrates the high-level functional flow of the algorithm. KAPE achieves 
very good detection performance compared to conventional STAP, as shown in Figure 6, but 
has not been widely adopted due to high compute requirements. However, these same 
requirements are a plus for benchmarking extreme scale computing systems. Example 
configurations require approximately 200 Gflops, but more challenging modes are easily 
defined. KAPE operates on a typical radar datacube in the slow-time and phase center 
dimensions, which implies that the whole datacube must be buffered. 

 

 

Figure 5. Functional overview of KAPE detection processor. 

KAPE
(1) Clutter 

Power 
Estimation

(2) Covariance 
Matrix  

Generation

(3) Determine 
Optimal Doppler 

Offset

(4) Find Optimal 
Spectral Spread

(5) STAP

(6) CFAR 
Detection

EES Report

536
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

17 

 

 

Figure 6. Example of KAPE detection performance improvement. From [23]. 

Table 1 lists system parameters appropriate for various applications of the KAPE technology. 
The various scenario options are as follows: 

� KAPE Example Value: this is the parameter value used in the original KAPE analysis 

� WAS: Wide Area Surveillance, “traditional” GMTI as employed by large sensor 
platforms such as JSTARS and Global Hawk. The system is required to periodically (say, 
every 10 seconds) search for ground movers over a larger region (perhaps several 
thousand square kilometers). The radar accomplishes this task be electronically steering 
a TX and RX beam over the scene. The dwell time on each step is relatively short (many 
10s of ms, perhaps on the order of 0.1 s), long enough to generate sufficient signal-to-
noise ratio (SNR) and Doppler resolution on large ground movers. Range resolutions are 
moderate: fine enough to match the size of large ground vehicles, but not so fine to over-
resolve these vehicles, or to generate an excessive number of range bins across the 
ground swath. Three channels are sufficient to cancel clutter and measure the angle to 
large targets. 

� UAV Dismount: As compared to WAS, a smaller radar uses a longer, concentrated dwell 
to detect people moving about a relatively localized area of interest. Dwell time is much 
longer than WAS to cull out dismount Doppler signatures. Bandwidth is higher to 
achieve better range resolution and thus better isolate a dismount in range, but the 
overall range swath size is much less than WAS, and the number of range bins far fewer. 
Four channels improve STAP clutter cancellation and angle estimation to small, slow 
targets. 

� KAPE shown with 3 array calibration-on-clutter methods
• Green: Channel-Pair, good performance overall
• Cyan: Known, derived from truth data, similar to Channel-Pair
• Magenta: Max Eigenvalue at Doppler centroid, poor PD at low PFA

State-of-the-Art 
STAP

KAPE

Bound
(Known covariance 
and OS threshold)

EES Report

537
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

18 

� Persistent Dismount: The platform orbits an area of interest and continuously spotlights 
the ground with a (perhaps spoiled) transmit beam. The dwell is continuous. As 
compared to UAV Dismount, the PRF is higher and more channels are available to 
ensure sufficient along-track sampling intervals. The area surveyed is much larger than 
the UAV Dismount case (several km versus hundreds of meters), so there are more 
range bins and Doppler bins. Otherwise this case is similar to UAV Dismount. An 
example of this concept is the system discussed further in Section 3.2.2. 

� Challenge Scenario: A notional scenario scaled to require a computational capability of 
approximately one-half exaflops (Eflops). It is similar in many ways to the UAV 
Dismount scenario, but with an order of magnitude increase in the number of range 
bins, due either to finer resolution, larger swath, or both. 

 

Table 1. KAPE System Parameters for Various Operational Modes 

Variable Description 
KAPE 

Example 
Value 

Challenge 
Scenario 

WAS  
UAV 

Dismount  
Persistent 
Dismount  

N
sp 

 Number of (spatial) 
channels 

6 12 3  4  6  

N
p 

 Number of pulses 32 1024 128  1,024  2,048  

L
r 
 Number of range bins 200 50,000 60,000  4,000  15,000  

N
az1

  Number of azimuth 
angle samples 

38
 
 1024  128  1024  2048  

N
os 

 
Oversampling Factor: 
N

az2
=N

os
N

az1 
 5 5  5  5  5  

N
fo 

 
Number of Doppler 
offset frequencies to 
test. 

13 13  13  13  13  

N
w 

 Billingsley wind speed 
value 

31 31  31  31  31  

N
pad 

 Length of temporal 
steering vectors 

129 2048  256  2048  4096  

L
win_r 

 Number of training bins 
for the CFAR detector 

10 10 10  10  10  

t
 
 

Time between 
collections  

1/10  1  1/8  2  1  

- 
 Bandwidth (MHz) / 

Range Resolution (m)  
-  -  60 / 3  180 / 1  600 / 0.3  

- 
 Range Swath Depth (km)  -  -  150  3  5  

- 
 PRF (Hz)  -  -  1,000  500  2,000  

 

EES Report

538
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

19 

Table 2 lists the estimated computational requirements in flops for each of these KAPE 
scenarios. The loads range from 167 Gflops for the “example” case to 0.572 Eflops for the 
“challenge” case. This table also indicates the class of computing technology required to 
provide these levels of performance and the estimated power requirements as of late 2010. At 
the low end, the compute requirements of the “example” scenario could be hosted on a mobile 
graphical processing unit (GPU) such as the NVIDIA GT525M requiring about 23 W. The WAS 
scenario, at 455 teraflops (Tflops), would utilize a little more than one-fifth the capacity of the 
Tianhe-1A supercomputer, the fastest machine in the world in November 2010 [24], but at a 
power cost of approximately 716 kW. The UAV dismount would require almost three times the 
capacity of the Tianhe-1A and about 16 MW of power, while the persistent dismount and 
challenge scenarios are essentially unrealizable using 2010 technology. The WAS and UAV 
dismount scenarios, while possible, require data center-like fixed installations; they are not 
realizable as field deployable systems, let alone embedded systems. 

The row labeled “UHPC” estimates the system type and power requirements to implement 
these same capabilities, assuming that the speed and power goals of DARPA’s Ubiquitous High 
Performance Computing program (UHPC) [25] are met. The WAS system would require one-
half of a standard rack and approximately 10 kW, easily achievable in field-deployable systems. 
The UAV dismount would require a larger installation, but still one that could be established at 
remote bases. The persistent dismount and challenge scenarios, while implementable with 
UHPC technology, would still require large data centers. 

 

Table 2. KAPE Systems Computational Summary. 

Block Example WAS UAV 
Dismount 

Persistent 
Dismount Challenge 

Power Estimation 11.7e+06 23.6e+09 134e+09 3.02e+12 5.03e+12 

Covariance 
Generation 11.3e+09 45.4e+12 2.75e+15 186e+15 309e+15 

Doppler Offset 28.5e+06 189e+06 188e+09 4.99e+12 4.99e+12 

Spectral Spread 629e+06 10.5e+09 5.70e+12 154e+12 154e+12 

STAP 4.80e+09 11.4e+12 871e+12 83.5e+15 263e+16 

CFAR 4.70e+06 2.80e+09 1.49e+09 11.2e+09 18.6e+09 

Total 16.7e+09 56.9e+12 3.63e+15 269e+15 572e+15 

Latency (s) 0.1 0.125 0.5 2 1 

FLOP/s 167e+09 455e+12 7.25e+15 135e+15 572e+15 

May 2011: 
NVIDIA GT525M Mobile 

GPU (23W) 

1/5 Tianhe-
1A 

(716 kW) 

3× Tianhe-1A 
(16 MW) No No 

UHPC 
Sub-proc 

(�2 W) 
Half-rack 
(�10 kW) 

1’s of racks 
(�145 kW) 

Data Center 
(�2.5 MW) 

National 
Asset 

(�11 MW) 

 

EES Report

539
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

20 

The KAPE algorithm and Table 2 demonstrate the need for advanced computing technology. 
KAPE is an advanced algorithm that significantly improves the ability to detect ground movers 
from surveillance platforms, enabling advanced detection, tracking, and targeting capabilities 
such as the UAV and persistent dismount tactics. However, this capability is not deployable in 
realistic systems without the major improvements in computational speed and power efficiency 
envisioned by the UHPC program. 

3.2.2 Persistent Wide-Area Radar Surveillance

There is significant interest in the DoD in developing systems for persistent wide-area 
surveillance (WAS) from airborne platforms using video, electro-optic/infrared (EO/IR), and 
synthetic aperture radar (SAR) sensors singly or in various combinations. SAR is of particular 
interest because of its weather penetration ability, giving a 24/7 WAS capability. An airborne 
SAR-based persistent WAS can provide a series of very fine resolution radar images of a region 
of interest (ROI). The SAR image series enables a “video SAR” capability that in turn supports 
identification and tracking of ground moving targets over significant time periods [26],[27]. 

Figure 7 illustrates the top-level signal processing flow for a SAR-based persistent WAS system. 
The optional digital spotlighting step permits formation of the image of just a subregion of the 
collection area. Multiple subimages can be formed from one data set. Spotlighting involves a 
number of 1D FFTs, along with element-wise vector multiplies and downsampling, all on 
complex-valued data, as shown in Figure 8. The image formation step is a set of 1D FFTs 
followed by a general backprojection algorithm. Backprojection [28], shown in Figure 9, is 
simply a triply-nested loop, but therefore has an O(N3) computational complexity, creating a 
major computational load that also scales rapidly with the problem size. Once formed, image 
data is compressed for transmittal to a ground station for processing. For this analysis, 
JPEG2000 was taken as a representative lossy compression method. However, the 
computational load for image compression is much less than that for image formation, and so is 
not discussed further here. 

GT has estimated the image formation computational load of a basic SAR-based persistent WAS 
system. Full details are not presented here, because they are superseded by the more aggressive 
Streaming Sensor Benchmark analysis presented in Section 3.2.3. However, to get a rough sense 
of the problem, estimated computational loads for the basic image formation only (no 
spotlighting) are given in Table 5. The 1,024×1,024 case corresponds roughly to a small ROI on 
the order of 0.3 km on a side; the 4,096×4,096 to an ROI on the order of 1.25 km on a side; and 
the 66,666×66,666 to a future, much larger ROI size. The small image, at 43.8 Gflops, represents 
a nontrivial computational load, but one that is well within current capabilities, even for 
medium-scale embedded systems. The medium-scale ROI, at 2.8 Tflops, probably exceeds 
current embeddable computing capability (though not likely for much longer), but is easily 
achieved in a ground station. However, at 12.1 Pflops, the large ROI considerably exceeds the 
2.57 Pflops capability of the Chinese Tianhe-1A supercomputer. 

 

EES Report

540
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

21 

 

Table 3. Computational load for SAR-based persistent WAS image formation. 

 
Image Size (pixels) 

1,024×1,024 4,096×4,096 66,666×66,666 

Estimated FLOPS 
(no spotlighting) 

43.8×109 

(43.8 Gflops) 
2.8×1012 

(2.8 Tflops) 
12.1×1015 

(12.1 Pflops) 

 

 

 

 

Figure 7. Top-level SAR-based persistent WAS processing flow. 

 

 

 

Figure 8. Processing flow for optional digital spotlighting step. 

Image 
Formation

Digital  
Spotlight 
(Optional)

Image
Compression

Raw Sensor 
Data

Synthetic 
Sensor Data

Formed 
Image

Range Shift

Elwise Multiply: 
e-2��f i/K

Range Gate

FFT FFTP1 x S1
(Spatial)

P1 x S1
(Frequency)

Cross-Range 
Downsample

(Decimating FIR)

P1 x S1
(Spatial)

P1 x S2
(Spatial)

P2 x S2
(Spatial)

P1 x S1
(Frequency)

EES Report

541
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

22 

Figure 9. Backprojection algorithm. 

The use of tiling and digital spotlighting can mitigate these loads somewhat. Increasing the 
number of tiles (therefore making each tile smaller) increases the total spotlighting 
computational load, but reduces the load in the image formation step. These opposing trends 
result in a distinct minimum for the total load at a particular tiling factor that depends on 
details of the problem definition. One calculation for the large-ROI case estimated the minimum 
to occur at a tiling factor of 128, where total estimated flops count was reduced from 12.1 Pflops 
to 0.14 Pflops. 

The SAR-based persistent WAS scenario was selected as the basis for initial definition of a 
Streaming Sensor Challenge Problem, which is the subject of the next subsection. 

3.2.3 Streaming Sensor Challenge Problem Development

Based on the experience gained in analysis of the foregoing applications, GT developed an 
initial outline of a “streaming sensor challenge problem” (SSCP). The purpose of the SSCP is to 
provide a publicly releasable computing problem specification that exhibits types and 
quantities of computation that are generally representative of DoD-relevant streaming sensor 
problems such as those discussed above. A good challenge problem (CP) will exhibit at least the 
following characteristics: 

	 Close correlation to relevant DoD missions; 
	 Public releasability of specification and associated data; 
	 Positive correlation between improved benchmark results and improved mission value 
	 Ability to evaluate expected system axes of variation; 
	 Communication, memory, and computation loads large enough to stress current and 

future computing systems; and 
	 Sufficiently abstract expression to support innovation at all levels of the hardware and 

software system stacks. 

P3 x S3

(Spatial)

Back Projection

For i = {Ix}
For j = {Iy}

For k = {P3}
R = range to i,j
S = sample at (k,R)
S *= eaR

Out(i,j) += S

Ix x Iy
Oversample via 

FFT & IFFT

P3x S4
(Spatial)

EES Report

542
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



23 

The SSCP would be comprised of a written problem specification, possibly containing several 
variants based on different parameterizations to provide different computing loads; an 
“executable specification” in one or more languages, such as MATLAB or C; and one of more 
data sets to drive the application. 

The version of the SSCP described here is serving as the starting point for the ongoing 
development of the UHPC program challenge problem #1. The UHPC challenge problem will 
further refine the SSCP and may expand it to add a video imaging sensor and multi-sensor 
fusion. 

3.2.3.1 Overview

The Streaming Sensor Challenge Problem models the computational demands of streaming 
sensor computing tasks, which transform large volumes of raw sensor data to a smaller volume 
of actionable knowledge tokens. The transformations generally consist of highly regular, 
repetitive application of static sequences of calculations on fixed-size data blocks that arrive for 
processing at a constant rate in time. Challenging problems consist of very large volumes of 
data input, several large multidimensional calculations, large intermediate data sets, and very 
high internal bandwidth requirements. 

This type of processing is present in many DoD-relevant missions, including but not limited to 
multi-modal image formation using radio frequency (RF) and EO/IR sensors, surface moving 
target indication, computer vision for robotics and autonomous vehicles, surveillance, and 
communications. Increasing numbers, quality, and interconnectedness of global sensors have 
elevated the required computing capabilities to levels consistent with extreme scale computing 
goals. 

3.2.3.2 Challenge Problem Description

The proposed SSCP models a wide-area, high resolution radar persistent surveillance mission 
similar to that discussed in the previous section, but with additional “knowledge formation” 
steps applied to the SAR images to generate detections as shown in Figure 10. 

 

 

Figure 10. Top-level SSCP processing flow. 

Sensor0

Image Formation Processing
Knowledge
Generation

Digital 
Spotlight

Image 
Formation

Image 
Formation

Image 
Formation

Image 
Formation

Coherent 
Change 
Detection

Difference 
ImageP Images

P=2+

CFAR

Detections

EES Report

543
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

24 

 

In the image formation portion of the mission, an airborne radar system flies a repeated path 
around a target area to be observed. The system illuminates the target area with radar pulses, 
capturing the complex reflected signal voltage from each pulse at a number of points in time. 
These returns, along with the time of each pulse and the position of the transmitter and receiver 
at each pulse form the main inputs to the CP. An optional digital spotlighting step creates tiled 
subsets of the full target area, reducing the overall scaling order of the computational 
requirements for large images. The returns are backprojected to form a synthetic aperture radar 
image of a specific resolution and size. Overlapping sets of pulses are used to form successive 
images at a specified cadence. 

In the knowledge formation portion of the mission, successive images are registered via a two 
stage process comprising a global affine transformation and a thin plate spline warping. The 
first operation accounts for any bulk relative shift between the two images, while the second 
accounts for local distortions. Coherent change detection (CCD) is then applied to between pairs 
of registered images to identify pixel locations of significant change, which form the output 
tokens for the challenge problem. 

The CP includes a set of computational kernels that vary in the relative load of computation and 
communication, with regular, but diverse data access patterns. These kernels will stress the 
ability of UHPC systems to perform dense, very high speed spectral, signal processing, and 
linear algebra computations with large datasets and diverse data access patterns. 

	 Digital Spotlight

	

: A series of 1D FFTs along the samples of each pulse are executed, 
along with a pair of element-wise multiplies, an array cull in one dimension, and a FIR 
reduction filter. 
Backprojection

	

: For each pixel location in the formed image, a corresponding range to 
the receiver on each pulse is computed. The return from that range is estimated by 
linear interpolation from the adjacent return samples for the given pulse. The pattern of 
returns is correlated with the point spread response of an ideal radar reflector at the 
pixel location to form the image output value. 
Image Registration [29]: Affine : For each of a specified number of control points in the 
image, a best-fit offset vector is found for a neighborhood of a specified size relative to 
the reference image within a specified radius. A matrix with six columns and a row for 
each control point is formed and a least squares solver is used to form an affine 
transformation that is then applied to each location in the output to find the sample 
location in the formed image, which is bilinearly sampled to form the registered image. 
This flow is illustrated in Figure 11. 

	 Image Registration [30]: Thin Spline Warping : For each of a specified number of control 
points, a best-fit offset vector is found, as above. These vectors form a two column 
matrix which is left multiplied by a square control point weighting matrix to form a two 
column warp weight matrix. For each output location, an offset is formed by a weighted 
sum of warp weight rows. This offset is used to find the location for a bilinear sample of 
the affine-registered image to form the final image. This flow is illustrated in Figure 12. 

	 Coherent Change Detection [31] : Each pixel in the image is assigned a coherence score 
by correlating a neighborhood around the pixel with that same neighborhood in the 

EES Report

544
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



25 

preceding image. A cell-averaging Constant False Alarm Rate (CFAR) detection 
algorithm is then used to identify output pixels with low coherence with the preceding 
image. Pixels with low coherence indicate a change between the times that the two 
images were collected. High coherence indicates that the scene content is identical for 
both passes. 

Tentative challenge parameters for four scenarios of increasing complexity are shown in Table 
4. The corresponding estimated computational loads vary from 440 Gflops to 185 Pflops, with 
input data rates in the range of approximately 0.5 to 5 Gbps, as seen in  

Table 5. Note that the bulk of the processing is in the digital spotlighting, backprojection, and 
thin-spline warping steps. Backprojection is 74% of the total processing at the smallest ROI size 
(scenario #1), but thin-spline registration rapidly dominates as the problem size scales up, 
accounting for 99.6% of the flops at the largest scale, although the latter increasingly dominates 
the processing at larger problem sizes. The CP can be realistically scaled to a wide variety of 
computational requirements exceeding both the upper and lower bounds of the scenarios 
shown. 

 

 

 

Figure 11. Affine registration processing flow. 

2D Correlate x Nc

(2Sc-1x2Sc-1) 2D FFT
Elwise mult
2D IFFT
RcxRcMax Mag

Find Global Affine 
Transform
AZ = b
Solve for Z A: Ncx6 

[1 x y x2 x2 xy]
(x,y = Control point locations)

b: Ncx2
(each row =final x,y position)

Control Points: Ncx4  
(Locations, Offsets)

Warp & Sample

C = AZ
Bilinear sample @ C

C: Warped loc
A(i,:) = [1 x y y x2 y2 xy]

i = 1..M2

One row per pixel
Z: 6x2

Z = Warp Weights: 6x2

M x M Complex Image

•Rc = ~2*% x M
• Round up to NPOT

•Sc = Rc x r
•Scf = 16* x r
•r = 4*
•Nc = ceil(M/Rc)2

•*Heuristics

Xo = Z1 + Z2Xi + Z3Yi + Z4Xi
2 + Z5Yi

2 + Z6XiYi

EES Report

545
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



26 

Figure 12. Thin spline registration processing flow. 

 

Table 4. Tentative Challenge Problem Scenarios. 

Scenario 1 2 3 4 

Ground Area (square edge size, m) 609.6 1219 2438 9753 

Image Size (edge size, pixels) 4000 8000 16000 64000 

Pulses per Image 4800 9600 19200 76800 

Samples per Pulse 4000 8000 16000 64000 

Pulses per Second 1084 

Image cadence (images per second) 1 

Affine registration control points 3629 14,513 58050 928799 

Thin-spline registration control points 1452 5805 22320 371520 

CCD neighborhood size 5×5 

CFAR neighborhood size 15×15 

2D Correlate x Nf

(2Scf-1x2Scf-1) 2D FFT
Elwise mult
2D IFFT
RfxRf Max Mag

Find Weights

LW = Y
Each row of Y: control point + offset

Rows Nf+1 -> Nf+3 are zeroes

Solve for W

L: (Nf+3)x(Nf+3)
Y: (Nf+3)x2

Control Points: Nfx4  
(Locations, Offsets)

Warp & Sample

�Xx,y = WNf + WNf-1x + WNf-2y +                                             

WiU(|Pi-(x,y)|)

Pi: location of ith control point

Bilinear sample @ Xx,y
X = pixel location

M x M Complex Single 
Precision Image

W = Warp Weights: (Nf+3) x 2

Form L
L = [K P; P’ O]

K(I,j) = U(|Xi-Xj|) 
U(n) = n2ln(n)
P(i,:) = [1 xi yi]
O = 0
Xk:Ctrl Pt. Locs

• Rf =           
2^ceil(log2(Rc)/2)

•Scf = Rf x 4*
•Nf = ceil(M/Df)2
•Df = 200* (easy)

~1000* (hard)
•Rn = 5* (~1.5m)

•*Heuristic

ghgh

EES Report

546
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

27 

 

Table 5. Scenario Loadings. 

Scenario 1 2 3 4 

Fl
oa

tin
g 

Po
in

t 
O

pe
ra

tio
ns

 

Digital Spotlight 90.1 x 109 1.47 x 1012 6.27 x 1012 442 x 1012 

Backprojection 326 x 109 1.31 x 1012 10.4 x 1012 334 x 1012 

Affine Registration 557 x 106 5.04 x 109 20.2 x 109 322 x 109 

Thin-spline registration 20.0 x 109 8.02 x 1012 147 x 1012 184 x 1015 

Coherent Change Detection 2.36 x 109 400 x 109 1.6 x 1012 25.6 x 1012 

CFAR Detection 8.36 x 106 1.44 x 109 5.76 x 109 92.1 x 109 

Total flops 440 x 109 11.2 x 1012 166 x 1012 185 x 1015 

Input bandwidth (bps) 444 x 106 556 x 106 1.33 x 109 5.33 x 109 

 

Table 6 describes the general computational style of each of the major functional stages of the 
SSCP. This challenge problem depends primarily on three classes of computing: 1D FFTs; 
solution of large systems of linear equations; and a triple-nested backprojection loop. While the 
CFAR processing introduces sorting to the mix, it is a small fraction of the overall processing. 

 

Table 6. Computational Style of Major Functions. 

Section Dominant Compute Styles 
Digital Spotlight A few large FFTs, array multiply 
Backprojection Embarrassingly Parallel, some read coherence 

Affine Registration Many small FFTs, Large system solve, large matrix multiply 
Thin-spline registration Many small FFTs, Large system solve, large matrix multiply 

Coherent Change Detection Many small FFTs 
CFAR Detection Many small sorts 

 

3.2.4 Autonomous Vehicles

A very different class of embedded computing with potentially extreme processing 
requirements is that of autonomous vehicles. In 2007, DARPA conducted the “Urban 
Challenge”, an event that sought to advance the technology for building an autonomous vehicle 
capable of driving in traffic, performing complex maneuvers such as merging, passing, parking 
and negotiating intersections [32]. The event was the first time autonomous vehicles interacted 
with both manned and unmanned vehicle traffic in an urban-like environment. Georgia Tech’s 
“Sting Racing” team participated in the Urban Challenge. The Sting robot vehicle, a retrofitted 
Porsche Cayenne, is shown in Figure 13. The radar is used to detect obstacles for avoiding head-
on collisions. The laser range finders provide terrain mapping. Six video cameras detect other 

EES Report

547
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

28 

vehicles or traffic at a four-way stop. The GPS receiver on the top of the robot is coupled to an 
IMU inside the vehicle for navigation. The computational hardware architecture is illustrated in 
Figure 14, while the software architecture is diagrammed in Figure 15. The LOIS and stopline 
algorithms comprise the perception module, while the mapper, planner, and controller comprise 
the planning module. Note that, unlike the streaming signal processing of the KAPE, WAS, and 
SSCP applications, Sting emphasizes computer vision and robotics algorithms: image analysis 
and understanding; mapping, route planning, and obstacle avoidance; and robot control. 

 

 

Figure 13. GT’s Sting autonomous vehicle. 

3.2.4.1 Sting Computational Analysis

The entire Sting software suite ran on gigabit network of 8 Dual-Core Intel XEON 5120 
processor-based computers [33], so clearly this is not an extreme scale realization. Nonetheless, 
GT analyzed the computational requirements to understand the types of processing involved 
and the current (2007) computational loads. GT then drew from the robotics literature to posit a 
more advanced system that could be scaled to petascale and higher computational requirements 
and would achieve superior performance [34]. 

Consider the perception module first. The LOIS module is a lane detection algorithm. It is 
paired with a stopline detection algorithm to analyze the primary video camera inputs to 

Radar Laser Range Finders

Video Cameras GPS Receiver

EES Report

548
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

29 

determine land boundaries and stoplines at intersections. These detections provide basic 
constraints to the mapping, planning, and control modules. 

As seen in Figure 13, two forward-looking video cameras are mounted just above the car’s 
windshield.  The STING cameras were Prosilica GC650 models that provide color and black & 
white output at up to 90 frames per second (fps). These frame rates are high; typical camera 
frame rates are 30 fps. 

Figure 16 illustrates the major steps in the LOIS lane tracking algorithm. GT estimated the 
computational load associated with each step, considering both high-and low-resolution camera 
modes of 592×800 and 296×400 pixels, respectively; both were full-color images. While the 
camera provides data at up to 90 fps, image analysis algorithms are often applied at lower rates, 
e.g. 10 or 20 fps, and sometimes as little as 1 fps. The lower analysis rate may be chosen because 
it is adequate to achieve the desired results, or because of computational limitations. GT used a 
relatively high value of 20 fps for estimating the computational load in order to support 
relatively high quality lane detection. 

 

 

 

Figure 14. Sting hardware architecture. 

 
 

EES Report

549
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

30 

 

Figure 15. Sting software architecture. 

 

 

Figure 16. Major steps in the LOIS lane tracking algorithm. 

 

The key result is highlighted in Table 7. At 20 fps, lane detection requires about 172 million 
operations per second (Mops) at low resolution, and about 355 Mops at high resolution.2

Table 7. Estimated computational requirements of the LOIS lane tracking algorithms. 

 

Operation 
Computational Load (Mops) 

High Resolution Low Resolution 

Preprocessing 56.8 14.2 

Gradient Image 75.6 18.9 

Likelihood 223.0 138.9 

Total 355.4 172.0 

2 Because the processing is a mixture of integer and floating point operations, the Mops metric is used 
instead of Mflops. 

EES Report

550
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

31 

 

Figure 17 illustrates the major steps in the stopline algorithm, while Table 8 estimates the 
computational load at about 192 Mops for the high resolution case, and 36.5 Mops for the low 
resolution case. 

 

 

Figure 17. Major steps in the stopline algorithm. 

 

Table 8. Estimated computational requirements of the stopline algorithm. 

Operation 
Computational Load (Mops) 

High Resolution Low Resolution 

Preprocessing 74.5 18.6 

Hough Transform 109.0 13.6 

Select Optimum Line 8.4 4.2 

Total 191.9 36.5 

 

Turning now to the planning module, the major steps in the mapper, planner, and controller are 
each shown in Figure 18 (a), (b) and (c), respectively. The mapper creates a grid-based map and 
a dynamic graph-based map from the sensor returns such as radar and laser range finder data. 
In the Sting system, the mapper also handles obstacles and lanes. The planner is the A* 
(pronounced “A star”) algorithm, a best-first graph search algorithm that finds the least-cost 
path from a given initial node to one goal node (out of one or more possible goals). The 
controller controls the Sting car functions such as stop/start, speed, setting turn signals, and so 
forth. 

The computational load of these steps is highly variable based on a number of scene-dependent 
parameters such as the number of laser range finder detections, the number of detected curb 
points, the number of obstacles being tracked, and so forth. Based on reasonable assumptions in 
an Urban Challenge environment, and again assuming a 20 frames second frame rate, GT 
estimated the computational load for the mapper to be on the order of 1.5 Gops. The 
computational loads for the controller are considered negligible in comparison. The 
computational load for the planner is also considered low, although the central component of 
the A* algorithm, which involves a graph search, is of O(BD) complexity, where B is the 
branching factor and D is the depth of the tree from the robot to the goal. This load could grow 
very rapidly with deep trees and large branching factors. 

EES Report

551
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

32 

Combining this result with those from the perception module gives a total estimated 
computational load of roughly 2 Gops in the high-resolution case. Thus, while the Sting 
architecture is useful for illuminating the types of functions needed for an autonomous road 
vehicle, the 2007implementation does not pose an extreme scale computing challenge. For this 
reason, GT next postulated a more advanced algorithm suite, drawing on the robotics literature 
for likely upgrades to the Sting suite that would improve performance at the cost of greater 
computational loads. These algorithms are discussed in the next subsection. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 18. Major steps in the (a) mapper, (b) planner, and (c) controller algorithms. 

 

3.2.4.2 Extreme Scale Autonomous Vehicle Algorithms

GT examined two upgrades to the Sting algorithm suite: a robust land detection and tracking 
technique [35], and a fast simultaneous location and mapping (“SLAM”) algorithm. These 
algorithms were chosen to offer a high probability of improved performance, but also to have 
high computational cost. The intent is to estimate the loads that might be encountered when 
computational capability was no object, and determine if these rise to the “extreme computing” 
level. 

The major steps in the robust lane detection algorithm are shown in Figure 19. The “lane 
marking detection” stage includes a support vector machine (SVM) intensity bump classifier. 
This stage is expected to require about 16 Gops (800×106 operations per frame, times 20 fps). 
The lane boundary hypothesis generation stage is based on a combination of the well-known 
RANSAC algorithm [36] and a particle filter. Each of these has a complexity that is linear in the 
number of data points and was therefore assumed not to be a driving factor in the overall 
computational load. 

 

EES Report

552
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

33 

 

Figure 19. Major steps in the robust lane detection algorithm. 

 

The Fast SLAM algorithm is quite complex; see [37] for details. It is based on a particle filter 
implementation of an extended Kalman filter approach. The computational complexity is of 
order O(N2PlogN), where N is the number of laser range finder detection points, which can be 
as low as a few hundred to as high as tens of thousands, and P is the number of particles used 
in the particle filter, which will likely be a few hundred. For N = 1,000 and P = 100, the 
estimated operation count is 41.5×1010 per frame, giving a total rate of 8.3 Tflops at 20 fps. For a 
larger problem with N = 50,000 and P = 500, the estimate becomes 811×1012 operations per 
frame, leading to a computational rate of 16.2 Pflops! 

There are many assumptions involved in arriving at these sample computational rate estimates, 
and it is not clear if all are reasonable. However, they do indicate that it is quite likely that 
advanced algorithm suites for ground autonomous vehicles could easily achieve extreme scale 
computational loads. Conversely, if extreme scale computing capability becomes available in 
embedded form factors, it will enable the deployment of much more advanced machine vision 
and robotics algorithms that could greatly enhance the capability of autonomous vehicles. 

 

EES Report

553
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

34 

SECTION 4
DATA MOTION ANALYSIS FOR LOW POWER ALGORITHMS

4.1 Locality Analysis of Algorithms

Understanding how an application accesses its data from memory is important in 
understanding its performance, as accessing successively higher levels of a memory hierarchy 
comes at an exponentially increasing cost of energy and time. Often, memory accesses of known 
algorithms occur in a pattern that can be predicted and modeled. By studying these patterns, 
insight can be gained into how to best minimize energy costs in applications using these 
algorithms. 

On this project, GT began a study of the data movement and memory access properties of key 
numerical algorithms on modern architectures, with the eventual goal of developing methods 
to design and optimize algorithms to significantly reduce their energy cost at little to no 
performance cost, compared to current best-practice algorithms for the same functions. The 
algorithms considered were two variations each of finite impulse response (FIR) filters, fast 
Fourier transforms, and matrix multiplication. GT developed a simple method for semi-
automatically generating a trace of the data memory access patterns of these algorithms using 
MATLAB tools, and analyzing that data to obtain information about the application’s spatial 
and temporal locality. These tools were used to calculate quantitative metrics that can be used 
for making comparison of these different applications. 

4.1.1 Locality Metrics

4.1.1.1 Spatial Locality

Spatial locality is an attribute of an algorithm. Given that the algorithm has accessed a particular 
memory location, spatial locality is a measure of the likelihood that nearby addresses will be 
accessed by that algorithm in the near future. Applications with high spatial locality are more 
likely to sequentially access memory locations that are already in a low, local level of the 
memory hierarchy. Consequently, they will less frequently suffer a cache miss and have to 
access higher levels of a memory hierarchy and suffer additional delay and energy 
consumption. High spatial locality is therefore desirable. 

To quantify the spatial locality of an algorithm, a memory trace recording the address of each 
memory access was captured when the algorithm was run. Each memory access in the trace was 
given a stride value, which represents the absolute distance from the current address to the 
nearest neighbor of the W previously accessed addresses. This “look back window” W is used 
because considering the stride only between immediately consecutive accesses is likely to miss 
instances of spatial locality in which local accesses are interleaved. The value of W should be 
made architecture-specific; for instance, it might be correlated with the size of a local cache line. 
W should be large enough to capture the locality within application loops, but small enough 
that the cache availability of the previous accesses is not in question. 

A very small example of a relative memory access sequence and the corresponding stride 
calculation, using a very small value of W = 4, is shown in Table 9. Consider time step 3. Even 

EES Report

554
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

35 

though the stride from the access at time step 2 is 7 locations, the stride from the access at step 1 
is only 1 location. Since step 1 falls within the look back window from step 3, the stride is 
considered to be 1 at time step 3. Note that the first access in a trace will not have a stride. 

Table 9. Example of spatial locality stride calculation with W=4. 

Time Step 1 2 3 4 5 6 7 8 9 10 

Address 0 8 1 9 7 15 4 10 10 7 

Stride n/a 8 1 1 1 6 3 1 0 3 

 

Given this array of stride values for each access, a single-number spatial locality score  can be 
defined [38]. This score is based on the formula below, where  is the fraction of total non-
zero stride memory operations that are of stride length i. 

 i
s

i

strideL
i

� ��  �
� �

�  (5) 

This definition results in a score that is normalized to a range of [0,1] and is inversely 
proportional to the average length of strides. Thus, a trace with all minimum strides, length I = 
1, will get a perfect score of Ls = 1, whereas a trace consisting entirely of large strides will have a 
score that approaches zero. Scores closer to 1 are expected to represent algorithms with lower 
data motion and energy costs. As an example, the following calculation gives the spatial locality 
score for the data in Table 9: 

 4 / 8 2 / 8 1 / 8 1 / 8 0.6198
1 3 6 8SL � � � � �  (6) 

4.1.1.2 Temporal Locality

Temporal locality is the degree to which an algorithm exhibits the phenomenon that, when a 
memory location is accessed, it is likely that the same location will be accessed again in the near 
future. Similar to spatial locality, applications with high temporal locality are less likely to 
suffer cache or other local memory misses and thus have to access higher levels of a memory 
hierarchy. High temporal locality is therefore also desirable. 

To quantify the temporal locality of a memory trace, each memory access was assigned a reuse 
distance that represents the number of unique memory accesses since that location’s most recent 
access. Table 10 is an example of computing reuse distance for a sample memory trace [39]. For 
example, memory location d is accessed at time steps 1 and 7, and has three unique accesses 
between the two: a, b, and c. Note that the first access of a memory location in a trace will not 
have a reuse distance. 

EES Report

555
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

36 

Table 10. Example of reuse distance calculation. 

Time Step 1 2 3 4 5 6 7 8 9 10 11 12 

Address d a c b c c d e f a f b 

Reuse Distance n/a n/a n/a n/a 1 0 3 n/a n/a 5 1 5 

 

While this simple example has only a few memory addresses to track, the calculation of reuse 
distance for larger traces can become computationally intensive due to the need to store a “last 
used” value for every memory location, as well as iterating through each of these “last used” 
values for each memory access. One possible solution to speeding this calculation up is to keep 
the “last used” values in a binary search tree to reduce the time to calculate each reuse distance 
from O(M) to O(logM) for a balanced tree [39]. 

Another solution is to approximate reuse distance into “bins” instead of exact values. This 
solution works well with the single value temporal locality score presented below, which uses 
binned values to calculate the score. The bin sizes should be associated with the characteristics 
of a typical memory hierarchy, such as those shown in Figure 20. 

 

Figure 20. Abstract memory hierarchy for binning locality scores. 

In this hierarchy, every level has a capacity in bytes. The capacity grows as baselevel; in the figure, 
the base is 1000. The levels and their capacities cross some architectural boundaries dictated by 
available processing technologies (on chip, on processor, on machine etc.). The functions 
describing the time and energy to access an element at each level are of interest for the data 
motion metric discussed in Section 4.2, but are not needed for this discussion of temporal 
locality.  Similar to spatial locality, the array of reuse distances allows computation of a single-

Level 0, time = 1 energy = 1 

Level 1, time =F(1) energy = G(1) 

KB

MB

GB

TB

Level 2, time =F(2) energy = G(2) 

Level 3, time =F(3) energy = G(3) 

Chip boundary

Processor boundary

EES Report

556
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

37 

number temporal locality score  [38] as defined in Eq. (7). In this equation,  is the 
fraction of dynamic memory operations with reuse distance less than or equal to i. N could be 
the maximum reuse distance of a trace or some arbitrary value of reuse distance used to 
establish a standard between traces. 

� �� � � �2 1
log 1

222

20

log

log
ii

N

T
i

reuse reuse N i
L

N
�

�

�

� � �
� � (7)

As defined, this score is also normalized to a range of [0,1] with one being perfect locality and 
zero being extremely poor temporal locality (large reuse distances). It is desirable to have 
temporal locality scores as close to one as possible. However, a problem with this definition of 
LT is that its “binned” nature produces results that aren’t necessarily intuitive. This can be seen 
in Figure 21, which shows the variation of LT for basic matrix multiplication vs. access sequence 
length N. Even though the size of the matrix multiplication is increasing, the temporal locality is 
not decreasing in a smooth fashion. This result is not in error, but further analysis is required to 
determine whether this definition of LT is adequate for the overall goal or if refinements are 
needed. 

Figure 21. “Binned” temporal locality LT vs. trace length for a basic matrix multiplication algorithm. 

 

4.1.2 Locality Analysis Tools

Initially, memory traces were generated using MATLAB programs written to explicitly compute 
memory access patterns for the selected algorithms. The MATLAB code did not actually 
compute the function of interest. Instead, it generated the series of relative memory addresses, 
or “trace”, that would be generated by a sequential program running that function. This 
sequence was predicted based upon either or both of a mathematical formula for the function 

EES Report

557
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

38 

computation (e.g., a convolution equation for the FIR filter) or a flowgraph (for the FFT). This 
memory trace could then be used to compute and analyze the algorithm’s locality. 

While the initial method of generating traces provided a useful baseline for calculating locality 
scores, GT subsequently implemented a more robust, accurate, and semi-automated method of 
generating these trace patterns. A MATLAB class was created that can be used in algorithm 
computation and is able to capture the memory address sequences, subject to some limitations 
on how the algorithm is expressed in MATLAB. Any array or matrix can be defined as a 
traceable class in MATLAB (or ctraceable for complex data). Then, any read or write 
access to the data within that array causes the details of that access to be printed to the 
MATLAB command window, where it can be captured and subsequently analyzed for locality 
computations. With this capability, it is not necessary to write new functions to generate traces 
explicitly. Instead, any existing function that computes the mathematical function of interest can 
be used with only minor modification. 

This process can be thought of much like loading and storing to memory with assembly level 
code. The data is loaded from a traceable class (interpreted as a read), manipulated locally, 
and then stored back to a traceable class (interpreted as a write). A simple example of this 
is shown below in the form of a scalar multiplication operation X=X*Y: 

 
X = traceable(1);
Y = traceable(1);
regA = X(1);
regB = Y(1);
regA = regA * regB;
X(1) = regA;

This sequence produces the following text output to the MATLAB command window, where 
the first column is a read/write flag denoted R/W (0 for read, 1 for write); the second column is 
the relative memory address of the array being accessed; and the third column is the index of 
the access within that array. 

 
0 8904 1
0 8905 1
1 8904 1

The exact value of the array memory address is somewhat arbitrary; it represents an internal 
counter that keeps different arrays from overlapping during runtime. Using the MATLAB clear 
command prior to running the algorithm will reset the array addresses to begin at zero. 
However, this is unnecessary, as only the relative addresses are used during stride 
computation. 

A limitation of the traceable class is that, currently, it does not interact with many MATLAB 
functions that do not make explicit assignments or references. For example, traceable arrays 
cannot be input or output variables from a function, which means that recursive functions must 
be unrolled. Another limitation of traceable is that the trace pattern operates under the 
assumption that all arrays are adjacent in memory, which usually is not the case. However, this 

EES Report

558
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

39 

difference does not produce significantly different spatial locality scores due to the stride 
detection window, as well as the manner in which very large stride lengths are handled in the 
computations. Future research will improve the traceable class as required to expand its 
usefulness. 

4.1.3 Spatial and Temporal Locality Experiments

Multiple example algorithms with various configurations were tested. These were initially 
tested using the “manual” method of generating trace patterns, but most were adapted for use 
with the traceable functionality to ensure that the resulting data was as close as possible to 
real world situations. The traces resulting from running these algorithms through the 
traceable class were examined closely to ensure that they produced the expected patterns for 
basic algorithms with known access sequences. 

Two implementations of the radix-2 FFT were compared: one where the elements of the input 
array were bit-reordered, which allowed for a simplified method for computing each state, and 
one where the elements were presented in natural order, which used a more traditional FFT 
algorithm [40]. Input sizes were limited to powers of two for simplicity. As shown in Figure 22, 
the bit-reordered version of the FFT demonstrated noticeably higher spatial locality scores, 
while the temporal locality scores remained consistent between the two. Generally, as the input 
size increased for an FFT, both the spatial and temporal scores decreased, with spatial locality 
being affected by the input size to a greater extent. 

 

Figure 22. Temporal and spatial locality vs. algorithm size. 

 

A matrix multiplication function was implemented, capable of both standard and block matrix 
multiplication. For simplicity, input matrices were square and consisted of an integer number of 
square blocks [41]. As shown in Figure 22, the spatial locality score remained fairly consistent 

0
0.2

0.4
0.6

0.8
1

00.20.40.60.81

2
4
6
8

10
12

x 104

Locality Score Comparison

A
cc

es
s L

en
gt

h Matrix Multiply w/o blocking
Matrix Multiply w/ 2 blocks per row/column
Unordered Radix-2 FFT
Reordered Radix-2 FFT
FIR w/ Transients

EES Report

559
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

40 

across various input sizes and block sizes. In addition, the blocked matrix multiply 
demonstrated consistently higher temporal locality scores over non-block multiplications. This 
result is as expected, as the data in each block of the matrix is used multiple times in succession 
before the algorithm moves on to the next block. 

Finally, an FIR filter algorithm was implemented both with and without transient endpoint 
calculations. Of these three different algorithms, in general the FIR filter has the best spatial 
locality score and the worst temporal locality score; the FFT had the best temporal locality score 
and the worst spatial locality score; and the various matrix multiplications occupied a middle 
ground for both locality scores. These results are in line with would be intuitively expected 
from the simulation, such as blocking a matrix increasing temporal locality and ordering an FFT 
inputs increasing spatial locality. 

4.2 Data Motion Metric

A more comprehensive metric proposed to quantify the energy cost of a particular application 
is a data motion metric (DMM). This metric was an attempt to obtain a simple approximation of 
the energy cost involved in moving the data for each memory access, summed across the entire 
memory trace to obtain the total energy cost. It builds on the spatial and temporal locality 
metrics to estimate data motion cost according to 

� �min ,T sDM LM L�� (8)

This formula could give a basic approximation for the relative total energy cost of all of the 
memory accesses in a given execution. A drawback of this metric is that it gives equal weight to 
temporal and spatial locality, whereas it is believed in modern architectures that the greatest 
data motion cost occurs in vertical movements through the memory hierarchy. DMM was not 
evaluated during the period of this project. 

Although not evaluated during this project, an extension of the DMM idea has been proposed 
by A. Snavely. This extension bins all accesses into the memory hierarchy with associated cost 
functions F and G as discussed above. The level of the accesses, averaged across all accesses, is 
computed. This average access level is then divided by the spatial locality LS. The time and 
energy to access an element of Level 0 is normalized to 1. The time to access a level other than 1 
is a (possibly piecewise) function F of the level, while the energy to access a level is a (possibly 
piecewise) function G of the level. Snavely has proposed F = 10level , which is somewhat arbitrary 
but does yield some plausible latencies in the context of today’s technologies. W. Dally has 
proposed a function of the following general form for G: 

 
If capacity(level) < chip boundary

G = 1 + SQRT(capacity)
Else If capacity(level) < processor boundary

G = 1 + LARGE + SQRT(capacity(level))
Else

G = LOGbigbase(capacity(level))

The resultant metric may be closer to the desired single metric for data motion cost 
comparisons. 

EES Report

560
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

41 

Figure 23 shows values of the DMM computed for variations of Fourier transforms, FIR filters, 
and matrix multiplication. The FIR filter scores nearly identically with and without end 
transient calculations, as would be expected. Somewhat more surprisingly, so do the blocked 
and unblocked matrix multiplies. Three variations of the Fourier transform are shown: the 
“brute force” discrete Fourier transform (DFT), a standard radix-2 Cooley-Tukey FFT, and a “re-
ordered” FFT that eliminates the bit-reversed reordering step of standard FFTs, which requires 
many non-unit-stride accesses [40]. The DFT has a low data motion cost, but also provides poor 
performance. The FFT, which radically improves performance, unfortunately demonstrates a 
high value of DMM. However, the re-ordered FFT, which has essentially the same performance 
as the standard FFT, also achieves the low data motion cost of the DFT. This example 
demonstrates the potential for finding algorithms that combine high performance and low data 
motion cost that motivates this research. 

Although this initial demonstration was intriguing, there was not sufficient time on this project 
to systematically investigate the DMM. GT will investigate this and other means of 
characterizing and designing low-energy, high performance algorithms in future research. 

Figure 23. Data motion metric for several numerical algorithms. 

 

4.3 Data Motion Analysis Conclusions

Energy and power costs are a major constraint on the development of modern EES systems, and 
a large part of energy use is in accessing data from memory. It is hoped that by gaining a better 
understanding of temporal and spatial locality and their impact on data motion within a 
memory hierarchy, it may be possible to design advanced algorithms to reduce these energy 

C
os

t p
er

 A
cc

es
s

EES Report

561
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

42 

costs. By tracing memory access patterns, the tool infrastructure described here is able to 
quantify the impact of different algorithmic realizations of a numerical function on locality and 
thus, it is hoped, on data motion and energy efficiency. For example, it can be seen that matrix 
blocking is an algorithmic technique that can be used to improve temporal locality and, as a 
result, possibly reduce algorithm energy costs. 

Much work remains to build from these initial demonstrations to a practically useful 
methodology. It is critical to establish and validate the relationship between locality and data 
motion scores and actual energy costs of an algorithm on a modern architecture. For example, 
how does increasing the temporal locality by 20% affect the energy efficiency of a particular 
application? Another area of exploration is the effect of multithreading and the use of multiple 
cores on a given algorithm’s locality, and whether specific architectures can be mapped to the 
calculations to result in more accurate and less generic scores. Yet another is scale. The 
examples given here are very small “toy” problems used to establish basic concepts and 
definitions. Do the proposed methods and metrics scale to large programs? 

Finally, the analysis of locality and data motion, and the prediction of algorithm energy 
efficiency based on these analyses, is not an end in itself. Rather, the intent is to provide the 
basis for developing design techniques that lead to high performance numerical algorithms 
with inherently low data motion costs. Another avenue of research is in ways to design such 
algorithms. One possibility would be to develop methods for analysis of mathematical 
expressions, perhaps in a factored matrix form, of different algorithms for the same function. 
Another would be to apply the technology of autotuning, used primarily for improving 
algorithm speed so far, to the minimization of data motion or energy subject to a minimum 
performance constraint. 

 

EES Report

562
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



43 

SECTION 5
HIGH PERFORMANCE LIBRARIES FOR MULTICORE PROCESSORS

5.1 Background

During the course of this project, the use of graphical processing units (GPUs) for “general 
purpose” scientific computing, including signal processing, has continued to grow rapidly in 
interest and acceptance in the high performance computing community. GPUs are proving 
popular platforms for experimentation for high performance computers ranging from 
embedded systems of a few cards, to some of the fastest computers in the world [24]. Figure 24 
illustrates the growth in GPU single precision floating point performance from 2001 to 2010, a 
trend that has continued into 2011. Note that the fastest GPUs now offer in excess of one 
teraflops performance in a single chip! 

 

 

Figure 24. Growth of GPU single precision floating point performance. 

 

GPUs are many-core devices. This fact, coupled with the rapid performance increases, relatively 
low cost, and improving toolsets has led Georgia Tech to investigate their applicability to 
defense-relevant high performance embedded computing under a series of high performance 
computing projects, including this one. Specifically, Georgia Tech’s work with GPUs under this 
project has focused on continued development of GPU middleware based on the VSIPL (Vector, 
Signal, and Image Processing Library) application programming interface (API). 

24

244

2720

13

122

1581

10

100

1000

10000

G
FL

O
PS

 

CPU & GPU Capacity Growth

ATI/AMD NVIDIA Intel x86 "Moore's Law"

EES Report

563
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

44 

5.2 VSIPL

VSIPL is a portable API for implementing high-performance signal processing applications 
while retaining platform independence. The API specification document, currently at version 
1.3, is available at the VSIPL web site [42]. VSIPL supports memory abstractions for utilizing 
coprocessors with disjoint memory spaces. A signal processing application may structure input 
data in a block, admit it once to VSIPL’s memory management, perform computations on that 
data, and release only the block containing the final result. Intermediate results are not 
transferred between system and GPU memory, avoiding unnecessary latencies and 
communications overhead. This capability distinguishes VSIPL from other signal processing 
libraries that permit random access to data. 

The initial cost to an implementer of developing a complete VSIPL library can be substantial. 
Consequently, VSIPL defines two profiles, VSIPL Core and VSIPL Core Lite. Each defines a 
reduced, but very useful subset of the full VSIPL functionality that can be implemented at lower 
cost. Documents defining the exact contents of each profile are available at [42]. Generally, the 
Core Lite profile supports single-precision real and complex-valued vectors, and provides the 
following functionality: 

	 Support functions for creating, modifying, and destroying blocks and managing 
associated buffers; 

	 Element-wise mathematical operations; 
	 Inner products and scalar operations; 
	 Extrema searching; 
	 FIR filtering; 
	 Out-of-place Fast Fourier Transform (FFT); and 
	 Histogram and portable random number generator. 

The Core profile adds support for single-precision real and complex-valued matrices, and 
provides the following additional functionality: 

	 Matrix element-wise operations; 
	 Window creation; 
	 Convolution and correlation; 
	 Elementary linear algebraic operations (transpose, matrix-vector products and sum 

variations, etc.); and 
	 Linear equation solvers. 

In recent years, active development of the VSIPL specification has focused on defining a C++ 
binding known as VSIPL++. This binding provides parallel and object-oriented extensions to 
VSIPL with the goal of unifying computation and communication in a single high performance, 
productive, and portable API. Most of the work on extending VSIPL to VSIPL++ has been done 
by the VSIPL Forum operating in conjunction with the High Performance Embedded 
Computing Software Initiative (HPEC-SI) [43]. An API specification has been developed for 
VSIPL++ version 1.02, with a version 1.03 draft pending [43]. 

EES Report

564
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

45 

5.3 GPU VSIPL

With NVIDIA’s release of the CUDA environment in 2007, Georgia Tech began development of 
a more complete and high performance implementation of C VSIPL for NVIDIA GPUs. That 
effort has continued under this contract, and has culminated in development of the GPU VSIPL 
Library [44]. 

GPU VSIPL is an implementation of VSIPL that, at this writing, now includes most of the VSIPL 
Core functionality, with the exception of some of the linear equation solvers and random 
number functions, but with the addition of a large number of matrix arithmetic operations not 
included in VSIPL Core profile. It passes all compliance tests of the VSIPL Test Suite [42]. GPU 
VSIPL is implemented with NVIDIA’s CUDA  programming language and C++ compiled with 
Visual Studio 2005, and has been run on versions of CUDA from 2.3 through 3.2 (the current 
version at this writing) and on a variety of NVIDIA GPUs, including those current as of late 
2010. Details of the implementation techniques for the library are given in [45]. 

GPU VSIPL is freely distributed as a static binary library with C linkage at the GPU VSIPL web 
site [44]. Georgia Tech also licenses the GPU VSIPL source code. 

The GPU VSIPL web site provides a sample radar range-Doppler map calculation application, 
intended as both a demonstration and a tutorial application for new users of VSIPL and GPU 
VSIPL. The basics of range-Doppler processing are described in [46]. In brief, range-Doppler 
mapping is a radar signal processing technique, common in both ground and especially 
airborne radars, which separates the echo energy of multiple radar targets from one another 
based on the Doppler shift of the targets, which is related to their velocity, and their time delay, 
which is related to the distance (range) to the target. It also amplifies the target echoes relative 
to the system noise, making target detection easier. Figure 25 shows the output of this 
application. 

 

Figure 25. Output of GPU VSIPL range-Doppler map application showing three targets with sidelobes in 
both range (vertical) and Doppler (horizontal) dimensions. 

EES Report

565
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

46 

Computationally, a 2D matrix of complex-valued floating point data is the input to the process. 
Independent 1D FIR filtering operations with complex coefficients are performed on each 
column of the data. Independent 1D FFTs are then performed on each of the rows. Finally, the 
magnitude of the result is calculated, usually on a decibel scale, and displayed. Variations 
involve the use of time- or frequency-domain convolution for the FIR operations, and the use 
(or not) of windows for sidelobe control in both dimensions. Using a GeForce GTX 280 and 
GPU VSIPL, a speedup of 75x was obtained compared to an implementation using the TASP 
VSIPL Core Plus library on a 2.83 GHz Intel Core 2 processor. 

5.4 Progress in the Development of GPU VSIPL

Under the EES study portion of this project, development of GPU VSIPL has concentrated on 
extension of the library to include important matrix decompositions and linear equation solvers 
from the Core profile, and update of the VSIPL Test Suite. 

The matrix decomposition and equation solver work has focused on addition and debugging of 
the singular value decomposition (SVD) and QR decomposition (QRD) families of functions to 
the library, and the Toeplitz system linear solver. For the SVD, the functions svdprodu, 
svdprodv, svdmatu, and svdmatv were added to the library. The handling of various input 
cases by the main decomposition function of the SVD algorithm has been debugged and 
validated. However, the final decomposition results, while close to expected values, do not 
currently meet the validity specifications. Regarding the QRD functions, bugs in the existing 
real-valued QRD function were fixed. Development of the complex QRD functions, as well as 
the real and complex Toeplitz solvers, is ongoing. 

The functionality of the VSIPL Test Suite [47] was validated against the current version TASP 
(Tactical Advanced Signal Processor) VSIPL Reference Implementation [42]. This comparison 
led to corrections or additions of data to the test suite for the VSIPL functions toeplitz, 
ctoeplitz, qrd, cqrd, lud, cmprod, and cmprodt. New test suite functions were written for 
validation of the SVD-related VSIPL functions. Finally, an ongoing effort was begun to add the 
element-wise functions present in the VSIPL Core profile, but not in the Core Lite profile, to the 
test suite. 

Work to debug and validate the SVD functions; complete and validate the QRD decomposition 
and Toeplitz solver functions; add other solvers from the Core profile; and update the Test Suite 
as required will continue under other projects. 

 

EES Report

566
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

47 

SECTION 6
METRICS FOR EXTREME SCALE SYSTEMS

6.1 Introduction

UHPC systems, which include EES systems at the embedded scale, will be characterized and 
evaluated by a number of metrics. The UHPC program is considering the development of 
metrics to characterize the following aspects of UHPC systems: 

	 Performance – UHPC systems must provide breakthrough performance across 
application workloads including the UHPC challenge problems. 

	 Scalability – UHPC systems are expected to provide an unmatched level of parallelism, 
far beyond the current levels of scalability. 

	 Energy efficiency – UHPC systems face extreme challenges in energy efficiency. 
	 Dependability – UHPC systems must adapt and continue to operate under continuous 

occurrence of faults. 
	 Resiliency – UHPC systems must be resilient, having the ability to continue through 

faults and cyberthreats. 
	 Security – UHPC systems must be secure, with cyber protection intrinsic to the entire 

architecture from hardware on up. 
	 Self-awareness – UHPC systems must be adaptable and flexible, responding to dynamic 

changes in workload and environment.  
	 Productivity – UHPC systems must be productive for their customers. 

Each of these aspects will be evaluated using one or more metrics. Metrics for some of these 
aspects are well known. Performance can be evaluated using time-to-solution for workloads at 
various scales, from micro-benchmarks to challenge problems and full-scale applications. 
Energy efficiency can be characterized with measurements of actual energy consumption at 
multiple levels, potentially from component level through full system level. Scalability (weak 
and strong) can be measured by increasing the size of a mixed workload, increasing the number 
of instance of a problem on separate data sets, increasing the size of a single data set, and 
increasing the number of processors on a fixed size data set. 

Other aspects are harder to characterize. There are no agreed-upon metrics for resiliency or self-
awareness, for instance. While the High Productivity Computing Systems (HPCS) program 
addressed productivity, it has not to date resulted in widely-accepted productivity metrics. In 
the UHPC program, it is expected that in the near term the emphasis will be on 
programmability rather than a broader definition of productivity. A system is considered highly 
programmable if it does not require application programmers to explicitly manage system 
complexity in order to achieve their performance and time to solution goals. Programmability is 
important in determining the utility and productivity of a high performance system. While 
architectural features and optimizations may be available, the ease of leveraging the 
optimizations will largely dictate whether a programmer is able to use the features effectively or 
at all. 

EES Report

567
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

48 

In this project, GT has investigated techniques for assessing the programmability of high 
performance parallel systems. Based on this investigation, an initial proposal for a methodology 
to evaluate programmability has been developed and is described in the sections that follow. 

The proposed methodology would evaluate a system based upon the difficulty of developing 
programs for that system to implement specific standard parallel algorithms representing 
certain “programming patterns”. These patterns serve as proxies for groups of applications 
having similar programming requirements. The programs developed will be scored with regard 
to a set of “cognitive dimensions” that attempt to recognize the human difficulty in developing 
the source code. Finally, the scores for each standard program will be combined into an overall 
programmability score. 

6.2 Measuring Programmability

6.2.1 Cognitive Dimensions and Programmability

Research has been done in the past to discern what makes programming “hard” or “easy” for 
certain problems and environments. In [48] a set of categories for programmability were 
proposed called the “cognitive dimensions” for programming. In [49], Mattson adds two more 
dimensions relevant to parallel programming. This augmented set of cognitive dimensions is 
outlined in Table 11 with brief descriptions of the meaning of each one. 

Table 11. Cognitive Dimensions 

Cognitive Dimension Description 
Viscosity Difficulty in introducing small changes 

Hidden Dependencies Does a change in one part of the program cause other parts to 
change that is not overtly apparent in the text? 

Error Proneness How easy is it to make mistakes? 

Progressive Evaluation Can you check a program while incomplete? Can parallelism be 
added incrementally? 

Abstraction Gradient How much abstraction is required/possible? 

Closeness of mapping How well does the problem map to the architecture? 

Premature Commitment Does notation constrain the order? E.g. forced look ahead 

Consistency Does similar syntax imply similar behavior? 

Hard mental operations Complexity of primitive operations 

Terseness Succinctness 

HW visibility What features are available to the programmer? 

Portability Is code specific to a certain model of the architecture? 

 

The programmability methodology will examine each of these dimensions for each of several 
programs implementing different parallel patterns to develop the overall programmability 
score. 

EES Report

568
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



49 

The cognitive dimensions framework arises from the human-computer interface (HCI) 
community and is useful in analyzing notations, user interfaces, and programming language 
design. A reservation to this approach is that, at this writing, it is unclear how strong a 
connection has been established between high cognitive dimension scores and ease of 
programming of complex problems. 

6.3 Parallel Programming Patterns

Parallel programming encompasses a broad class of problems and algorithms, each with their 
own challenges to correct and efficient programming. However, nearly all parallel programs 
follow one of the many standard “patterns” for developing parallel programs [50],[51]. Parallel 
patterns occur at all levels of the algorithmic and software stack, ranging from high level 
concurrency models such as pipe-and-filter, to algorithmic patterns such as task parallelism and 
geometric decomposition, to low level communication patterns such as single program multiple 
data (SPMD), master/worker, or shared memory. In Figure 26 a compilation of various patterns 
is shown from the OPL 2.0 [52]. OPL (Our Pattern Language) is an evolving collection of the 
most common patterns for parallel programming and is the result of ongoing parallel 
programming research at the University of California, Berkeley (UCB). 

 

Figure 26. OPL 2.0 Patterns. 

 

Patterns at each level represent a unique programming style. For example, at the algorithm 
level, task parallel is a pattern used when the concurrency exposed is from several independent 

EES Report

569
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

50 

tasks working on independent data. Therefore, task parallel is classified as being easily 
parallelizable and benefiting from low overhead for spawning and joining threads. This differs 
from another common pattern, geometric decomposition, which concerns parallelism resulting 
from splitting a large data set into subcomponents and working on each subcomponent in 
parallel. This pattern is classified by the sharing that occurs typically between adjacent data 
chunks, particularly the “edges” of the data. 

A good programmability metric should be applicable to a broad class of potential applications 
of the system being evaluated. While some full-scale applications may be dominated by one 
parallel pattern, others may incorporate involve several. As an example, molecular dynamics 
codes such as the UHPC program’s challenge problem #5 include elements of the n-body, 
geometric decomposition, master/worker, and shared memory patterns. Rather than try to 
directly measure the programmability on a number of major applications, each of which in turn 
may be composed of a number of sub-parts having significantly different characteristics, the 
proposed methodology focuses on measuring programmability of a set of programs that 
represent common parallel pattern groupings. In effect, the test programs and the parallel 
patterns they incorporate are used as a set of “basis programs” for “spanning the space” of 
larger or more diverse applications. Measuring the programmability of the basis programs on a 
given system can, hopefully, be used to infer the programmability of the system on other 
applications. For instance, the n-body score would apply to the Barnes-Hut or fast-multiple 
method algorithm; the geometric decomposition score would apply to a broad class of 
algorithms such as ocean simulations, blood simulations, or heat dispersal. 

6.3.1 Standard Parallel Problems

Ongoing research in parallel computing at UCB has developed a set of 13 canonical parallel 
programs, listed in Table 12 [53].3

Figure 27
 Each implements a set of communication and computation 

patterns that are common in real applications.  illustrates how a number of specific 
applications and general application areas rely in different degrees on various of these patterns 
[53]. Furthermore, each program typically incorporates several of the parallel patterns described 
above. Collectively, these 13 programs are representative of the combinations of parallel 
programming patterns needed to program real applications on UHPC and EES systems. 

Table 12. Thirteen Canonical Algorithms. 

Dense Linear Algebra Sparse Linear Algebra 

Spectral methods n-body methods 

Structured grids Unstructured grids 

Map Reduce Combinatorial logic 

Graph traversal Dynamic programming 

Back-track/branch and bound Graphical methods 

Finite State Machines 

3 These programs are sometimes referred to as the 13 “dwarfs”. 

EES Report

570
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



51 

Figure 27. “Temperature chart” indicating reliance of various application codes on the 13 canonical 
parallel programs. From [53]. 

6.4 Proposed Methodology

Prior efforts have measured programmability by providing a group of programmers with 
problems to code and then evaluating their efficiency through such measurements as 
development time and keystrokes, and with post-session surveys. Here a different methodology 
is proposed based on scoring a set of parallel codes written by the system developers are scored 
on each of the cognitive dimensions, and an overall programmability score is derived from 
those results. 

More specifically, the proposed methodology proceeds as follows. “Developer” refers to the 
developer of a UHPC system to be evaluated, and of the source code programs that are the basis 
for that evaluation. “Evaluator” refers to a second party that performs the evaluation and 
assigns the programmability score for the developer’s system. 

1. The evaluator will be provided with a standard set of the 13 parallel pattern problems 
and a parallel reference implementation code for each. 

2. The developer will write a separate parallel program for each problem. The programs 
need not be parallelized in the same way as the reference implementation, but should 
instead be parallelized in ways that make best use of the developer’s system. The source 
code for these programs will be provided to the evaluator, along with any requested 

EES Report

571
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

52 

statistics regarding development of the source and executable code, and the 
performance of the executable code on the developer’s system. 

3. The developer will also provide the evaluator with an API document describing the 
programming environment used and a computer system architecture specification. 

4. The evaluator will analyze the 13 codes using a standard measurement system to score 
the effectiveness of each program in each cognitive dimension. The measurements will 
be automated and quantitative wherever possible. 

5. For each code, the individual cognitive dimension scores will be normalized and a 
weighted combination formed to create a programmability measure which scores the 
machine’s effectiveness at programming each parallel pattern. 

While the programmability scores for each pattern could be further combined to provide a 
single score for the system, this is not proposed. Some UHPC or EES systems may be designed 
to be particularly effective on certain classes of problems, at the cost of reduced performance on 
certain others of les interest to that developer. A single score would obscure these differences 
and penalize the developer of a specialized machine unnecessarily. 

In addition to the standard problems, the evaluator will also be responsible for providing the 
following items to the developer: 

	 Any rules and constraints on the coding exercises; 
	 Any parameter sets and data sets needed to run the problems; 
	 A means to validate correctness of each program; and 
	 Definition of all requested documentation, and development and performance statistics. 

A major step in implementing this methodology is defining objective ways to score a program 
on each of the cognitive dimensions. Desirable characteristics are that the score for each 
dimension be quantitative and automated, so that scoring is objective and consistent. No 
standard way to score the cognitive dimensions is known. Table 13 proposes an initial set of 
measurements for 11 of the 12 cognitive dimensions. (Portability is not scored on the 
assumption that these codes are developed for a specific system, so that portability is not a 
primary concern.) This table suggests automatable measurements for eight of the 11 dimensions 
shown. Further research is needed to determine if two more can be automated. Progressive 
evaluation, typically measured by determining if a program still runs when subfunctions are 
replaced with stubs, does not appear to be amenable to automation. This could be evaluated by 
the developers using a protocol specified by the evaluator, or could simply be excluded from 
the programmability metric. 

 

EES Report

572
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

53 

Table 13. Potential for Automated Measurement. 

Cognitive Dimension Potentially Automated? / How? 

Viscosity Yes – Length + use of non-standard symbols + depth 
of nesting + number of special functions needed 

Hidden Dependencies Yes – Measure global accesses 

Error Proneness 
Yes – Potentially measure the error proneness of 

certain directives then measure the directive 
frequency of use 

Progressive Evaluation No 

Abstraction Gradient Unknown – need to measure abstraction exposedness 

Closeness of mapping Yes – Parallel pattern methodology addresses this 

Premature Commitment Yes – Require multiple versions of the code at various 
stages 

Consistency Yes – Variation between patterns and similarity 
among patterns 

Hard Mental Operations Yes – Pointer manipulation count 

Terseness Yes - length 

HW visibility Unknown – Related to abstraction 

6.5 Experiments

In developing the proposed programmability metric, GT conducted two small experiments to 
help define and demonstrate this initial methodology. The procedure for these experiments was 
as follows: 

� A well-known algorithm was selected, and a serial algorithm for each was obtained or 
developed. 

� Two parallel programs were written for that algorithm, one using OpenMP and one 
using Pthreads. The programs were compiled and executed on a very small machine, an 
Apple Macintosh laptop. 

� For each parallel program, a subset of the cognitive dimensions was scored using the 
measurements suggested in Table 13. 

� The scores for each dimension were normalized to a range of zero to one, with one 
representing a better score. 

� Finally, the cognitive dimension scores relating to a program were averaged (using 
uniform weights) to create the programmability scores for that program. 

EES Report

573
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

54 

6.5.1 Example 1 - Quicksort

The divide-and-conquer canonical program was evaluated using a parallel quicksort algorithm. 
The results of the analysis are shown below in Table 14. Figure 28 displays six of the normalized 
scores for each API in a Kiviat diagram. This diagram shows that the OpenMP implementation 
scores very high on the “hard mental” dimensions. This occurred because the conversion of the 
small serial code to OpenMP was essentially trivial in this very small example. The Pthreads 
implementation required significantly more work to convert. On the other hand, the same ease 
of parallelization in OpenMP abstracts away from the user the resulting parallel dependencies, 
while the Pthreads implementation makes them much more explicit, resulting in a much higher 
score for “hidden dependencies” for Pthreads than for OpenMP. 

 

Table 14. Measurements for Quicksort program. 

 Pthreads OpenMP 

Char Count 2897 2159 

Line Count 143 127 

Parentheses 70 42 

Braces 10 17 

API Calls 5 7 

Progressive Evaluation 1 1 

Nesting Level 1 3 

Argument Count 12 2 

API Ordering Constraints 2 4 

Pointer Manipulation Count 22 1 

 

Overall, these results indicate that the Pthreads version excelled in abstraction, hidden 
dependencies, and viscosity, whereas the OpenMP version excelled in terseness and hard 
mental operations. Figure 29 shows the programmability score obtained by uniformly 
averaging all of the individual scores for each API. The average overall score gives a slight edge 
to the OpenMP version. The programmer who wrote both codes concurred with this judgment. 
However, the difference in programmability scores is very slight. 

The benefit of using OpenMP was a much simpler and shorter syntax. However, the API 
required specific ordering and created deep nesting. The pthreads version required more 
pointer manipulation, especially in passing arguments; however the behavior was more explicit 
and easier to debug. 

One downside to these metrics is the lack of a measurement of debugging or code creation time. 
Measuring these aspects reliably would require collecting development statistics for a team of 
programmers for each target system. For this particular example it is the programmer’s opinion 
that OpenMP would have fared better in a head-to-head evaluation. 

EES Report

574
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



55 

  
(a) OpenMP (b) Pthreads 

Figure 28. Cognitive dimension scores for two implementations of the Quicksort algorithm. 

Figure 29. Programmability score for two Quicksort implementations. 

Progressive evaluation was difficult to measure for this example, since the only parallel function 
was called recursively. Consequently, replacing it with a stub would have resulted in a null 
program. This observation suggests that additional research is needed to define a robust 
method to score the progressive evaluation dimension. 

6.5.2 Example 2 - MapReduce

Map Reduce aims to process large amounts of data in parallel by mapping subsets of the data to 
cores for manipulating and then reduces the processed subsets into a single massive data set. 
For this experiment, a MapReduce algorithm was created that read in 1024 files with “links.” 
Each link specified a source node (an integer value) and a destination node (an integer value). 
The MapReduce algorithm creates a data structure that is keyed by the destination node that 
points to a list of all sources that point to that destination. 

The implementation consisted of two files: the main file with the map/reduce functions, and 
sort.cpp which is the serial version of the quicksort algorithm from example 1. Since 
sort.cpp was a constant file, only the main file was evaluated. 

EES Report

575
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



56 

It was found that the OpenMP version of the parallel code was much easier to program. 
OpenMP required only two lines of code to be added to the serial code. Pthreads required many 
more lines to be added, and required all functions to be modified. 

Table 15 gives the basic cognitive dimension measurements for the two MapReduce programs. 
Figure 30 and Figure 31 show the Kiviat diagrams and overall programmability score for this 
example. The OpenMP version scored very high on all dimensions except parallelism. The 
Pthreads implementation was able to more easily extract parallelism than OpenMP. Beyond 4 
threads, OpenMP would segmentation fault on the Macintosh laptop. Pthreads was able to 
spawn all 1024 threads in parallel for mapping and reducing. This suggests that a 
programmability metric must be able to take into account the parallelism achieved. For 
instance, if the programmability score was scaled by the parallelism score, the Pthreads version 
would score as 147x better than OpenMP. 

 

Table 15. Measurements for MapReduce program. 

Pthreads OpenMP 

Char Count 3221 2642 

Line Count 183 149 

Parentheses 61 50 

Braces 22 18 

API Calls 5 2 

Nesting Level 1 1 

Argument Count 12 6 

API Ordering Constraints 2 0 

Pointer Manipulation Count 14 0 

Parallelism 1024 4 

 
(a) OpenMP (b) Pthreads 

Figure 30. Cognitive dimension scores for two implementations of the MapReduce algorithm. 

EES Report

576
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



57 

Figure 31. Programmability score for two MapReduce implementations. 

6.6 Programmability Metric Conclusions

The proposed methodology for measuring programmability requires significant additional 
research to determine if it can serve as a practical basis for a programmability metric for high 
performance, large scale UHPC and EES systems. Additional work is needed in the concept 
development; selection and definition of programming problems; scoring methodology; and 
application to large-scale applications and machines. 

Regarding the basic concept and definition of the programmability metric, further investigation 
is needed to establish the degree of correlation between programmability and cognitive 
dimensions, since the existence of such a correlation is the fundamental assumption of the 
proposed methodology. It is expected that a review of HCI research should be useful. 

Regarding the selection of programming problems, attention is needed to ensure adequate 
coverage of important application areas by the basis set of canonical parallel patterns. While use 
of the Berkeley canonical problems is currently proposed, these are not necessarily exhaustive 
of all the parallel patterns that should be tested, nor representative of all application areas of 
importance to the DoD. In addition to pattern and application coverage, the criteria for problem 
selection should include large amounts of accessible concurrency and an objective and relatively 
easy means of validation of the developers’ program. 

Regarding scoring methodology, additional work is needed on automating scoring of the 
cognitive dimensions from the parallel codes. Furthermore, means to specify and score the 
codes that ensure performance and programmability are targeted jointly are important. 

Experiments to date have been restricted to just two toy-size problems on a laptop computer. 
While GT believes that the concepts proposed appear applicable to large-scale machines, there 
are undoubtedly a number of issues that will arise as problem and machine sizes are scaled up. 
It is important for the evaluator to create code specifications that encourage a specific amount of 
parallelism and performance. 

 

EES Report

577
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

58 

REFERENCES

[1] Defense Advanced Research Projects Agency (DARPA), www.darpa.mil. 

[2] DARPA High Productivity Computing Systems web site, 
http://www.darpa.mil/Our_Work/I2O/Programs/High_Productivity_Computing_Sys
tems_(HPCS).aspx. 

[3]  “ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems”, P. 
Kogge, editor, September 28, 2008. Available at 
users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/ECS_reports.htm. 

[4] “ExaScale Computing Software Study: Software Challenges in Extreme Scale Systems”, 
V. Sarkar, editor, September 14, 2009. Available at 
users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/ECS_reports.htm. 

[5] “System Resilience at Extreme Scale”, E. Elnozahy, editor, September 14, 2009. Available 
at http://institute.lanl.gov/resilience/docs/. 

[6] Richards, M. A., Gadient, A., Frank, G. A., and Harr, R., “The RASSP Program: Origin, 
Concepts, and Status – An Introduction to the Issue”, J. VSLI Sig. Proc. Sys. For Signal, 
Image, and Video Tech., vol. 15, nos. ½, pp. 7-28, Jan. 1997. 

[7] Boehm B, “A Spiral Model of Software Development and Enhancement,” ACM SIGSOFT 
Software Engineering Notes, J. ACM, 11(4):14-24, August 1986. 

[8] Gajski, D. D. and Kuhn, R. H., “Guest Editor’s Introduction – New VLSI Tools”, IEEE 
Computer, vol. 16(12), pp. 11-14, 1983. 

[9] Chung, E. S., Nurvitadhi, E., Hoe, J. C., Falsafi, B., and Mai, K., “A complexity-effective 
architecture for accelerating full-system multiprocessor simulations using FPGAs”, 
Proceedings of the 16th international ACM/SIGDA symposium on Field programmable gate 
arrays, Monterey, California, 2008. 

[10] Mahlke, S. A, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, “Effective 
compiler support for predicated execution using the hyperblock,” 25th International 
Symposium on Microarchitecture, 1992. 

[11] Bryan, P. D., Rosier, M. C. Conte, T. M. “Reverse State Reconstruction for Sampled 
Microarchitectural Simulation,” 2007 IEEE Intl. Symp. on Performance Analysis of 
Systems and Software (ISPASS), April 2007. 

[12] Kessler, R. E., Hill, M. D., and Wood, D. A., “A Comparison of Trace-sampling 
Techniques for Multi-megabyte Caches,” IEEE Trans. Computing, vol. C-43, June 1994. 

[13] Wood, D. A., Hill, M. D., and Kessler, R. E., “A Model for Estimating Trace-sample Miss 
Ratios,” Proc. ACM SIGMETRICS 1991 Conf. on Measurement and Modeling of Comput. 
Sys., May 1991. 

EES Report

578
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

59 

[14] Liu, W. and Huang, M. C., “EXPERT: Expedited Simulation Exploiting Program Behavior 
Repetition,” ICS, 2004. 

[15] Conte, T. M., Hirsch, M. A., and Menezes, K. N, “Reducing State Loss for Effective Trace 
Sampling of Superscalar Processors,“ IEEE Intl.  Conf. Computer Design, 1996. 

[16] Bryan, P. D., Conte, T. M, “Combining Cluster Sampling with Single Pass Methods for 
Efficient Sampling Regimen Design,” IEEE Intl.  Conf. Computer Design, 2007. 

[17] Fu, J. W. C., and Patel, J. H., “Trace Driven Simulation using Sampled Traces,” Proc. 27th 
Hawaii Int’l. Conf. on System Sciences, (Maui, HI), Jan. 1994. 

[18] Iyengar. V. S., Trevillyan., L. H., and Bose, P, “Representative Traces for Processor 
Models with Infinite Cache”, IEEE Intl. Symp. High Performance Computer Architecture, 
1996. 

[19] Lui, L., and Peir, J, “Cache Sampling by Sets,” IEEE Trans. VLSI Systems, vol. 1, June 1993. 

[20] Student, A. [William Sealy Gosset], “The probable error of a mean,” Biometrika, March 
1908, pp 1–25. 

[21] Haskins, J. W., and Skadron, K, “Memory Reference Reuse Latency: Accelerated Sampled 
Microarchitecture Simulation,” IEEE Intl. Symp. on Performance Analysis of Systems and 
Software (ISPASS), 2003. 

[22] Sherwood, T., Perelman, E., Hamerly, G., and Calder, B, “Automatically Characterizing 
Large Scale Program Behavior,” Intl.  Conf. Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), 2002. 

[23] W. L. Melvin and G. A. Showman, “Performance results for a knowledge-aided clutter 
mitigation architecture”, 2007 IET Intl. Conf. Radar Systems, pp. 1-5, 2007. 

[24] Top 500 list for November 2010. http://www.top500.org/lists/2010/11. 

[25] Ubiquitous High Performance Computing (UHPC) Program web site, 
http://www.darpa.mil/Our_Work/I2O/Programs/Ubiquitous_High_Performance_Co
mputing_(UHPC).aspx. 

[26]  “Supercomputer hopes to say Gotcha to future terrorists”, USAF press release, Sept. 30, 
2009. Available at http://www.af.mil/news/story.asp?id=123170460. 

[27] S. M. Scarborough et al, “A challenge problem for SAR-based GMTI in urban 
environments”, Proc. SPIE Vol. 7337, 73370G (Apr. 28, 2009). 

[28] M. Soumekh, Synthetic Aperture Radar Signal Processing with MATLAB Algorithms. Wiley, 
New York, 1999. 

[29] A. Goshtasby, “Registration of images with geometric distortions”, IEEE Trans. Geosci. 
Remote Sensing, vol. 26, no. 11, pp. 60-64, Jan. 1988. 

EES Report

579
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

60 

[30] F. L. Bookstein, “Principal warps: Thin-plate splines and the decomposition of 
deformations”, IEEE Trans. Pattern Anal. Machine Intell., vol. 11, no. 6, pp. 567-585, Jun. 
1989. 

[31] C. D. Austin, E. Ertin, and R. L. Moses, “Sparse multipass 3D SAR imaging: applications 
to the GOTCHA data set”, Proc. SPIE Vol. 7337, 733703 (Apr. 28, 2009). 

[32] DARPA Urban Challenge web site. http://archive.darpa.mil/grandchallenge/. 

[33] “Team Sting” technical paper, DARPA Urban Challenge, June 1 2007. Available at 
http://archive.darpa.mil/grandchallenge/TechPapers/Sting_Racing.pdf. 

[34] D. Wooden et al, “A Modular, Hybrid System Architecture for Autonomous, Urban 
Driving”, J. Aerospace Computing, Info., and Comm., Vol. 4, pp. 1047-1058, December 2007. 

[35] Z. Kim, “Robust Lane Detection and Tracking in Challenging Scenarios”, IEEE Trans. 
Intelligent Transportation Systems, vol. 9 (1), pp. 16-26, 2008. 

[36] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for Model 
Fitting with Applications to Image Analysis and Automated Cartography”, Comm. of the 
ACM, 24: 381–395, June 1981. 

[37] M. Montemerlo and S. Thrun, FastSLAM. Springer, 2007. 

[38] J. Weinberg, M. O. McCracken, A. Snavely, E. Strohmaier, “Quantifying Locality In The 
Memory Access Patterns of HPC Applications”, Supercomputing 2005. November 2005, 
Seattle, WA. 

[39] C. Ding and Y. Zhong, “Predicting whole-program locality with reuse distance analysis”, 
Proceedings of ACM SIGPLAN Conference on Programming Language Design and 
Implementation, San Diego, CA, June 2003. 

[40] A. Oppenheim and R. Schafer. Discrete-Time Signal Processing. Prentice Hall, 1999. 

[41] G. Golub and C. Van Loan. Matrix Computations. The John Hopkins University Press, 
1996. 

[42] Vector, Signal, Image Processing Library (VSIPL) web site. http://www.vsipl.org/. 

[43] High Performance Embedded Computing Software Initiative (HPEC-SI) web site. 
http://www.hpec-si.org/. 

[44] GPU-VSIPL web site. http://gpu-vsipl.gtri.gatech.edu/. 

[45] A. R. Kerr, D. P. Campbell, and M. A. Richards, “GPU VSIPL: High-Performance VSIPL 
Implementation for GPUs”, Proceedings 2008 High Performance Embedded Computing 
Workshop, MIT Lincoln Laboratory, September 23-25, 2008. Available at 
http://www.ll.mit.edu/HPEC/agendas/proc08/agenda.html. 

EES Report

580
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

61 

[46] M. A. Richards, Fundamentals of Radar Signal Processing, McGraw-Hill, New York, 2005. 

[47] VSIPL Test Suite, software available at http://www.vsipl.org. 

[48] A. Blackwell, “Cognitive Dimensions of Notations,” in Visual Languages and Human-
Centric Computing, 2005 IEEE Symp. on Visual Languages and Human-Centric Comp., 
2005, page 3. 

[49] T. Mattson and M. Wrinn, “Parallel programming: Can we PLEASE get it right this 
time?” in Proc. 45th ACM/IEE Design Automation Conference, 2008, pp. 7-11. 

[50] T. G. S. Mattson, Beverly A.; Massingill, Berna L., Patterns for Parallel Programming. 
Addison-Wesley, 2004. 

[51] J. L. Ortega-Arjona, Patterns for Parallel Software Design. West Sussex: Wiley, 2010. 

[52] A Pattern Language for Parallel Programming, ver2.0. Available: at 
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns. 

[53] K. Asanovic et al, “A view of the parallel computing landscape”, Comm. ACM, vol. 52, 
no. 10, Oct. 2009. 

 

EES Report

581
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED


	REPORT DOCUMENTATION PAGE
	PREFACE
	ACKNOWLEDGEMENTS
	1. SUMMARY
	1.1 Goals of the Project
	1.2 Project Approach
	1.3 Principal Results and Conclusions
	1.4 Major Recommendations

	2. INTRODUCTION
	2.1 Goal of the Project
	2.2 Extreme Scale Computing Systems
	2.3 DARPA’s Extreme Scale Computing Studies
	2.4 Embedded Extreme Scale Study
	2.5 Organization of This Report

	3. METHODS AND PROCEDURES
	3.1 Group Studies
	3.2 Embedded Extreme Scale Study

	4. RESULTS AND DISCUSSION
	4.1 Group Studies
	4.2 Embedded Extreme Scale Study
	4.2.1 Design Environments for Terascale Embedded Computing
	4.2.2 Extreme Scale Embedded Computing Applications
	4.2.3 Low-Power Computational Algorithms
	4.2.4 High Performance Libraries for Advanced Graphics Processing Units
	4.2.5 Metrics for Extreme Scale Systems

	4.3 Discussion

	5. CONCLUSIONS AND RECOMMENDATIONS
	5.1 Group Studies
	5.2 Embedded Extreme Scale Study

	6. REFERENCES
	2011-1029Cover.pdf
	AFRL-RY-WP-TR-2011-1029
	STINFO COPY

	2011-1029SF298.pdf
	REPORT DOCUMENTATION PAGE
	PREFACE
	ACKNOWLEDGEMENTS
	1. SUMMARY
	1.1 Goals of the Project
	1.2 Project Approach
	1.3 Principal Results and Conclusions
	1.4 Major Recommendations

	2. INTRODUCTION
	2.1 Goal of the Project
	2.2 Extreme Scale Computing Systems
	2.3 DARPA’s Extreme Scale Computing Studies
	2.4 Embedded Extreme Scale Study
	2.5 Organization of This Report

	3. METHODS AND PROCEDURES
	3.1 Group Studies
	3.2 Embedded Extreme Scale Study

	4. RESULTS AND DISCUSSION
	4.1 Group Studies
	4.2 Embedded Extreme Scale Study
	4.2.1 Design Environments for Terascale Embedded Computing
	4.2.2 Extreme Scale Embedded Computing Applications
	4.2.3 Low-Power Computational Algorithms
	4.2.4 High Performance Libraries for Advanced Graphics Processing Units
	4.2.5 Metrics for Extreme Scale Systems

	4.3 Discussion

	5. CONCLUSIONS AND RECOMMENDATIONS
	5.1 Group Studies
	5.2 Embedded Extreme Scale Study

	6. REFERENCES
	APPENDIX A
	FINAL REPORT OF EXASCALE COMPUTING STUDY
	APPENDIX B
	FINAL REPORT OF EXASCALE COMPUTING SOFTWARE STUDY
	APPENDIX C
	FINAL REPORT OF EXASCALE COMPUTING RESILIENCY STUDY
	APPENDIX D
	FINAL REPORT OF EMBEDDED EXTREME SCALE SYSTEMS STUDY
	2011-1029Cover.pdf
	2011-1029SF298.pdf
	REPORT DOCUMENTATION PAGE


